|
import os |
|
import json |
|
import base64 |
|
import random |
|
import argparse |
|
|
|
import natsort |
|
|
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
from src.run_gpt import run_gpt |
|
|
|
random.seed(10) |
|
dict_api = { |
|
"api_key":"ADD", |
|
} |
|
|
|
|
|
class CustomDatasetGPT(Dataset): |
|
def __init__(self, questions, num_kf): |
|
self.questions = questions |
|
self.num_kf = num_kf |
|
|
|
def __getitem__(self, index): |
|
line = self.questions[index] |
|
group = 4 |
|
newnum_per_group = self.num_kf // group |
|
oldnum_per_group = len(line["VLM_path"]) // group |
|
assert oldnum_per_group >= newnum_per_group, f"oldnum_per_group:{oldnum_per_group} is smaller than newnum_per_group:{newnum_per_group}" |
|
|
|
new_kf_paths = [] |
|
new_kf_timelines = [] |
|
for i in range(group): |
|
start_index = i * oldnum_per_group |
|
end_index = start_index + oldnum_per_group |
|
|
|
sub_kf_paths = line["VLM_path"][start_index:min(end_index, len(line["VLM_path"]))] |
|
sub_kf_timelines = line["VLM_timeline"][start_index:min(end_index, len(line["VLM_timeline"]))] |
|
new_kf_paths.extend(sub_kf_paths[:newnum_per_group]) |
|
new_kf_timelines.extend(sub_kf_timelines[:newnum_per_group]) |
|
|
|
kf_paths = natsort.natsorted(new_kf_paths) |
|
kf_timelines = natsort.natsorted(new_kf_timelines) |
|
|
|
images = [] |
|
images_base64 = [] |
|
|
|
for e in kf_paths: |
|
images.append(Image.open(e).convert('RGB')) |
|
images_base64.append(encode_image(e)) |
|
|
|
return images_base64, kf_paths, kf_timelines |
|
|
|
def __len__(self): |
|
return len(self.questions) |
|
|
|
|
|
def encode_image(image_path): |
|
with open(image_path, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
def create_data_loader_gpt(questions, num_kf, batch_size=1, num_workers=4): |
|
assert batch_size == 1, "batch_size must be 1" |
|
|
|
dataset = CustomDatasetGPT(questions, num_kf) |
|
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False) |
|
|
|
return data_loader, dataset |
|
|
|
def eval_model(args): |
|
base_dir, question_path, vlm, num_kf, temp = ( |
|
args.output_dir, |
|
args.question_path, |
|
args.gptmodel, |
|
args.num_kf, |
|
args.temp, |
|
) |
|
|
|
questions = [json.loads(q) for q in open(os.path.expanduser(question_path), "r")] |
|
|
|
fname = question_path.split('/')[-1] |
|
answer_path = f"{base_dir}/egoschema/{num_kf}/{fname}" |
|
os.makedirs(os.path.dirname(answer_path), exist_ok=True) |
|
print(f"question_path:{question_path}\nanswer_path:{answer_path}") |
|
|
|
ans_file = open(answer_path, "w") |
|
data_loader, dataset = create_data_loader_gpt(questions, num_kf) |
|
|
|
for (base64_image, kf_paths, kf_timelines), line in tqdm(zip(data_loader, questions), total=len(questions)): |
|
idx = line["q_uid"] |
|
CA = line["CA"] if "CA" in line else None |
|
option0 = line['option 0'] |
|
option1 = line['option 1'] |
|
option2 = line['option 2'] |
|
option3 = line['option 3'] |
|
option4 = line['option 4'] |
|
question = line['question'] |
|
|
|
lenwords = "50" |
|
prompt = f"'C' stands for the cameraman. Describe the activity depicted in this first-person perspective image in less than {lenwords} words. In your answer, don't mention that the image is in first-person perspective, as we already know this." |
|
prompts = [prompt] * num_kf |
|
|
|
image_paths = [e[0] for e in kf_paths] |
|
image_timelines = [e[0] for e in kf_timelines] |
|
|
|
output_VLM = run_gpt( |
|
images=image_paths, |
|
texts=prompts, |
|
api_keys=list(dict_api.values()), |
|
max_tokens=2000, |
|
model=vlm, |
|
temperature=temp, |
|
num_threads=20, |
|
backoff_time=1 * 60, |
|
silent=False, |
|
dataset="egoschema", |
|
verbose=False, |
|
) |
|
|
|
output_VLM = list(output_VLM) |
|
|
|
for j, e in enumerate(image_timelines): |
|
line_frame = line.copy() |
|
line_frame["answer"] = f"At {str(e)} seconds, {output_VLM[j]}" |
|
line_frame["AR-VLM_model_id"] = vlm |
|
line_frame["AR-VLM_prompt"] = prompts[j] |
|
line_frame["timeline"] = float(e) |
|
line_frame["frame_idx"] = j |
|
line_frame["image_paths"] = image_paths |
|
|
|
if "imgidx_kw_dict" in line_frame.keys(): line_frame.pop("imgidx_kw_dict") |
|
if "google_drive_id" in line_frame.keys(): line_frame.pop("google_drive_id") |
|
|
|
ans_file.write(json.dumps(line_frame)+"\n") |
|
|
|
print(f"question.\nquestion_path:{question_path}\nanswer_path:{answer_path}") |
|
|
|
ans_file.close() |
|
return "job is done" |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--output-dir", type=str) |
|
parser.add_argument("--question-path", type=str, default="") |
|
parser.add_argument("--num-kf", type=int) |
|
parser.add_argument("--gptmodel", type=str, default="gpt-4o") |
|
parser.add_argument("--temp", type=float, default=None) |
|
args = parser.parse_args() |
|
eval_model(args) |
|
|