--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy - precision - recall - f1 model-index: - name: ast-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.94 - name: Precision type: precision value: 0.946171802054155 - name: Recall type: recall value: 0.9379426129426129 - name: F1 type: f1 value: 0.9379839011750775 --- # ast-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3551 - Accuracy: 0.94 - Precision: 0.9462 - Recall: 0.9379 - F1: 0.9380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9185 | 1.0 | 113 | 0.6489 | 0.78 | 0.8099 | 0.7976 | 0.7743 | | 0.473 | 2.0 | 226 | 0.6660 | 0.8 | 0.8284 | 0.8208 | 0.7963 | | 0.4124 | 3.0 | 339 | 0.6544 | 0.8 | 0.8237 | 0.8002 | 0.7880 | | 0.1625 | 4.0 | 452 | 0.4139 | 0.86 | 0.8519 | 0.8603 | 0.8454 | | 0.2298 | 5.0 | 565 | 0.5540 | 0.88 | 0.8689 | 0.8694 | 0.8618 | | 0.1091 | 6.0 | 678 | 0.4291 | 0.89 | 0.8933 | 0.8935 | 0.8855 | | 0.0208 | 7.0 | 791 | 0.4161 | 0.91 | 0.9200 | 0.9000 | 0.8977 | | 0.0181 | 8.0 | 904 | 0.3769 | 0.92 | 0.9133 | 0.9202 | 0.9127 | | 0.0035 | 9.0 | 1017 | 0.3431 | 0.94 | 0.9353 | 0.9424 | 0.9371 | | 0.013 | 10.0 | 1130 | 0.3551 | 0.94 | 0.9462 | 0.9379 | 0.9380 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1