File size: 7,122 Bytes
84596d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
title: AutoML Lite
emoji: π€
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
license: mit
tags:
- automl
- machine-learning
- deep-learning
- time-series
- classification
- regression
- feature-engineering
- interpretability
- experiment-tracking
- production
---
# AutoML Lite π€
**Automated Machine Learning Made Simple**
A lightweight, production-ready automated machine learning library that simplifies the entire ML pipeline from data preprocessing to model deployment.
## π¬ Demo
### AutoML Lite in Action

### Generated HTML Reports

### Weights & Biases Integration

## π Quick Start
### Installation
```bash
pip install automl-lite
```
### 5-Line ML Pipeline
```python
from automl_lite import AutoMLite
import pandas as pd
# Load your data
data = pd.read_csv('your_data.csv')
# Initialize AutoML (zero configuration!)
automl = AutoMLite(time_budget=300)
# Train and get the best model
best_model = automl.fit(data, target_column='target')
# Make predictions
predictions = automl.predict(new_data)
```
## β¨ Key Features
### π§ Intelligent Automation
- **Auto Feature Engineering**: 11.6x feature expansion (20β232 features)
- **Smart Model Selection**: Tests 15+ algorithms automatically
- **Hyperparameter Optimization**: Uses Optuna for efficient tuning
- **Ensemble Methods**: Automatic voting classifiers
### π Production-Ready
- **Deep Learning**: TensorFlow and PyTorch integration
- **Time Series**: ARIMA, Prophet, LSTM forecasting
- **Advanced Interpretability**: SHAP, LIME, permutation importance
- **Experiment Tracking**: MLflow, W&B, TensorBoard
- **Interactive Dashboards**: Real-time monitoring
### π Comprehensive Reporting
- **Interactive HTML Reports**: Beautiful visualizations
- **Model Performance Analysis**: Confusion matrices, ROC curves
- **Feature Importance**: Detailed analysis and correlations
- **Training History**: Complete logs and metrics
## π― Supported Problem Types
- β
**Classification** (Binary & Multi-class)
- β
**Regression**
- β
**Time Series Forecasting**
- β
**Deep Learning Tasks**
## π₯ Performance Metrics
### Production Demo Results
- **Training Time**: 391.92 seconds for complete pipeline
- **Best Model**: Random Forest (80.00% accuracy)
- **Feature Engineering**: 20 β 232 features (11.6x expansion)
- **Feature Selection**: 132/166 features intelligently selected
- **Hyperparameter Optimization**: 50 trials with Optuna
## π οΈ Advanced Usage
### Custom Configuration
```python
config = {
'time_budget': 600,
'max_models': 20,
'cv_folds': 5,
'feature_engineering': True,
'ensemble_method': 'voting',
'interpretability': True
}
automl = AutoMLite(**config)
```
### Time Series Forecasting
```python
automl = AutoMLite(problem_type='time_series')
model = automl.fit(data, target_column='sales', date_column='date')
forecast = automl.predict_future(periods=30)
```
### Deep Learning
```python
automl = AutoMLite(
include_deep_learning=True,
deep_learning_framework='tensorflow'
)
model = automl.fit(data, target_column='target')
```
## π CLI Interface
```bash
# Basic usage
automl-lite train data.csv --target target_column
# With custom config
automl-lite train data.csv --target target_column --config config.yaml
# Generate report
automl-lite report --model model.pkl --output report.html
```
## π¨ Interactive Dashboard
```python
from automl_lite.ui import launch_dashboard
launch_dashboard(automl)
```
## π Model Interpretability
```python
# Get SHAP values
shap_values = automl.explain_model(X_test)
# Feature importance
importance = automl.get_feature_importance()
# Partial dependence plots
automl.plot_partial_dependence('feature_name')
```
## π― Use Cases
### Perfect For:
- π’ **Data Scientists** - Rapid prototyping
- π **ML Engineers** - Production development
- π **Analysts** - Quick insights
- π **Students** - Learning ML concepts
- π **Startups** - Fast MVP development
### Industries:
- **Finance**: Credit scoring, fraud detection
- **Healthcare**: Disease prediction, monitoring
- **E-commerce**: Segmentation, forecasting
- **Marketing**: Campaign optimization
- **Manufacturing**: Predictive maintenance
## π§ Configuration Templates
- **Basic**: Quick experiments
- **Production**: Production deployment
- **Research**: Extensive search
- **Customer Churn**: Churn prediction
- **Fraud Detection**: Fraud detection
- **House Price**: Real estate prediction
## π¦ Installation Options
### From PyPI (Recommended)
```bash
pip install automl-lite
```
### From Source
```bash
git clone https://github.com/Sherin-SEF-AI/AutoML-Lite.git
cd AutoML-Lite
pip install -e .
```
## π€ Contributing
We welcome contributions! Here's how you can help:
1. **Fork the repository**
2. **Create a feature branch**
3. **Make your changes**
4. **Add tests**
5. **Submit a pull request**
## π Documentation & Resources
- π **Full Documentation**: [GitHub Wiki](https://github.com/Sherin-SEF-AI/AutoML-Lite/wiki)
- π― **API Reference**: [API Docs](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/API_REFERENCE.md)
- π **Examples**: [Example Notebooks](https://github.com/Sherin-SEF-AI/AutoML-Lite/tree/main/examples)
- π **Quick Start**: [Installation Guide](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/INSTALLATION.md)
## π¬ Join the Community
- π **Star the Repository**: [GitHub](https://github.com/Sherin-SEF-AI/AutoML-Lite)
- π **Report Issues**: [Issue Tracker](https://github.com/Sherin-SEF-AI/AutoML-Lite/issues)
- π‘ **Feature Requests**: [Discussions](https://github.com/Sherin-SEF-AI/AutoML-Lite/discussions)
- π§ **Contact**: sherin.joseph2217@gmail.com
## π Why Choose AutoML Lite?
| Feature | AutoML Lite | Other Libraries |
|---------|-------------|-----------------|
| **Setup Time** | 30 seconds | 30+ minutes |
| **Configuration** | Zero required | Complex configs |
| **Production Ready** | β
Built-in | β Manual setup |
| **Deep Learning** | β
Integrated | β Separate setup |
| **Time Series** | β
Native support | β Limited |
| **Interpretability** | β
Advanced | β Basic |
| **Experiment Tracking** | β
Multi-platform | β Limited |
| **Interactive Reports** | β
Beautiful HTML | β Basic plots |
## π― Ready to Transform Your ML Workflow?
**Stop spending hours on boilerplate code. Start building amazing ML models in minutes!**
```bash
pip install automl-lite
```
**Try it now and see the difference!** π
---
*Built with β€οΈ by the AutoML Lite community*
**Tags**: #python #machinelearning #automl #datascience #ml #ai #automation #productivity #opensource #deeplearning #timeseries #interpretability #experimenttracking #production #deployment |