File size: 8,901 Bytes
1dc6e8d 31cccf3 1dc6e8d 31cccf3 91f4816 31cccf3 46decbf 31cccf3 1dc6e8d 91f4816 1dc6e8d 31cccf3 1dc6e8d 91f4816 1dc6e8d 91f4816 31cccf3 91f4816 1dc6e8d 31cccf3 1dc6e8d 31cccf3 91f4816 31cccf3 91f4816 31cccf3 46decbf 31cccf3 46decbf 31cccf3 91f4816 31cccf3 91f4816 31cccf3 91f4816 31cccf3 1dc6e8d 46decbf 1dc6e8d 08aad97 31cccf3 1dc6e8d 91f4816 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 91f4816 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 1dc6e8d 31cccf3 91f4816 31cccf3 46decbf 31cccf3 1dc6e8d 31cccf3 1dc6e8d 46decbf 91f4816 31cccf3 1dc6e8d 31cccf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
license: apache-2.0
library_name: transformers
tags:
- code
- jupyter
- agent
- data-science
- qwen
- instruct
base_model: Qwen/Qwen3-4B-Instruct-2507
datasets:
- jupyter-agent/jupyter-agent-dataset
language:
- en
- code
pipeline_tag: text-generation
---
# Jupyter Agent Qwen3-4B Instruct

**Jupyter Agent Qwen3-4B Instruct** is a fine-tuned version of [Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507) specifically optimized for **data science agentic tasks** in Jupyter notebook environments. This model can execute Python code, analyze datasets, and provide clear reasoning to solve realistic data analysis problems.
- **Model type:** Causal Language Model (Instruct)
- **Language(s):** English, Python
- **License:** Apache 2.0
- **Finetuned from:** [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507)
## Key Features
- **Jupyter-native agent** that lives inside notebook environments
- **Code execution** with pandas, numpy, matplotlib, and other data science libraries
- **Clear reasoning** with intermediate computations and explanations
- **Dataset-grounded analysis** trained on real Kaggle notebook workflows
- **Tool calling** for structured code execution and final answer generation
## Performance
On the [DABStep benchmark](https://huggingface.co/spaces/adyen/DABstep) for data science tasks:
| Model | Easy Tasks | Hard Tasks |
|-------|------------|------------|
| Qwen3-4B-Instruct-2507 (Base) | 44.0% | 2.1% |
| **Jupyter Agent Qwen3-4B Instruct** | **70.8%** | **3.4%** |
**State-of-the-art performance** for small models on realistic data analysis tasks.
## Model Sources
- **Repository:** [jupyter-agent](https://github.com/huggingface/jupyter-agent)
- **Dataset:** [jupyter-agent-dataset](https://huggingface.co/datasets/jupyter-agent/jupyter-agent-dataset)
- **Blog post:** [Jupyter Agents: training LLMs to reason with notebooks](https://huggingface.co/blog/jupyter-agent-2)
- **Demo:** [Jupyter Agent 2](https://huggingface.co/spaces/lvwerra/jupyter-agent-2)
## Usage
### Basic Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "jupyter-agent/jupyter-agent-qwen3-4b-instruct"
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# Prepare input
prompt = "Analyze this sales dataset and find the top 3 performing products by revenue."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=16384
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
```
### Decoding Response
For instruct models, you can extract the model's response:
```python
response = tokenizer.decode(output_ids, skip_special_tokens=True)
print("Response:", response)
```
### Agentic Usage with Tool Calling
The model works best with proper scaffolding for tool calling:
```python
tools = [
{
"type": "function",
"function": {
"name": "execute_code",
"description": "Execute Python code in a Jupyter environment",
"parameters": {
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "Python code to execute"
}
},
"required": ["code"]
}
}
},
{
"type": "function",
"function": {
"name": "final_answer",
"description": "Provide the final answer to the question",
"parameters": {
"type": "object",
"properties": {
"answer": {
"type": "string",
"description": "The final answer"
}
},
"required": ["answer"]
}
}
}
]
# Include tools in the conversation
messages = [
{
"role": "system",
"content": "You are a data science assistant. Use the available tools to analyze data and provide insights."
},
{"role": "user", "content": prompt}
]
```
## Training Details
### Training Data
The model was fine-tuned on the [Jupyter Agent Dataset](https://huggingface.co/datasets/jupyter-agent/jupyter-agent-dataset), which contains:
- **51,389 synthetic notebooks** (~0.2B tokens, total 1B tokens)
- **Dataset-grounded QA pairs** from real Kaggle notebooks
- **Executable reasoning traces** with intermediate computations
- **High-quality educational content** filtered and scored by LLMs
### Training Procedure
- **Base Model:** Qwen3-4B-Instruct-2507
- **Training Method:** Full-parameter fine-tuning (not PEFT)
- **Optimizer:** AdamW with cosine learning rate scheduling
- **Learning Rate:** 5e-6
- **Epochs:** 5 (optimal based on ablation study)
- **Context Length:** 32,768 tokens
- **Batch Size:** Distributed across multiple GPUs
- **Loss:** Assistant-only loss (`assistant_loss_only=True`)
- **Regularization:** NEFTune noise (α=7) for full-parameter training
### Training Infrastructure
- **Framework:** [TRL](https://github.com/huggingface/trl) with [Transformers](https://github.com/huggingface/transformers)
- **Distributed Training:** DeepSpeed ZeRO-2 across multiple nodes
- **Hardware:** Multi-GPU setup with SLURM orchestration
## Evaluation
### Benchmark: DABStep
The model was evaluated on [DABStep](https://huggingface.co/spaces/adyen/DABstep), a benchmark for data science agents with realistic tasks involving:
- **Dataset analysis** with pandas and numpy
- **Visualization** with matplotlib/seaborn
- **Statistical analysis** and business insights
- **Multi-step reasoning** with intermediate computations
The model achieves **36.3% improvement** over the base model and **22.2% improvement** over scaffolding alone.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/jupyter-agent-2/training_dabstep_easy.png" alt="DABstep Easy Score"/>
We can also see, that the hard score can increase too even though our dataset is focused on easier questions.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/jupyter-agent-2/training_dabstep_hard.png" alt="DABstep Hard Score"/>
## Limitations and Bias
### Technical Limitations
- **Context window:** Limited to 32K tokens, may struggle with very large notebooks
- **Tool calling format:** Requires specific scaffolding for optimal performance
- **Dataset domains:** Primarily trained on Kaggle-style data science tasks
- **Code execution:** Requires proper sandboxing for safe execution
### Potential Biases
- **Domain bias:** Trained primarily on Kaggle notebooks, may not generalize to all data science workflows
- **Language bias:** Optimized for English and Python, limited multilingual support
- **Task bias:** Focused on structured data analysis, may underperform on unstructured data tasks
### Recommendations
- Use in **sandboxed environments** like [E2B](https://e2b.dev/) for safe code execution
- **Validate outputs** before using in production systems
- **Review generated code** for security and correctness
- Consider **domain adaptation** for specialized use cases
## Ethical Considerations
- **Code Safety:** Always execute generated code in secure, isolated environments
- **Data Privacy:** Be cautious when analyzing sensitive datasets
- **Verification:** Validate all analytical conclusions and insights
- **Attribution:** Acknowledge model assistance in data analysis workflows
## Citation
```bibtex
@misc{jupyteragentqwen3instruct,
title={Jupyter Agent Qwen3-4B Instruct},
author={Baptiste Colle and Hanna Yukhymenko and Leandro von Werra},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/jupyter-agent/jupyter-agent-qwen3-4b-instruct}
}
```
## Related Work
- **Dataset:** [jupyter-agent-dataset](https://huggingface.co/datasets/jupyter-agent/jupyter-agent-dataset)
- **Thinking version:** [jupyter-agent-qwen3-4b-thinking](https://huggingface.co/jupyter-agent/jupyter-agent-qwen3-4b-thinking)
- **Base model:** [Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507)
- **Benchmark:** [DABStep](https://huggingface.co/spaces/adyen/DABstep)
*For more details, see our [blog post](https://huggingface.co/blog/jupyter-agent-2) and [GitHub repository](https://github.com/huggingface/jupyter-agent).* |