File size: 65,994 Bytes
86ddd89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 |
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, default_collate
from torch.distributions import constraints, TransformedDistribution, SigmoidTransform, AffineTransform
from torch.distributions import Normal, Uniform
from torch.distributions.kl import kl_divergence
# For compression to bits only
from tensorflow_compression.python.ops import gen_ops
import tensorflow as tf
from itertools import islice
from ml_collections import ConfigDict
import numpy as np
import json
import os
from pathlib import Path
from contextlib import contextmanager
import zipfile
from tqdm import tqdm
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
DATASET_PATH = {
'ImageNet64': 'data/imagenet64/',
}
"""
PyTorch Implementation of 'Progressive Compression with Universally Quantized Diffusion Models', Yang et al., 2025.
Written with focus on readability for a single GPU.
Sections:
Model: Denoising network
Data: ImageNet64 data
UQDM: Diffusion model + codec + simple trainer for the network + saving / loading
Major changes from previous work are highlighted in the class UQDM
"""
"""
Denoising network, Exponential Moving Average (EMA)
"""
class VDM_Net(torch.nn.Module):
"""
Based on score Net from
https://github.com/addtt/variational-diffusion-models/blob/main/vdm_unet.py
which itself is based on
https://github.com/google-research/vdm/blob/main/model_vdm.py
and maps parameters via
vdm_unet -> model_vdm
mcfg.n_attention_heads: 1 (fixed)
mcfg.embedding_dim: sm_n_embd
mcfg.n_blocks: sm_n_layer
mcfg.dropout_prob: sm_pdrop
mcfg.norm_groups: 32 (fixed, default setting for flax.linen.GroupNorm)
In addition to predicting the noise, we (optionally) predict backward variances by doubling the output channels.
"""
@staticmethod
def softplus_inverse(x):
"""Helper which computes the inverse of `tf.nn.softplus`."""
import math
import numpy as np
return math.log(np.expm1(x))
def softplus_init1(self, x):
# Softplus with a shift to bias the output towards 1.0.
return torch.nn.functional.softplus(x + self.SOFTPLUS_INV1)
def __init__(self, config):
super().__init__()
self.config = config
self.mcfg = mcfg = config.model
attention_params = dict(
n_heads=mcfg.n_attention_heads,
n_channels=mcfg.embedding_dim,
norm_groups=mcfg.norm_groups,
)
resnet_params = dict(
ch_in=mcfg.embedding_dim,
ch_out=mcfg.embedding_dim,
condition_dim=4 * mcfg.embedding_dim,
dropout_prob=mcfg.dropout_prob,
norm_groups=mcfg.norm_groups,
)
if mcfg.use_fourier_features:
self.fourier_features = FourierFeatures()
self.embed_conditioning = nn.Sequential(
nn.Linear(mcfg.embedding_dim, mcfg.embedding_dim * 4),
nn.SiLU(),
nn.Linear(mcfg.embedding_dim * 4, mcfg.embedding_dim * 4),
nn.SiLU(),
)
total_input_ch = mcfg.n_channels
if mcfg.use_fourier_features:
total_input_ch *= 1 + self.fourier_features.num_features
self.conv_in = nn.Conv2d(total_input_ch, mcfg.embedding_dim, 3, padding=1)
# Down path: n_blocks blocks with a resnet block and maybe attention.
self.down_blocks = nn.ModuleList(
UpDownBlock(
resnet_block=ResnetBlock(**resnet_params),
attention_block=AttentionBlock(**attention_params)
if mcfg.attention_everywhere
else None,
)
for _ in range(mcfg.n_blocks)
)
self.mid_resnet_block_1 = ResnetBlock(**resnet_params)
self.mid_attn_block = AttentionBlock(**attention_params)
self.mid_resnet_block_2 = ResnetBlock(**resnet_params)
# Up path: n_blocks+1 blocks with a resnet block and maybe attention.
resnet_params["ch_in"] *= 2 # double input channels due to skip connections
self.up_blocks = nn.ModuleList(
UpDownBlock(
resnet_block=ResnetBlock(**resnet_params),
attention_block=AttentionBlock(**attention_params)
if mcfg.attention_everywhere
else None,
)
for _ in range(mcfg.n_blocks + 1)
)
output_channels = mcfg.n_channels
if config.model.get('learned_prior_scale'):
output_channels *= 2
self.conv_out = nn.Sequential(
nn.GroupNorm(num_groups=mcfg.norm_groups, num_channels=mcfg.embedding_dim),
nn.SiLU(),
zero_init(nn.Conv2d(mcfg.embedding_dim, output_channels, kernel_size=3, padding=1)),
)
self.SOFTPLUS_INV1 = self.softplus_inverse(1.0)
def forward(self, z, g_t):
# Get gamma to shape (B, ).
g_t = g_t.expand(z.shape[0]) # assume shape () or (1,) or (B,)
assert g_t.shape == (z.shape[0],)
# Rescale to [0, 1], but only approximately since gamma0 & gamma1 are not fixed.
t = (g_t - self.mcfg.gamma_min) / (self.mcfg.gamma_max - self.mcfg.gamma_min)
t_embedding = get_timestep_embedding(t, self.mcfg.embedding_dim)
# We will condition on time embedding.
cond = self.embed_conditioning(t_embedding)
h = self.maybe_concat_fourier(z)
h = self.conv_in(h) # (B, embedding_dim, H, W)
hs = []
for down_block in self.down_blocks: # n_blocks times
hs.append(h)
h = down_block(h, cond)
hs.append(h)
h = self.mid_resnet_block_1(h, cond)
h = self.mid_attn_block(h)
h = self.mid_resnet_block_2(h, cond)
for up_block in self.up_blocks: # n_blocks+1 times
h = torch.cat([h, hs.pop()], dim=1)
h = up_block(h, cond)
h = self.conv_out(h)
if self.mcfg.get('learned_prior_scale'):
# Split the output into a mean and scale component. (B, C, H, W)
eps_hat, pred_scale_factors = torch.split(h, self.mcfg.n_channels, dim=1)
pred_scale_factors = self.softplus_init1(pred_scale_factors) # Make positive.
else:
eps_hat = h
assert eps_hat.shape == z.shape, (eps_hat.shape, z.shape)
eps_hat = eps_hat + z
if self.mcfg.get('learned_prior_scale'):
return eps_hat, pred_scale_factors
else:
return eps_hat
def maybe_concat_fourier(self, z):
if self.mcfg.use_fourier_features:
return torch.cat([z, self.fourier_features(z)], dim=1)
return z
@torch.no_grad()
def zero_init(module: nn.Module) -> nn.Module:
# Sets to zero all the parameters of a module, and returns the module.
for p in module.parameters():
nn.init.zeros_(p.data)
return module
class ResnetBlock(nn.Module):
def __init__(
self,
ch_in,
ch_out=None,
condition_dim=None,
dropout_prob=0.0,
norm_groups=32,
):
super().__init__()
ch_out = ch_in if ch_out is None else ch_out
self.ch_out = ch_out
self.condition_dim = condition_dim
self.net1 = nn.Sequential(
nn.GroupNorm(num_groups=norm_groups, num_channels=ch_in),
nn.SiLU(),
nn.Conv2d(ch_in, ch_out, kernel_size=3, padding=1),
)
if condition_dim is not None:
self.cond_proj = zero_init(nn.Linear(condition_dim, ch_out, bias=False))
self.net2 = nn.Sequential(
nn.GroupNorm(num_groups=norm_groups, num_channels=ch_out),
nn.SiLU(),
*([nn.Dropout(dropout_prob)] * (dropout_prob > 0.0)),
zero_init(nn.Conv2d(ch_out, ch_out, kernel_size=3, padding=1)),
)
if ch_in != ch_out:
self.skip_conv = nn.Conv2d(ch_in, ch_out, kernel_size=1)
def forward(self, x, condition):
h = self.net1(x)
if condition is not None:
assert condition.shape == (x.shape[0], self.condition_dim)
condition = self.cond_proj(condition)
condition = condition[:, :, None, None]
h = h + condition
h = self.net2(h)
if x.shape[1] != self.ch_out:
x = self.skip_conv(x)
assert x.shape == h.shape
return x + h
def get_timestep_embedding(
timesteps,
embedding_dim: int,
dtype=torch.float32,
max_timescale=10_000,
min_timescale=1,
):
# Adapted from tensor2tensor and VDM codebase.
assert timesteps.ndim == 1
assert embedding_dim % 2 == 0
timesteps *= 1000.0 # In DDPM the time step is in [0, 1000], here [0, 1]
num_timescales = embedding_dim // 2
inv_timescales = torch.logspace( # or exp(-linspace(log(min), log(max), n))
-np.log10(min_timescale),
-np.log10(max_timescale),
num_timescales,
device=timesteps.device,
)
emb = timesteps.to(dtype)[:, None] * inv_timescales[None, :] # (T, D/2)
return torch.cat([emb.sin(), emb.cos()], dim=1) # (T, D)
class FourierFeatures(nn.Module):
def __init__(self, first=5.0, last=6.0, step=1.0):
super().__init__()
self.freqs_exponent = torch.arange(first, last + 1e-8, step)
@property
def num_features(self):
return len(self.freqs_exponent) * 2
def forward(self, x):
assert len(x.shape) >= 2
# Compute (2pi * 2^n) for n in freqs.
freqs_exponent = self.freqs_exponent.to(dtype=x.dtype, device=x.device) # (F, )
freqs = 2.0 ** freqs_exponent * 2 * torch.pi # (F, )
freqs = freqs.view(-1, *([1] * (x.dim() - 1))) # (F, 1, 1, ...)
# Compute (2pi * 2^n * x) for n in freqs.
features = freqs * x.unsqueeze(1) # (B, F, X1, X2, ...)
features = features.flatten(1, 2) # (B, F * C, X1, X2, ...)
# Output features are cos and sin of above. Shape (B, 2 * F * C, H, W).
return torch.cat([features.sin(), features.cos()], dim=1)
def attention_inner_heads(qkv, num_heads):
"""Computes attention with heads inside of qkv in the channel dimension.
Args:
qkv: Tensor of shape (B, 3*H*C, T) with Qs, Ks, and Vs, where:
H = number of heads,
C = number of channels per head.
num_heads: number of heads.
Returns:
Attention output of shape (B, H*C, T).
"""
bs, width, length = qkv.shape
ch = width // (3 * num_heads)
# Split into (q, k, v) of shape (B, H*C, T).
q, k, v = qkv.chunk(3, dim=1)
# Rescale q and k. This makes them contiguous in memory.
scale = ch ** (-1 / 4) # scale with 4th root = scaling output by sqrt
q = q * scale
k = k * scale
# Reshape qkv to (B*H, C, T).
new_shape = (bs * num_heads, ch, length)
q = q.view(*new_shape)
k = k.view(*new_shape)
v = v.reshape(*new_shape)
# Compute attention.
weight = torch.einsum("bct,bcs->bts", q, k) # (B*H, T, T)
weight = torch.softmax(weight.float(), dim=-1).to(weight.dtype) # (B*H, T, T)
out = torch.einsum("bts,bcs->bct", weight, v) # (B*H, C, T)
return out.reshape(bs, num_heads * ch, length) # (B, H*C, T)
class Attention(nn.Module):
# Based on https://github.com/openai/guided-diffusion.
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
assert qkv.dim() >= 3, qkv.dim()
assert qkv.shape[1] % (3 * self.n_heads) == 0
spatial_dims = qkv.shape[2:]
qkv = qkv.view(*qkv.shape[:2], -1) # (B, 3*H*C, T)
out = attention_inner_heads(qkv, self.n_heads) # (B, H*C, T)
return out.view(*out.shape[:2], *spatial_dims)
class AttentionBlock(nn.Module):
"""Self-attention residual block."""
def __init__(self, n_heads, n_channels, norm_groups):
super().__init__()
assert n_channels % n_heads == 0
self.layers = nn.Sequential(
nn.GroupNorm(num_groups=norm_groups, num_channels=n_channels),
nn.Conv2d(n_channels, 3 * n_channels, kernel_size=1), # (B, 3 * C, H, W)
Attention(n_heads),
zero_init(nn.Conv2d(n_channels, n_channels, kernel_size=1)),
)
def forward(self, x):
return self.layers(x) + x
class UpDownBlock(nn.Module):
def __init__(self, resnet_block, attention_block=None):
super().__init__()
self.resnet_block = resnet_block
self.attention_block = attention_block
def forward(self, x, cond):
x = self.resnet_block(x, cond)
if self.attention_block is not None:
x = self.attention_block(x)
return x
class ExponentialMovingAverage:
"""
Maintains (exponential) moving average of a set of parameters.
Code from https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py
which is modified from https://raw.githubusercontent.com/fadel/pytorch_ema/master/torch_ema/ema.py
and partially based on https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py
"""
def __init__(self, parameters, decay, use_num_updates=True):
"""
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the result of
`model.parameters()`.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.shadow_params = [p.clone().detach()
for p in parameters if p.requires_grad]
self.collected_params = []
def update(self, parameters):
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object.
"""
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
s_param.sub_(one_minus_decay * (s_param - param))
def copy_to(self, parameters):
"""
Copy current parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
param.data.copy_(s_param.data)
def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
def state_dict(self):
return dict(decay=self.decay, num_updates=self.num_updates,
shadow_params=self.shadow_params)
def load_state_dict(self, state_dict):
self.decay = state_dict['decay']
self.num_updates = state_dict['num_updates']
self.shadow_params = state_dict['shadow_params']
"""
Data and Checkpoint Loading
"""
def cycle(iterable):
while True:
for x in iterable:
yield x
class ToIntTensor:
# for IMAGENET64
def __call__(self, image):
image = torch.as_tensor(image.reshape(3, 64, 64), dtype=torch.uint8)
return image
class NPZLoader(Dataset):
"""
Load from a batched numpy dataset.
Keeps one data batch loaded in memory, so load idx sequentially for fast sampling
"""
def __init__(self, path, train=True, transform=None, remove_duplicates=True):
self.path = path
if train:
self.files = list(Path(path).glob('*train*.npz'))
else:
self.files = list(Path(path).glob('*val*.npz'))
self.batch_lens = [self.npz_len(f) for f in self.files]
self.anchors = np.cumsum([0] + self.batch_lens)
self.removed_idxs = [[] for _ in range(len(self.files))]
if not train and remove_duplicates:
removed = np.load(os.path.join(path, 'removed.npy'))
self.removed_idxs = [
removed[(removed >= self.anchors[i]) & (removed < self.anchors[i + 1])] - self.anchors[i] for i in
range(len(self.files))]
self.anchors -= np.cumsum([0] + [np.size(r) for r in self.removed_idxs])
self.transform = transform
self.cache_fid = None
self.cache_npy = None
# https://stackoverflow.com/questions/68224572/how-to-determine-the-shape-size-of-npz-file
@staticmethod
def npz_len(npz):
"""
Takes a path to an .npz file, which is a Zip archive of .npy files and returns the batch size of stored data,
i.e. of the first .npy found
"""
with zipfile.ZipFile(npz) as archive:
for name in archive.namelist():
if not name.endswith('.npy'):
continue
npy = archive.open(name)
version = np.lib.format.read_magic(npy)
shape, fortran, dtype = np.lib.format._read_array_header(npy, version)
return shape[0]
def load_npy(self, fid):
if not fid == self.cache_fid:
self.cache_fid = fid
self.cache_npy = np.load(str(self.files[fid]))['data']
self.cache_npy = np.delete(self.cache_npy, self.removed_idxs[fid], axis=0)
return self.cache_npy
def __len__(self):
# return sum(self.batch_lens)
return self.anchors[-1]
def __getitem__(self, idx):
fid = np.argmax(idx < self.anchors) - 1
idx = idx - self.anchors[fid]
numpy_array = self.load_npy(fid)[idx]
if self.transform is not None:
torch_array = self.transform(numpy_array)
return torch_array
def load_data(dataspec, cfg):
"""
Load datasets, with finite eval set and infinitely looping training set
"""
if not dataspec in DATASET_PATH.keys():
raise ValueError('Unknown dataset. Add dataspec to load_data() or use one of \n%s' % list(DATASET_PATH.keys()))
if dataspec in ['ImageNet64']:
train_data, eval_data = [NPZLoader(DATASET_PATH[dataspec], train=mode, transform=ToIntTensor()) for mode in
[True, False]]
# elif: # Add more datasets here
train_iter, eval_iter = [DataLoader(d, batch_size=cfg.batch_size, shuffle=cfg.get('shuffle', False),
pin_memory=cfg.get('pin_memory', True), num_workers=cfg.get('num_workers', 1))
for d in [train_data, eval_data]]
train_iter = cycle(train_iter)
return train_iter, eval_iter
def load_checkpoint(path):
"""
Load model from checkpoint.
Input:
------
path: path to a folder containing hyperparameters as config.json and parameters as checkpoint.pt
"""
with open(os.path.join(path, 'config.json'), 'r') as f:
config = ConfigDict(json.load(f))
model = UQDM(config).to(device)
cp_path = config.get('restore_ckpt', None)
if cp_path is not None:
model.load(os.path.join(path, cp_path))
return model
"""
UQDM: Diffusion model, Distributions, Entropy Coding, UQDM
"""
@contextmanager
def local_seed(seed, i=0):
# Allow for local randomness, use hashing to get unique local seeds for subsequent draws
if seed is None:
yield
else:
with torch.random.fork_rng():
local_seed = hash((seed, i)) % (2 ** 32)
torch.manual_seed(local_seed)
yield
class LogisticDistribution(TransformedDistribution):
"""
Creates a logistic distribution parameterized by :attr:`loc` and :attr:`scale`
that define the affine transform of a standard logistic distribution.
Patterned after https://github.com/pytorch/pytorch/blob/main/torch/distributions/logistic_normal.py
Args:
loc (float or Tensor): mean of the base distribution
scale (float or Tensor): standard deviation of the base distribution
"""
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
def __init__(self, loc, scale, validate_args=None):
self.loc = loc
self.scale = scale
base_dist = Uniform(torch.tensor(0, dtype=loc.dtype, device=loc.device),
torch.tensor(1, dtype=loc.dtype, device=loc.device))
if not base_dist.batch_shape:
base_dist = base_dist.expand([1])
transforms = [SigmoidTransform().inv, AffineTransform(loc=loc, scale=scale)]
super().__init__(
base_dist, transforms, validate_args=validate_args
)
@property
def mean(self):
return self.loc
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(LogisticDistribution, _instance)
return super().expand(batch_shape, _instance=new)
def cdf(self, x):
# Should be numerically more stable than the default.
return torch.sigmoid((x - self.loc) / self.scale)
@staticmethod
def log_sigmoid(x):
# A numerically more stable implementation of torch.log(torch.sigmoid(x)).
# c.f. https://jax.readthedocs.io/en/latest/_autosummary/jax.nn.log_sigmoid.html#jax.nn.log_sigmoid
return -torch.nn.functional.softplus(-x)
def log_cdf(self, x):
standardized = (x - self.loc) / self.scale
return self.log_sigmoid(standardized)
def log_survival_function(self, x):
standardized = (x - self.loc) / self.scale
return self.log_sigmoid(- standardized)
class NormalDistribution(torch.distributions.Normal):
"""
Overrides the Normal distribution to add a numerically more stable log_cdf
"""
def log_cdf(self, x):
x = (x - self.loc) / self.scale
# more stable, for float32 ported from JAX, using log(1-x) ~= -x, x >> 1
# for small x
x_l = torch.clip(x, max=-10)
log_scale = -0.5 * x_l ** 2 - torch.log(-x_l) - 0.5 * np.log(2. * np.pi)
# asymptotic series
even_sum = torch.zeros_like(x)
odd_sum = torch.zeros_like(x)
x_2n = x_l ** 2
for n in range(1, 3 + 1):
y = np.prod(np.arange(2 * n - 1, 1, -2)) / x_2n
if n % 2:
odd_sum += y
else:
even_sum += y
x_2n *= x_l ** 2
x_lower = log_scale + torch.log(1 + even_sum - odd_sum)
return torch.where(
x > 5, -torch.special.ndtr(-x),
torch.where(x > -10, torch.special.ndtr(torch.clip(x, min=-10)).log(), x_lower))
def log_survival_function(self, x):
raise NotImplementedError
class UniformNoisyDistribution(torch.distributions.Distribution):
"""
Add uniform noise U[-delta/2, +delta/2] to a distribution.
Adapted from https://github.com/tensorflow/compression/blob/master/tensorflow_compression/python/distributions/uniform_noise.py
Also see https://pytorch.org/docs/stable/_modules/torch/distributions/distribution.html
"""
arg_constraints = {}
# arg_constraints = {"delta": torch.distributions.constraints.nonnegative}
def __init__(self, base_dist, delta):
super().__init__()
self.base_dist = base_dist
self.delta = delta # delta is the noise width.
self.half = delta / 2.
self.log_delta = torch.log(delta)
def sample(self, sample_shape=torch.Size([])):
x = self.base_dist.sample(sample_shape)
x += self.delta * torch.rand(x.shape, dtype=x.dtype, device=x.device) - self.half
return x
@property
def mean(self):
return self.base_dist.mean
def discretize(self, u, tail_mass=2 ** -8):
"""
Turn the continuous distribution into a discrete one by discretizing to the grid u + k * delta.
Returns the pmf of k = round((x - p_mean) / delta + u) as this is used for UQ, ignoring outlier values in the tails.
"""
# For quantiles: Because p(x) = (G(x+d/2) - G(x-d/2))/d,
# P(X <= x) = 1/d int_{x-d/2}^{x+d/2} G(u) du <= G(x+d/2) or >= G(x-d/2) which might be tighter for small d
# P(X <= G^-1(a) - d/2) <= a, P(K <= (G^-1(a) - p_mean)/d - 1/2 - p_mean/d + u) <= a
L = torch.floor((self.base_dist.icdf(tail_mass / 2) - self.base_dist.mean).min() / self.delta - 0.5)
R = torch.ceil((self.base_dist.icdf(1 - tail_mass / 2) - self.base_dist.mean).max() / self.delta + 0.5)
x = (torch.arange(L, R + 1, device=u.device).reshape(-1, *4*[1]) - u) * self.delta + self.base_dist.mean
# Assume pdf is locally linear then ln(p(x+-d/2)) = ln(p(x)*d) = ln(p(x)) + ln(d)
logits = self.log_prob(x) + torch.log(self.delta)
return OverflowCategorical(logits=logits, L=L, R=R)
def log_prob(self, y):
# return torch.log(self.base_dist.cdf(y + self.half) - self.base_dist.cdf(y - self.half)) - self.log_delta
if not hasattr(self.base_dist, "log_cdf"):
raise NotImplementedError(
"`log_prob()` is not implemented unless the base distribution implements `log_cdf()`.")
try:
return self._log_prob_with_logsf_and_logcdf(y)
except NotImplementedError:
return self._log_prob_with_logcdf(y)
@staticmethod
def _logsum_expbig_minus_expsmall(big, small):
# Numerically stable evaluation of log(exp(big) - exp(small)).
# https://github.com/tensorflow/compression/blob/a41fc70fc092bc6b72d5075deec34cbb47ef9077/tensorflow_compression/python/distributions/uniform_noise.py#L33
return torch.where(
torch.isinf(big), big, torch.log1p(-torch.exp(small - big)) + big
)
def _log_prob_with_logcdf(self, y):
return self._logsum_expbig_minus_expsmall(
self.base_dist.log_cdf(y + self.half), self.base_dist.log_cdf(y - self.half)) - self.log_delta
def _log_prob_with_logsf_and_logcdf(self, y):
"""Compute log_prob(y) using log survival_function and cdf together."""
# There are two options that would be equal if we had infinite precision:
# Log[ sf(y - .5) - sf(y + .5) ]
# = Log[ exp{logsf(y - .5)} - exp{logsf(y + .5)} ]
# Log[ cdf(y + .5) - cdf(y - .5) ]
# = Log[ exp{logcdf(y + .5)} - exp{logcdf(y - .5)} ]
h = self.half
base = self.base_dist
logsf_y_plus = base.log_survival_function(y + h)
logsf_y_minus = base.log_survival_function(y - h)
logcdf_y_plus = base.log_cdf(y + h)
logcdf_y_minus = base.log_cdf(y - h)
# Important: Here we use select in a way such that no input is inf, this
# prevents the troublesome case where the output of select can be finite,
# but the output of grad(select) will be NaN.
# In either case, we are doing Log[ exp{big} - exp{small} ]
# We want to use the sf items precisely when we are on the right side of the
# median, which occurs when logsf_y < logcdf_y.
condition = logsf_y_plus < logcdf_y_plus
big = torch.where(condition, logsf_y_minus, logcdf_y_plus)
small = torch.where(condition, logsf_y_plus, logcdf_y_minus)
return self._logsum_expbig_minus_expsmall(big, small) - self.log_delta
class OverflowCategorical(torch.distributions.Categorical):
"""
Discrete distribution over [L, L+1, ..., R-1, R] with LaPlace-based tail_masses for values <L and >R.
"""
def __init__(self, logits, L, R):
self.L = L
self.R = R
# stable version of log(1 - sum_i exp(logp_i))
self.overflow = torch.log(torch.clip(- torch.expm1(torch.logsumexp(logits, dim=0)), min=0))
super().__init__(logits=torch.movedim(torch.cat([logits, self.overflow[None]], dim=0), 0, -1))
class EntropyModel:
"""
Entropy codec for discrete data based on Arithmetic Coding / Range Coding.
Adapted from https://github.com/tensorflow/compression.
For learned backward variances every symbol has a unique coding prior that requires a unique cdf table,
which is computed in parallel here.
"""
def __init__(self, prior, range_coder_precision=16):
"""
Inputs:
-------
prior - [Categorical or OverflowCategorical] prior model over integers (optionally with allocated tail mass
which will be encoded via Elias gamma code embedded into the range coder).
range_coder_precision - precision passed to the range coding op, how accurately prior is quantized.
"""
super().__init__()
self.prior = prior
self.prior_shape = self.prior.probs.shape[:-1]
self.precision = range_coder_precision
# Build quantization tables
total = 2 ** self.precision
probs = self.prior.probs.reshape(-1, self.prior.probs.shape[-1])
quantized_pdf = torch.round(probs * total).to(torch.int32)
quantized_pdf = torch.clip(quantized_pdf, min=1)
# Normalize pdf so that sum pmf_i = 2 ** precision
while True:
mask = quantized_pdf.sum(dim=-1) > total
if not mask.any():
break
# m * (log2(v) - log2(v-1))
penalty = probs[mask] * (torch.log2(1 + 1 / (quantized_pdf[mask] - 1)))
# inf if v = 1 as intended but handle nan if also pmf = 0
idx = penalty.nan_to_num(torch.inf).argmin(dim=-1)
quantized_pdf[mask, idx] -= 1
while True:
mask = quantized_pdf.sum(axis=-1) < total
if not mask.any():
break
# m * (log2(v+1) - log2(v))
penalty = probs[mask] * (torch.log2(1 + 1 / quantized_pdf[mask]))
idx = penalty.argmax(dim=-1)
quantized_pdf[mask, idx] += 1
quantized_cdf = torch.cumsum(quantized_pdf, dim=-1)
self.quantized_cdf = torch.cat([
- self.precision * torch.ones((quantized_pdf.shape[0], 1), device=device),
torch.zeros((quantized_pdf.shape[0], 1), device=device),
quantized_cdf
], dim=-1).reshape(-1)
self.indexes = torch.arange(quantized_pdf.shape[0], dtype=torch.int32)
self.offsets = self.prior.L if type(self.prior) is OverflowCategorical else 0
def compress(self, x):
"""
Compresses a floating-point tensor to a bit string with the discretized prior.
"""
x = (x - self.offsets).to(torch.int32).reshape(-1).cpu()
codec = gen_ops.create_range_encoder([], self.quantized_cdf.cpu())
codec = gen_ops.entropy_encode_index(codec, self.indexes.cpu(), x)
bits = gen_ops.entropy_encode_finalize(codec).numpy()
return bits
def decompress(self, bits):
"""
Decompresses a tensor from bit strings. This requires knowledge of the image shape,
which for arbitrary images sizes needs to be sent as side-information.
"""
bits = tf.convert_to_tensor(bits, dtype=tf.string)
codec = gen_ops.create_range_decoder(bits, self.quantized_cdf.cpu())
codec, x = gen_ops.entropy_decode_index(codec, self.indexes.cpu(), self.indexes.shape, tf.int32)
# sanity = gen_ops.entropy_decode_finalize(codec)
x = torch.from_numpy(x.numpy()).reshape(self.prior_shape).to(device).to(torch.float32) + self.offsets
return x
class Diffusion(torch.nn.Module):
"""
Progressive Compression with Gaussian Diffusion as in [Ho et al., 2020; Theis et al., 2022].
"""
def __init__(self, config):
"""
Hyperparamters are set via a config dict.
config.model
.n_timesteps - number of diffusion steps, should be the same for training and inference, default:4
.prior_type - type of base distribution g_t, 'logistic' or 'normal'
.base_prior_scale - variance of g_t, 'forward_kernel' or 'default'
.learned_prior_scale - if to learn the variance of g_t, default: true
.noise_schedule - 'fixed_linear' or 'learned_linear'
.fix_gamma_max - set if using 'learned_linear' to only learn gamma_min
.gamma_min - initial start value at t=0
.gamma_max - initial end value at t=T
.ema_rate - default: 0.9999
# network hyperparameters (c.f. VDM_Net.__init__)
.attention_everywhere -
.use_fourier_features -
.n_attention_heads -
.n_channels - default: 3
.vocab_size - default: 256
.embedding_dim -
.n_blocks -
.norm_groups -
.dropout_prob -
config.data (c.f. torch DataLoader)
.shuffle - false is recommended for faster loading with naive data loading,
.pin_memory -
.batch_size -
.num_workers -
.data_spec - "imagenet", add more in data_load
config.training
.n_steps - total steps on the training set, if continuing from a checkpoint
this should be set to desired fine-tuning steps + all previous steps
.log_metrics_every_steps - default: 1000
.checkpoint_every_steps - default: 10000
.eval_every_steps - default: 10000
.eval_steps_to_run - how many steps to evaluate on, set to None for the full eval set
config.optim (c.f. torch Adam)
.weight_decay -
.beta1 -
.eps -
.lr -
.warmup - linear learning rate warm-up, default: 1000
.grad_clip_norm - maximal gradient norm per step , default: 1.0
"""
super().__init__()
self.config = config
self.score_net = VDM_Net(config)
self.gamma = self.get_noise_schedule(config)
self.ema = ExponentialMovingAverage(self.score_net.parameters(), decay=config.model.ema_rate)
# Init optimizer now to allow loading/saving optimizer state from checkpoints
self.optimizer = torch.optim.Adam(self.parameters(), lr=config.optim.lr, betas=(config.optim.beta1, 0.999),
eps=config.optim.eps, weight_decay=config.optim.weight_decay)
self.step = 0
self.denoised = None
self.compress_bits = []
def sigma2(self, t):
return torch.sigmoid(self.gamma(t))
def sigma(self, t):
return torch.sqrt(self.sigma2(t))
def alpha(self, t):
return torch.sqrt(torch.sigmoid(-self.gamma(t)))
def q_t(self, x, t=1):
# q(z_t | x) = N(alpha_t x, sigma^2_t).
return Normal(loc=self.alpha(t) * x, scale=self.sigma(t))
def p_1(self):
# p(z_1) = N(0, 1)
return Normal(torch.tensor(0.0).to(device), torch.tensor(1.0).to(device))
def p_s_t(self, p_loc, p_scale, t, s):
# p(z_s | z_t) = N(p_loc, p_scale^2)
if self.config.model.prior_type == 'logistic':
base_dist = LogisticDistribution(loc=p_loc, scale=p_scale * np.sqrt(3. / np.pi ** 2))
elif self.config.model.prior_type in ('gaussian', 'normal'):
base_dist = NormalDistribution(loc=p_loc, scale=p_scale)
else:
try:
base_dist = getattr(torch.distributions, self.config.model.prior_type)
except AttributeError:
raise ValueError(f"Unknown prior type {self.config.model.prior_type}")
return base_dist
def q_s_t(self, q_loc, q_scale):
# q(z_s | z_t, x) = N(q_loc, q_scale^2)
return NormalDistribution(loc=q_loc, scale=q_scale)
def relative_entropy_coding(self, q, p, compress_mode=None):
# Exponential runtime with naive REC algorithms
raise NotImplementedError
def get_s_t_params(self, z_t, t, s, x=None, clip_denoised=True, cache_denoised=False, deterministic=False):
"""
Compute the (location, scale) parameters of either q(z_s | z_t, x)
or the reverse process distribution p(z_s | z_t) = q(z_s | z_t, x=x_hat) for the given z_t and times t, s.
Inputs:
-------
x - if not None compute the parameters of q(z_t | z, x) instead p(z_s | z_t)
clip_denoised - if True, will clip the denoised prediction x_hat(z_t) to [-1, 1];
this might be used to draw better samples.
cache_denoised - keep the denoised prediction in memory for later use
deterministic - if True, compute the mean needed for flow-based sampling instead, removing less noise overall
"""
gamma_t, gamma_s = self.gamma(t), self.gamma(s)
alpha_t, alpha_s = self.alpha(t), self.alpha(s)
sigma_t, sigma_s = self.sigma(t), self.sigma(s)
# expm1 = 1 - alpha_t^2 / alpha_s^2 * sigma_s^2 / sigma_t^2 = sigma_t|s^2 / sigma_t^2
expm1_term = - torch.special.expm1(gamma_s - gamma_t)
# Parameters of q(z_s | z_t, x)
# q_var = sigma_s^2 * sigma^2_t|s / sigma^2_t, c.f. VDM eq (25)
# = sigma_s^2 * expm1_term, c.f. VDM eq (33)
# q_loc = alpha_t / alpha_s * sigma_s^2 / sigma_t^2 * z_t + alpha_s * sigma_t|s^2 / sigma_t^2 * x, c.f. VDM eq (26)
# = alpha_s * ((1 - expm1_term) / alpha_t * z_t + expm1_term * x)
# = alpha_s / alpha_t * (z_t - sigma_t|s^2 / sigma_t * eps), c.f. VDM eq (29)
# = alpha_s / alpha_t * (z_t - sigma_t * expm1_term * eps), c.f. VDM eq (32)
# = alpha_s / alpha_t * (z_t - sigma_t * eps) + c * eps,
# with c = alpha_s / alpha_t * sigma_t * (1 - expm1_term) = alpha_t / alpha_s * sigma_s^2 / sigma_t
# = alpha_s / alpha_t * x + c * eps,
# for flow-based set var = 0 and c = sigma_s, c.f. DDIM eq (12)
# -> loc = alpha_s / alpha_t * z_t + (sigma_s - alpha_s / alpha_t * sigma_t) * eps
# = alpha_s / alpha_t * z_t + (sigma_s - alpha_s / alpha_t * sigma_t) * (z_t - alpha_t * x) / sigma_t
# = alpha_s / alpha_t * z_t + (sigma_s / sigma_t - alpha_s / alpha_t) * (z_t - alpha_t * x)
# = (alpha_s / alpha_t + sigma_s / sigma_t - alpha_s / alpha_t) * z_t - alpha_t * (sigma_s / sigma_t - alpha_s / alpha_t) * x
# = sigma_s / sigma_t * z_t - (alpha_t * sigma_s / sigma_t - alpha_s) * x
# Set x = x_hat or eps = eps_hat for p(z_s | z_t)
if x is None:
if self.config.model.get('learned_prior_scale'):
eps_hat, pred_scale_factors = self.score_net(z_t, gamma_t)
else:
eps_hat = self.score_net(z_t, gamma_t)
# Compute denoised prediction only if necessary
if clip_denoised or cache_denoised:
x = (z_t - sigma_t * eps_hat) / alpha_t # c.f. VDM eq (30)
if clip_denoised:
x.clamp_(-1.0, 1.0)
if cache_denoised:
self.denoised = x
# Variance of q(z_s | z_t, x)
scale = sigma_s * torch.sqrt(expm1_term)
# Additional modifications for p(z_s | z_t)
if self.config.model.get('base_prior_scale', 'forward_kernel') == 'forward_kernel':
# use sigma_t|s^2, the variance of q(z_t | z_s) instead
scale = sigma_t * torch.sqrt(expm1_term)
if self.config.model.get('learned_prior_scale'):
scale = scale * pred_scale_factors
else:
scale = sigma_s * torch.sqrt(expm1_term)
# Mean of q(z_s | z_t, x)
if x is not None:
if deterministic:
loc = sigma_s / sigma_t * z_t - (alpha_t * sigma_s / sigma_t - alpha_s) * x
else:
loc = alpha_s * ((1 - expm1_term) / alpha_t * z_t + expm1_term * x)
else:
if deterministic:
loc = alpha_s / alpha_t * z_t + (sigma_s - alpha_s / alpha_t * sigma_t) * eps_hat
else:
loc = alpha_s / alpha_t * (z_t - sigma_t * expm1_term * eps_hat)
return loc, scale
def transmit_q_s_t(self, x, z_t, t, s, compress_mode=None, cache_denoised=False):
"""
Perform a single transmission step of drawing a sample of z_t given z_s from q(z_t | z_s, x),
under the conditional prior p(z_t | z_s).
This will be approximated by REC/channel simulation at test time for actual compression.
Inputs:
-------
x - the continuous data; belongs to the diffusion space (usually scaled to [-1, 1])
z_t - the previously communicated latent state
t, s - the previous and current time steps, in [0, 1]; s < t.
compress_mode - if to compress to bits in inference mode (which is slower), one of [None, 'encode', 'decode']
Returns:
--------
z_s - the new latent state
rate - (estimate of) the KL divergence between q(z_s | z_t, x) and p(z_s | z_t)
"""
# Compute parameters of q(z_s | z_t, x) and the prior p(z_s | z_t)
p_loc, p_scale = self.get_s_t_params(z_t, t, s, cache_denoised=cache_denoised)
q_loc, q_scale = self.get_s_t_params(z_t, t, s, x=x)
p_s_t = self.p_s_t(p_loc, p_scale, t, s)
q_s_t = self.q_s_t(q_loc, q_scale)
z_s, rate = self.relative_entropy_coding(q_s_t, p_s_t, compress_mode=compress_mode)
return z_s, rate
def transmit_image(self, z_0, x_raw, compress_mode=None):
if compress_mode in ['encode', 'decode']:
p = torch.distributions.Categorical(logits=self.log_probs_x_z0(z_0=z_0))
if compress_mode == 'decode':
# consume bits
x_raw = self.entropy_decode(self.compress_bits.pop(0), p)
elif compress_mode == 'encode':
# accumulate bits
self.compress_bits += [self.entropy_encode(x_raw, p)]
return x_raw
def forward(self, x_raw, z_1=None, recon_method=None, compress_mode=None, seed=None):
"""
Run a given data batch through the encoding/decoding path and compute the loss and other metrics.
Inputs:
-------
x - batch of shape [B, C, H, W]
z_1 - if provided, will use this as the topmost latent state instead of sampling from q(z_1 | x).
recon_method - (optional) one of ['ancestral', 'denoise', 'flow-based']; determines how a progressive
reconstruction will be computed based on an intermediate latent state.
compress_mode - if to compress to bits in inference mode (which is slower), one of [None, 'encode', 'decode']
seed - allow for common randomness
"""
rescale_to_bpd = 1. / (np.prod(x_raw.shape[1:]) * np.log(2.))
# Transform from uint8 in [0, 255] to float in [-1, 1]; the first r.v. of the diffusion process.
x = 2 * ((x_raw.float() + .5) / self.config.model.vocab_size) - 1
# 1. PRIOR/LATENT LOSS
# KL z1 with N(0,1) prior; should be close to 0.
if z_1 is None and not torch.is_inference_mode_enabled():
# During training me might want to optimize the noise schedule so use the full NELBO
q_1 = self.q_t(x)
p_1 = self.p_1()
with local_seed(seed, i=0):
z_1 = q_1.sample()
loss_prior = kl_divergence(q_1, p_1).sum(dim=[1, 2, 3])
else:
# In actual compression, we can't do REC for the Gaussian q(z_1|x) under p(z_1), so
# instead both encoder/decoder will draw from p(z_1).
if z_1 is None:
p_1 = self.p_1()
with local_seed(seed, i=0):
z_1 = p_1.sample(x.shape)
loss_prior = torch.zeros(x.shape[0], device=device)
# 2. DIFFUSION LOSS
# Sample through the hierarchy and sum together KL[q(z_s | z_t, x)||p(z_s | z_t)) for the diffusion loss.
z_s = z_1
rate_s = loss_prior
loss_diff = 0.
times = torch.linspace(1, 0, self.config.model.n_timesteps + 1, device=device)
assert len(times) >= 2, "Need at least one diffusion step."
metrics = []
for i in range(len(times) - 1):
z_t = z_s
rate_t = rate_s
t, s = times[i], times[i + 1]
with local_seed(seed, i=i + 1):
z_s, rate_s = self.transmit_q_s_t(x, z_t, t, s, compress_mode=compress_mode,
cache_denoised=recon_method == 'denoise')
loss_diff += rate_s
if recon_method is not None:
x_hat_t = self.denoise_z_t(z_t, recon_method, times=times[i:])
metrics += [{
'prog_bpds': rate_t.cpu() * rescale_to_bpd,
'prog_x_hats': x_hat_t.detach().cpu(),
'prog_mses': torch.mean((x_hat_t - x_raw).float() ** 2, dim=[1, 2, 3]).cpu(),
}]
z_0 = z_s
if recon_method is not None:
if recon_method == 'ancestral':
x_hat_t = self.decode_p_x_z_0(z_0=z_0, method='sample')
else:
x_hat_t = self.decode_p_x_z_0(z_0=z_0, method='argmax')
metrics += [{
'prog_bpds': rate_s.cpu() * rescale_to_bpd,
'prog_x_hats': x_hat_t.detach().cpu(),
'prog_mses': torch.mean((x_hat_t - x_raw).float() ** 2, dim=[1, 2, 3]).cpu(),
}]
# 3. RECONSTRUCTION LOSS.
# Using the same likelihood model as in VDM.
log_probs = self.log_probs_x_z0(z_0=z_0, x_raw=x_raw)
loss_recon = -log_probs.sum(dim=[1, 2, 3])
x_raw = self.transmit_image(z_0, x_raw, compress_mode=compress_mode)
if recon_method is not None:
metrics += [{
'prog_bpds': loss_recon.cpu() * rescale_to_bpd,
'prog_x_hats': x_raw.cpu(),
'prog_mses': torch.zeros(x.shape[:1]),
}]
metrics = default_collate(metrics)
else:
metrics = {}
bpd_latent = torch.mean(loss_prior) * rescale_to_bpd
bpd_recon = torch.mean(loss_recon) * rescale_to_bpd
bpd_diff = torch.mean(loss_diff) * rescale_to_bpd
loss = bpd_recon + bpd_latent + bpd_diff
metrics.update({
"bpd": loss,
"bpd_latent": bpd_latent,
"bpd_recon": bpd_recon,
"bpd_diff": bpd_diff,
})
return loss, metrics
@torch.no_grad()
def sample(self, init_z=None, shape=None, times=None, deterministic=False,
clip_samples=False, decode_method='argmax', return_hist=False):
"""
Perform ancestral / flow-based sampling.
Inputs:
-------
init_z - latent state [B, C, H, W]
shape - if no init_z is given specify the shape of z instead
times - (optional) provide a custom (e.g. partial) sequence of steps
deterministic - use flow-based sampling instead of ancestral sampling
clip_samples - clip latents to [-1, 1]
decode_method - 'argmax' or 'sample'
return_hist - if set return full history of latent states
"""
if init_z is None:
assert shape is not None
p_1 = self.p_1()
z = p_1.sample(shape)
else:
z = init_z
if return_hist:
samples = [z]
if times is None:
times = torch.linspace(1.0, 0.0, self.config.model.n_timesteps + 1, device=device)
# for i in trange(len(times) - 1, desc="sampling"):
for i in range(len(times) - 1):
t, s = times[i], times[i + 1]
p_loc, p_scale = self.get_s_t_params(z, t, s, clip_denoised=clip_samples, deterministic=deterministic)
if deterministic:
z = p_loc
else:
z = self.p_s_t(p_loc, p_scale, t, s).sample()
if return_hist:
samples.append(z)
x_raw = self.decode_p_x_z_0(z_0=z, method=decode_method)
if return_hist:
return x_raw, samples + [x_raw]
else:
return x_raw
def entropy_encode(self, k, p):
"""
Encode integer array k to bits using a prior / coding distribution p.
We might want to quantize scale for determinism and added stability across multiple machines.
"""
# When using a scalar prior it would be better to quantize u as in tfc.UniversalBatchedEntropyModel
assert self.config.model.learned_prior_scale
em = EntropyModel(p)
bitstring = em.compress(k)
return bitstring
def entropy_decode(self, bits, p):
"""
Decode integer array from bits using the prior p.
"""
assert self.config.model.learned_prior_scale
em = EntropyModel(p)
k = em.decompress(bits)
return k
@torch.inference_mode()
def compress(self, image):
# return the bits for each step
self.compress_bits = []
# accumulate bits
self.forward(image.to(device), compress_mode='encode', seed=0)
return self.compress_bits
@torch.inference_mode()
def decompress(self, bits, image_shape, recon_method='denoise'):
# consume the bits for each step, return the intermediate reconstructions for each step
self.compress_bits = bits.copy()
# consume the bits for each step
_, metrics = self.forward(torch.zeros(image_shape, device=device), compress_mode='decode',
recon_method=recon_method, seed=0)
return metrics['prog_x_hats']
def log_probs_x_z0(self, z_0, x_raw=None):
"""
Computes log p(x_raw | z_0), under the Gaussian approximation of q(z_0|x) introduced in VDM, section 3.3.
If `x_raw` is not provided, this method computes the log probs of every
possible value of x_raw under a factorized categorical distribution; otherwise,
it will evaluate the log probs of the given `x_raw`.
Internally we compute p(x_i | z_0i), with i = pixel index, for all possible values
of x_i in the vocabulary. We approximate this with q(z_0i | x_i).
Un-normalized logits are: -1/2 SNR_0 (z_0 / alpha_0 - k)^2
where k takes all possible x_i values. Logits are then normalized to logprobs.
If `x_raw` is None, the method returns a tensor of shape (B, C, H, W,
vocab_size) containing, for each pixel, the log probabilities for all
`vocab_size` possible values of that pixel. The output sums to 1 over
the last dimension. Otherwise, we will select the log probs of the given `x_raw`.
Inputs:
-------
z_0 - z_0 to be decoded, shape (B, C, H, W).
x_raw - Input uint8 image, shape (B, C, H, W).
Returns:
--------
log_probs - Log probabilities [B, C, H, W, vocab_size] if `x_raw` is None else [B, C, H, W]
"""
gamma_0 = self.gamma(torch.tensor([0.0], device=device))
z_0_rescaled = z_0 / torch.sqrt(torch.sigmoid(-gamma_0))
# Compute a tensor of log p(x | z) for all possible values of x.
# Logits are exact if there are no dependencies between dimensions of x
x_vals = torch.arange(self.config.model.vocab_size, device=z_0_rescaled.device)
x_vals = 2 * ((x_vals + .5) / self.config.model.vocab_size) - 1
x_vals = torch.reshape(x_vals, [1] * z_0_rescaled.ndim + [-1])
z = z_0_rescaled.unsqueeze(-1) # (B, D1, ..., D_n) -> (B, D1, ..., D_n, 1) for broadcasting
logits = -0.5 * torch.exp(-gamma_0) * (z - x_vals) ** 2 # (B, D1, ..., D_n, V)
logprobs = torch.log_softmax(logits, dim=-1) # (B, C, H, W, V)
if x_raw is None:
# Has an extra dimension for vocab_size.
return logprobs
else:
# elementwise log prob, same shape as x_raw
x_one_hot = nn.functional.one_hot(x_raw.long(), num_classes=self.config.model.vocab_size)
# Select the correct log probabilities.
log_probs = (x_one_hot * logprobs).sum(-1) # (B, C, H, W)
return log_probs
def decode_p_x_z_0(self, z_0, method='argmax'):
"""
Decode the given latent state z_0 to the data space,
using the observation model p(x | z_0).
Inputs:
-------
z_0 - the latent state [B, C, H, W]
method - 'argmax' or 'sample'
Returns:
--------
x_raw - the decoded x, mapped to data (integer) space
"""
logprobs = self.log_probs_x_z0(z_0=z_0) # (B, C, H, W, vocab_size)
if method == 'argmax':
x_raw = torch.argmax(logprobs, dim=-1) # (B, C, H, W)
elif method == 'sample':
x_raw = torch.distributions.Categorical(logits=logprobs).sample()
else:
raise ValueError(f"Unknown decoding method {method}")
return x_raw
def denoise_z_t(self, z_t, recon_method, times=None):
"""
Make a progressive data reconstruction based on z_t and compute its reconstruction quality.
Inputs:
-------
z_t - noisy diffusion latent variable
recon_method - one of 'denoise', 'ancestral', 'flow_based'
times - remaining time steps including current t, for ancestral / flow-based sampling
"""
if recon_method == 'ancestral':
x_hat_t = self.sample(
times=times, init_z=z_t,
clip_samples=True, decode_method='argmax', return_hist=False
)
elif recon_method == 'flow_based':
x_hat_t = self.sample(
times=times, init_z=z_t, deterministic=True,
clip_samples=False, decode_method='argmax', return_hist=False
)
elif recon_method == 'denoise':
# Load from cache
assert self.denoised is not None
# Map to data space
x_hat_t = self.decode_p_x_z_0(z_0=self.denoised, method='argmax')
self.denoised = None
else:
raise ValueError(f"Unknown progressive reconstruction method {recon_method}")
return x_hat_t
@staticmethod
def get_noise_schedule(config):
# gamma is the negative log-snr as in VDM eq (3)
gamma_min, gamma_max, schedule = [getattr(config.model, k) for k in
['gamma_min', 'gamma_max', 'noise_schedule']]
assert gamma_max > gamma_min, "SNR should be decreasing in time"
if schedule == "fixed_linear":
gamma = Diffusion.FixedLinearSchedule(gamma_min, gamma_max)
elif schedule == "learned_linear":
gamma = Diffusion.LearnedLinearSchedule(gamma_min, gamma_max, config.model.get('fix_gamma_max'))
# elif: # add different noise schedules here
else:
raise ValueError('Unknown noise schedule %s' % schedule)
return gamma
class FixedLinearSchedule(torch.nn.Module):
def __init__(self, gamma_min, gamma_max):
super().__init__()
self.gamma_min = gamma_min
self.gamma_max = gamma_max
def forward(self, t):
return self.gamma_min + (self.gamma_max - self.gamma_min) * t
class LearnedLinearSchedule(torch.nn.Module):
def __init__(self, gamma_min, gamma_max, fix_gamma_max=False):
super().__init__()
self.fix_gamma_max = fix_gamma_max
if fix_gamma_max:
self.gamma_max = torch.tensor(gamma_max)
else:
self.b = torch.nn.Parameter(torch.tensor(gamma_min))
self.w = torch.nn.Parameter(torch.tensor(gamma_max - gamma_min))
def forward(self, t):
w = self.w.abs()
if self.fix_gamma_max:
return w * (t - 1.) + self.gamma_max
else:
return self.b + w * t
def save(self):
torch.save({
'model': self.score_net.state_dict(),
'ema': self.ema.state_dict(),
'optimizer': self.optimizer.state_dict(),
'step': self.step
}, self.self.config.checkpoint_path)
def load(self, path):
cp = torch.load(path, map_location=device, weights_only=False)
# score_net + gamma
self.score_net.load_state_dict(cp['model'])
self.ema.load_state_dict(cp['ema'])
self.optimizer.load_state_dict(cp['optimizer'])
self.step = cp['step']
def trainer(self, train_iter, eval_iter=None):
"""
Train UQDM for a specified number of steps on a train set.
Hyperparameters are set via self.config.training, self.config.eval, and self.config.optim.
"""
if self.step >= self.config.training.n_steps:
print('Skipping training, increase training.n_steps if more steps are desired.')
while self.step < self.config.training.n_steps:
# Parameter update step
batch = next(train_iter).to(device)
self.optimizer.zero_grad()
model.train()
loss, metrics = self(batch)
loss.backward()
if self.config.optim.warmup > 0:
for g in self.optimizer.param_groups:
g['lr'] = self.config.optim.lr * np.minimum(self.step / self.config.optim.warmup, 1.0)
if self.config.optim.grad_clip_norm >= 0:
torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=self.config.optim.grad_clip_norm)
self.optimizer.step()
self.step += 1
self.ema.update(model.parameters())
last = self.step == self.config.training.n_steps
# Save model checkpoint
if self.step % self.config.training.log_metrics_every_steps == 0 or last:
self.save()
# Print train metrics
if self.step % self.config.training.log_metrics_every_steps == 0 or last:
print(metrics)
# Compute and print validation metrics
if eval_iter is not None and (self.step % self.config.training.eval_every_steps == 0 or last):
n_batches = self.config.training.eval_steps_to_run
res = []
for batch in tqdm(islice(eval_iter, n_batches), total=n_batches or len(eval_iter),
desc='Evaluating on test set'):
batch = batch.to(device)
with torch.inference_mode():
self.ema.store(model.parameters())
self.ema.copy_to(model.parameters())
model.eval()
_, ths_metrics = self(batch)
self.ema.restore(model.parameters())
res += [ths_metrics]
res = default_collate(res)
print({k: v.mean().item() for k, v in res.items()})
@staticmethod
def mse_to_psnr(mse, max_val):
with np.errstate(divide='ignore'):
return -10 * (np.log10(mse) - 2 * np.log10(max_val))
@torch.inference_mode()
def evaluate(self, eval_iter, n_batches=None, seed=None):
"""
Evaluate rate-distortion on the test set.
Inputs:
-------
n_batches - (optionally) give a number of batches to evaluate
"""
res = []
for X in tqdm(islice(eval_iter, n_batches), total=n_batches or len(eval_iter), desc='Evaluating UQDM'):
X = X.to(device)
ths_res = {}
for recon_method in ('denoise', 'ancestral', 'flow_based'):
# If evaluating bpds as file sizes:
# self.compress_bits = []
# loss, metrics = self(X, recon_method=recon_method, seed=seed, compress_mode='encode')
# bpds = np.cumsum([len(b) * 8 for b in self.compress_bits]) / np.prod(X.shape)
loss, metrics = self(X, recon_method=recon_method, seed=seed)
bpds = np.cumsum(metrics['prog_bpds'].mean(dim=1))
psnrs = self.mse_to_psnr(metrics['prog_mses'].mean(dim=1), max_val=255.)
ths_res[recon_method] = dict(bpds=bpds, psnrs=psnrs)
res += [ths_res]
res = default_collate(res)
for recon_method in res.keys():
bpps = np.round(3 * res[recon_method]['bpds'].mean(axis=0).numpy(), 4)
psnrs = np.round(res[recon_method]['psnrs'].mean(axis=0).numpy(), 4)
print('Reconstructions via: %s\nbpps: %s\npsnrs: %s\n' % (recon_method, bpps, psnrs))
class UQDM(Diffusion):
"""
Making Progressive Compression tractable with Universal Quantization.
"""
def __init__(self, config):
"""
See Diffusion.__init__ for hyperparameters.
"""
super().__init__(config)
self.compress_bits = None
def p_s_t(self, p_loc, p_scale, t, s):
# p(z_s | z_t) is a convolution of g_t and U(+- d_t), d_t = sqrt(12) * sigma_s * sqrt(exmp1term)
delta_t = self.sigma(s) * torch.sqrt(- 12 * torch.special.expm1(self.gamma(s) - self.gamma(t)))
base_dist = super().p_s_t(p_loc, p_scale, t, s)
return UniformNoisyDistribution(base_dist, delta_t)
def q_s_t(self, q_loc, q_scale):
# q(z_s | z_t, x) = U(q_loc +- sqrt(3) * q_scale)
return Uniform(low=q_loc - np.sqrt(3) * q_scale, high=q_loc + np.sqrt(3) * q_scale)
def relative_entropy_coding(self, q, p, compress_mode=None):
# Transmit sample z_s ~ q(z_s | z_t, x)
if not torch.is_inference_mode_enabled():
z_s = q.sample()
else:
# Apply universal quantization
# shared U(-0.5, 0.5), seeds have already been set in self.forward
u = torch.rand(q.mean.shape, device=q.mean.device) - 0.5
# very slow, ~ 25 symbols/s
# cp = tfc.NoisyLogistic(loc=0.0, scale=(p.base_dist.scale / p.delta).cpu().numpy())
# em2 = tfc.UniversalBatchedEntropyModel(cp, coding_rank=4, compression=True, num_noise_levels=30)
# k = (q.mean - p.mean) / p.delta
# bitstring = em2.compress(k.cpu())
# k_hat = em2.decompress(bitstring, [])
if compress_mode in ['encode', 'decode']:
p_discrete = p.discretize(u)
if compress_mode == 'decode':
# consume bits
quantized = self.entropy_decode(self.compress_bits.pop(0), p_discrete)
else:
# Add dither U(-delta/2, delta/2)
# Transmit residual q - p for greater numerical stability
quantized = torch.round((q.mean - p.mean + p.delta * u) / p.delta)
if compress_mode == 'encode':
# accumulate bits
self.compress_bits += [self.entropy_encode(quantized, p_discrete)]
# Subtract the same (pseudo-random) dither using shared randomness
z_s = quantized * p.delta + p.mean - p.delta * u
# Evaluate z_s under log (posterior/prior) to get MC estimate of KL.
rate = - p.log_prob(z_s) - torch.log(p.delta)
rate = torch.sum(rate, dim=[1, 2, 3])
return z_s, rate
if __name__ == '__main__':
seed = 0
np.random.seed(seed)
torch.manual_seed(seed)
torch.use_deterministic_algorithms(True)
# model = load_checkpoint('checkpoints/uqdm-tiny')
# model = load_checkpoint('checkpoints/uqdm-small')
model = load_checkpoint('checkpoints/uqdm-medium')
# model = load_checkpoint('checkpoints/uqdm-big')
train_iter, eval_iter = load_data('ImageNet64', model.config.data)
# model.trainer(train_iter, eval_iter)
model.evaluate(eval_iter, n_batches=10, seed=seed)
# Compress one image
image = next(iter(eval_iter))
compressed = model.compress(image)
bits = [len(b) * 8 for b in compressed]
reconstructions = model.decompress(compressed, image.shape, recon_method='denoise')
assert (reconstructions[-1] == image).all()
print('Reconstructions via: denoise, compression to bits\nbpps: %s'
% np.round(np.cumsum(bits) / np.prod(image.shape) * 3, 4))
|