--- library_name: transformers language: - zh license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - formospeech/tat_asr_aligned model-index: - name: Whisper Tiny Taiwanese (topline) results: [] --- # Whisper Tiny Taiwanese (topline) This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set: - Loss: 1.0400 - Cer: 20.3105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1362 - training_steps: 13620 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.6758 | 0.9985 | 681 | 0.6816 | 35.6624 | | 0.5019 | 1.9971 | 1362 | 0.6077 | 24.6575 | | 0.3484 | 2.9956 | 2043 | 0.5875 | 23.5932 | | 0.2444 | 3.9941 | 2724 | 0.6029 | 22.1000 | | 0.16 | 4.9927 | 3405 | 0.6502 | 22.3178 | | 0.1084 | 5.9912 | 4086 | 0.7111 | 22.3447 | | 0.0728 | 6.9897 | 4767 | 0.7801 | 22.1145 | | 0.0493 | 7.9883 | 5448 | 0.8294 | 22.0905 | | 0.0333 | 8.9868 | 6129 | 0.8626 | 22.4998 | | 0.0248 | 9.9853 | 6810 | 0.8916 | 21.6134 | | 0.018 | 10.9839 | 7491 | 0.9241 | 21.7539 | | 0.0122 | 11.9824 | 8172 | 0.9620 | 21.7042 | | 0.0086 | 12.9809 | 8853 | 0.9697 | 21.6206 | | 0.0064 | 13.9795 | 9534 | 0.9937 | 21.1544 | | 0.0037 | 14.9780 | 10215 | 1.0012 | 21.0531 | | 0.0021 | 15.9765 | 10896 | 1.0125 | 20.6351 | | 0.0015 | 16.9751 | 11577 | 1.0279 | 20.4550 | | 0.0015 | 17.9736 | 12258 | 1.0328 | 20.2847 | | 0.0018 | 18.9721 | 12939 | 1.0392 | 20.3533 | | 0.0011 | 19.9707 | 13620 | 1.0400 | 20.3105 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.0.0.post304 - Datasets 3.3.2 - Tokenizers 0.21.0