File size: 1,602 Bytes
f735cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
pipeline_tag: image-segmentation
tags:
- BEN
- background-remove
- mask-generation
- Dichotomous image segmentation
- background remove
- foreground
- background
- remove background
- pytorch
---
## Model Provided by ParmaLLC
The base model is publicly available and free to use for commercial use on HuggingFace:
- 🤗 [PramaLLC/BEN](https://huggingface.co/PramaLLC/BEN)
## Quick Start Code (Inside Cloned Repo)
```python
import model
from PIL import Image
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
file = "./image.png" # input image
model = model.BEN_Base().to(device).eval() #init pipeline
model.loadcheckpoints("./BEN_Base.pth")
image = Image.open(file)
mask, foreground = model.inference(image)
mask.save("./mask.png")
foreground.save("./foreground.png")
```
# BEN SOA Benchmarks on Disk 5k Eval

### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
- MAE: 0.0270
- DICE: 0.8989
- IOU: 0.8506
- BER: 0.0496
- ACC: 0.9740
### BEN_Base (94 million parameters):
- MAE: 0.0309
- DICE: 0.8806
- IOU: 0.8371
- BER: 0.0516
- ACC: 0.9718
### MVANet (old SOTA):
- MAE: 0.0353
- DICE: 0.8676
- IOU: 0.8104
- BER: 0.0639
- ACC: 0.9660
### BiRefNet(not tested in house):
- MAE: 0.038
### InSPyReNet (not tested in house):
- MAE: 0.042
## Features
- Background removal from images
- Generates both binary mask and foreground image
- CUDA support for GPU acceleration
- Simple API for easy integration
## Installation
1. Clone Repo
2. Install requirements.txt
|