File size: 7,122 Bytes
84596d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
title: AutoML Lite
emoji: πŸ€–
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
license: mit
tags:
- automl
- machine-learning
- deep-learning
- time-series
- classification
- regression
- feature-engineering
- interpretability
- experiment-tracking
- production
---

# AutoML Lite πŸ€–

**Automated Machine Learning Made Simple**

A lightweight, production-ready automated machine learning library that simplifies the entire ML pipeline from data preprocessing to model deployment.

## 🎬 Demo

### AutoML Lite in Action
![AutoML Lite Demo](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-lite.gif)

### Generated HTML Reports
![AutoML Report Generation](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-lite-report.gif)

### Weights & Biases Integration
![W&B Experiment Tracking](https://github.com/Sherin-SEF-AI/AutoML-Lite/raw/main/automl-wandb.gif)

## πŸš€ Quick Start

### Installation
```bash
pip install automl-lite
```

### 5-Line ML Pipeline
```python
from automl_lite import AutoMLite
import pandas as pd

# Load your data
data = pd.read_csv('your_data.csv')

# Initialize AutoML (zero configuration!)
automl = AutoMLite(time_budget=300)

# Train and get the best model
best_model = automl.fit(data, target_column='target')

# Make predictions
predictions = automl.predict(new_data)
```

## ✨ Key Features

### 🧠 Intelligent Automation
- **Auto Feature Engineering**: 11.6x feature expansion (20β†’232 features)
- **Smart Model Selection**: Tests 15+ algorithms automatically
- **Hyperparameter Optimization**: Uses Optuna for efficient tuning
- **Ensemble Methods**: Automatic voting classifiers

### 🏭 Production-Ready
- **Deep Learning**: TensorFlow and PyTorch integration
- **Time Series**: ARIMA, Prophet, LSTM forecasting
- **Advanced Interpretability**: SHAP, LIME, permutation importance
- **Experiment Tracking**: MLflow, W&B, TensorBoard
- **Interactive Dashboards**: Real-time monitoring

### πŸ“Š Comprehensive Reporting
- **Interactive HTML Reports**: Beautiful visualizations
- **Model Performance Analysis**: Confusion matrices, ROC curves
- **Feature Importance**: Detailed analysis and correlations
- **Training History**: Complete logs and metrics

## 🎯 Supported Problem Types

- βœ… **Classification** (Binary & Multi-class)
- βœ… **Regression**
- βœ… **Time Series Forecasting**
- βœ… **Deep Learning Tasks**

## πŸ”₯ Performance Metrics

### Production Demo Results
- **Training Time**: 391.92 seconds for complete pipeline
- **Best Model**: Random Forest (80.00% accuracy)
- **Feature Engineering**: 20 β†’ 232 features (11.6x expansion)
- **Feature Selection**: 132/166 features intelligently selected
- **Hyperparameter Optimization**: 50 trials with Optuna

## πŸ› οΈ Advanced Usage

### Custom Configuration
```python
config = {
    'time_budget': 600,
    'max_models': 20,
    'cv_folds': 5,
    'feature_engineering': True,
    'ensemble_method': 'voting',
    'interpretability': True
}

automl = AutoMLite(**config)
```

### Time Series Forecasting
```python
automl = AutoMLite(problem_type='time_series')
model = automl.fit(data, target_column='sales', date_column='date')
forecast = automl.predict_future(periods=30)
```

### Deep Learning
```python
automl = AutoMLite(
    include_deep_learning=True,
    deep_learning_framework='tensorflow'
)
model = automl.fit(data, target_column='target')
```

## πŸ“ˆ CLI Interface

```bash
# Basic usage
automl-lite train data.csv --target target_column

# With custom config
automl-lite train data.csv --target target_column --config config.yaml

# Generate report
automl-lite report --model model.pkl --output report.html
```

## 🎨 Interactive Dashboard

```python
from automl_lite.ui import launch_dashboard
launch_dashboard(automl)
```

## πŸ” Model Interpretability

```python
# Get SHAP values
shap_values = automl.explain_model(X_test)

# Feature importance
importance = automl.get_feature_importance()

# Partial dependence plots
automl.plot_partial_dependence('feature_name')
```

## 🎯 Use Cases

### Perfect For:
- 🏒 **Data Scientists** - Rapid prototyping
- πŸš€ **ML Engineers** - Production development
- πŸ“Š **Analysts** - Quick insights
- πŸŽ“ **Students** - Learning ML concepts
- 🏭 **Startups** - Fast MVP development

### Industries:
- **Finance**: Credit scoring, fraud detection
- **Healthcare**: Disease prediction, monitoring
- **E-commerce**: Segmentation, forecasting
- **Marketing**: Campaign optimization
- **Manufacturing**: Predictive maintenance

## πŸ”§ Configuration Templates

- **Basic**: Quick experiments
- **Production**: Production deployment
- **Research**: Extensive search
- **Customer Churn**: Churn prediction
- **Fraud Detection**: Fraud detection
- **House Price**: Real estate prediction

## πŸ“¦ Installation Options

### From PyPI (Recommended)
```bash
pip install automl-lite
```

### From Source
```bash
git clone https://github.com/Sherin-SEF-AI/AutoML-Lite.git
cd AutoML-Lite
pip install -e .
```

## 🀝 Contributing

We welcome contributions! Here's how you can help:

1. **Fork the repository**
2. **Create a feature branch**
3. **Make your changes**
4. **Add tests**
5. **Submit a pull request**

## πŸ“š Documentation & Resources

- πŸ“– **Full Documentation**: [GitHub Wiki](https://github.com/Sherin-SEF-AI/AutoML-Lite/wiki)
- 🎯 **API Reference**: [API Docs](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/API_REFERENCE.md)
- πŸ“ **Examples**: [Example Notebooks](https://github.com/Sherin-SEF-AI/AutoML-Lite/tree/main/examples)
- πŸš€ **Quick Start**: [Installation Guide](https://github.com/Sherin-SEF-AI/AutoML-Lite/blob/main/docs/INSTALLATION.md)

## πŸ’¬ Join the Community

- 🌟 **Star the Repository**: [GitHub](https://github.com/Sherin-SEF-AI/AutoML-Lite)
- πŸ› **Report Issues**: [Issue Tracker](https://github.com/Sherin-SEF-AI/AutoML-Lite/issues)
- πŸ’‘ **Feature Requests**: [Discussions](https://github.com/Sherin-SEF-AI/AutoML-Lite/discussions)
- πŸ“§ **Contact**: sherin.joseph2217@gmail.com

## πŸ† Why Choose AutoML Lite?

| Feature | AutoML Lite | Other Libraries |
|---------|-------------|-----------------|
| **Setup Time** | 30 seconds | 30+ minutes |
| **Configuration** | Zero required | Complex configs |
| **Production Ready** | βœ… Built-in | ❌ Manual setup |
| **Deep Learning** | βœ… Integrated | ❌ Separate setup |
| **Time Series** | βœ… Native support | ❌ Limited |
| **Interpretability** | βœ… Advanced | ❌ Basic |
| **Experiment Tracking** | βœ… Multi-platform | ❌ Limited |
| **Interactive Reports** | βœ… Beautiful HTML | ❌ Basic plots |

## 🎯 Ready to Transform Your ML Workflow?

**Stop spending hours on boilerplate code. Start building amazing ML models in minutes!**

```bash
pip install automl-lite
```

**Try it now and see the difference!** πŸš€

---

*Built with ❀️ by the AutoML Lite community*

**Tags**: #python #machinelearning #automl #datascience #ml #ai #automation #productivity #opensource #deeplearning #timeseries #interpretability #experimenttracking #production #deployment