File size: 154,647 Bytes
ad654f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "7e66aa3d-a00c-491a-91ad-2a64feb2805d",
   "metadata": {},
   "source": [
    "# PHASE 1: EXPLAIN & BREAKDOWN (LEARNING PHASE)\n",
    "\n",
    "## 1. Simple Explanation of Transformers\n",
    "\n",
    "Transformers are a revolutionary neural network architecture that processes sequences (like sentences) by looking at all parts simultaneously rather than one word at a time. Think of it like reading a paragraph where you can instantly see how each word relates to every other word, rather than reading left-to-right. The key innovation is the \"attention mechanism\" - imagine highlighting the most important words in a sentence that help you understand the current word you're focusing on. This parallel processing makes Transformers much faster to train than older models like RNNs, and their ability to capture long-range dependencies makes them incredibly powerful for language tasks. They're the foundation behind ChatGPT, BERT, and most modern AI language models.\n",
    "\n",
    "## 2. Detailed Roadmap\n",
    "\n",
    "**Step 1: Foundation Concepts**\n",
    "- Sequence-to-sequence problems\n",
    "- Limitations of RNNs and CNNs for sequences\n",
    "- Parallel processing vs sequential processing\n",
    "\n",
    "**Step 2: Core Attention Mechanism**\n",
    "- Self-attention concept\n",
    "- Query, Key, Value matrices\n",
    "- Attention scores and weights\n",
    "- Scaled dot-product attention\n",
    "\n",
    "**Step 3: Multi-Head Attention**\n",
    "- Why multiple attention heads\n",
    "- Parallel attention computations\n",
    "- Concatenation and linear transformation\n",
    "\n",
    "**Step 4: Positional Encoding**\n",
    "- Why position matters in sequences\n",
    "- Sinusoidal encoding\n",
    "- Learned vs fixed positional embeddings\n",
    "\n",
    "**Step 5: Encoder Architecture**\n",
    "- Layer normalization\n",
    "- Residual connections\n",
    "- Feed-forward networks\n",
    "- Encoder block stacking\n",
    "\n",
    "**Step 6: Decoder Architecture**\n",
    "- Masked self-attention\n",
    "- Encoder-decoder attention\n",
    "- Autoregressive generation\n",
    "\n",
    "**Step 7: Training and Optimization**\n",
    "- Loss functions for different tasks\n",
    "- Teacher forcing\n",
    "- Beam search for inference\n",
    "\n",
    "## 3. Key Formulas\n",
    "\n",
    "**Attention Formula:**\n",
    "$$\\text{Attention}(Q, K, V) = \\text{softmax}\\left(\\frac{QK^T}{\\sqrt{d_k}}\\right)V$$\n",
    "\n",
    "- Q (Query): What we're looking for (d_model × d_k)\n",
    "- K (Key): What we're looking at (d_model × d_k) \n",
    "- V (Value): The actual information we extract (d_model × d_v)\n",
    "- $d_k$: Dimension of key vectors (typically d_model/num_heads)\n",
    "- $\\sqrt{d_k}$: Scaling factor to prevent softmax saturation\n",
    "\n",
    "**Multi-Head Attention:**\n",
    "$$\\text{MultiHead}(Q, K, V) = \\text{Concat}(\\text{head}_1, ..., \\text{head}_h)W^O$$\n",
    "$$\\text{head}_i = \\text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$\n",
    "\n",
    "- $W_i^Q, W_i^K, W_i^V$: Learned projection matrices for each head\n",
    "- $W^O$: Output projection matrix (d_model × d_model)\n",
    "- h: Number of attention heads\n",
    "\n",
    "**Positional Encoding:**\n",
    "$$PE_{(pos, 2i)} = \\sin(pos/10000^{2i/d_{model}})$$\n",
    "$$PE_{(pos, 2i+1)} = \\cos(pos/10000^{2i/d_{model}})$$\n",
    "\n",
    "- pos: Position in sequence\n",
    "- i: Dimension index\n",
    "- Creates unique encoding for each position\n",
    "\n",
    "## 4. Step-by-Step Numerical Example\n",
    "\n",
    "Let's work through a simple attention calculation with a 3-word sequence: \"I love AI\"\n",
    "\n",
    "**Given:**\n",
    "- Sequence length: 3\n",
    "- Embedding dimension: 4\n",
    "- Single attention head\n",
    "\n",
    "**Step 1: Input Embeddings**\n",
    "```\n",
    "X = [[1, 0, 1, 0],    # \"I\"\n",
    "     [0, 1, 0, 1],    # \"love\" \n",
    "     [1, 1, 0, 0]]    # \"AI\"\n",
    "```\n",
    "\n",
    "**Step 2: Create Q, K, V matrices**\n",
    "```\n",
    "W_Q = [[1, 0], [0, 1], [1, 1], [0, 0]]  # 4×2\n",
    "W_K = [[0, 1], [1, 0], [0, 1], [1, 1]]  # 4×2  \n",
    "W_V = [[1, 1], [0, 1], [1, 0], [0, 0]]  # 4×2\n",
    "```\n",
    "\n",
    "**Step 3: Compute Q, K, V**\n",
    "```\n",
    "Q = X × W_Q = [[2, 1], [1, 2], [1, 1]]  # 3×2\n",
    "K = X × W_K = [[1, 2], [2, 1], [1, 1]]  # 3×2\n",
    "V = X × W_V = [[2, 1], [1, 1], [1, 1]]  # 3×2\n",
    "```\n",
    "\n",
    "**Step 4: Attention Scores**\n",
    "```\n",
    "Scores = Q × K^T / √2 = [[2, 1], [1, 2], [1, 1]] × [[1, 2, 1], [2, 1, 1]] / 1.41\n",
    "       = [[4, 5, 3], [5, 4, 3], [3, 3, 2]] / 1.41\n",
    "       = [[2.83, 3.54, 2.12], [3.54, 2.83, 2.12], [2.12, 2.12, 1.41]]\n",
    "```\n",
    "\n",
    "**Step 5: Softmax**\n",
    "```\n",
    "Attention_weights = softmax(Scores) ≈ \n",
    "[[0.27, 0.49, 0.24], [0.49, 0.27, 0.24], [0.33, 0.33, 0.33]]\n",
    "```\n",
    "\n",
    "**Step 6: Final Output**\n",
    "```\n",
    "Output = Attention_weights × V = \n",
    "[[0.27×2 + 0.49×1 + 0.24×1, 0.27×1 + 0.49×1 + 0.24×1],\n",
    " [0.49×2 + 0.27×1 + 0.24×1, 0.49×1 + 0.27×1 + 0.24×1],\n",
    " [0.33×2 + 0.33×1 + 0.33×1, 0.33×1 + 0.33×1 + 0.33×1]]\n",
    "= [[1.27, 1.00], [1.51, 1.00], [1.33, 1.00]]\n",
    "```\n",
    "\n",
    "## 5. Real-World AI Use Case\n",
    "\n",
    "**Machine Translation (Google Translate)**\n",
    "Transformers revolutionized translation by allowing the model to simultaneously consider all words in a sentence when translating each word. For example, when translating \"The bank of the river is steep\" from English to French, the attention mechanism helps the model understand that \"bank\" refers to a riverbank (not a financial institution) by paying attention to \"river\" and \"steep\" simultaneously. This contextual understanding leads to more accurate translations: \"La rive de la rivière est escarpée\" rather than incorrectly using the financial term for bank.\n",
    "\n",
    "## 6. Tips for Mastering Transformers\n",
    "\n",
    "**Practice Sources:**\n",
    "- Implement attention mechanism from scratch using NumPy\n",
    "- Work through the \"Annotated Transformer\" tutorial\n",
    "- Practice with Hugging Face Transformers library\n",
    "- Build simple sequence-to-sequence tasks\n",
    "\n",
    "**Essential Resources:**\n",
    "- \"Attention Is All You Need\" paper (original Transformer paper)\n",
    "- Jay Alammar's \"Illustrated Transformer\" blog post\n",
    "- Harvard's \"Annotated Transformer\" \n",
    "- Stanford CS224N lectures on Transformers\n",
    "- 3Blue1Brown's attention mechanism visualization\n",
    "\n",
    "**Recommended Problems:**\n",
    "- Implement scaled dot-product attention\n",
    "- Build a simple sentiment classifier using pre-trained BERT\n",
    "- Create a text summarization model\n",
    "- Experiment with different positional encodings\n",
    "- Compare Transformer performance with RNN/LSTM on same task\n",
    "\n",
    "**Key Focus Areas:**\n",
    "- Understand why attention works better than recurrence\n",
    "- Master matrix dimensions in multi-head attention\n",
    "- Practice debugging attention weight visualizations\n",
    "- Learn to fine-tune pre-trained models\n",
    "- Understand the trade-offs between model size and performance\n",
    "\n",
    "Ready to move to Phase 2? Just say \"Understood\" and I'll provide the complete Python implementation with logging!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f3688215-4c70-4334-bcf8-41d0e9e22dbc",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: torch in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (2.7.1)\n",
      "Requirement already satisfied: torchvision in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (0.22.1)\n",
      "Requirement already satisfied: numpy in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (2.3.1)\n",
      "Requirement already satisfied: pandas in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (2.3.1)\n",
      "Requirement already satisfied: matplotlib in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (3.10.3)\n",
      "Requirement already satisfied: scikit-learn in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (1.7.0)\n",
      "Collecting transformers\n",
      "  Downloading transformers-4.53.2-py3-none-any.whl.metadata (40 kB)\n",
      "Collecting datasets\n",
      "  Downloading datasets-4.0.0-py3-none-any.whl.metadata (19 kB)\n",
      "Collecting accelerate\n",
      "  Downloading accelerate-1.8.1-py3-none-any.whl.metadata (19 kB)\n",
      "Requirement already satisfied: filelock in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (3.18.0)\n",
      "Requirement already satisfied: typing-extensions>=4.10.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (4.14.1)\n",
      "Requirement already satisfied: setuptools in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (80.9.0)\n",
      "Requirement already satisfied: sympy>=1.13.3 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (1.14.0)\n",
      "Requirement already satisfied: networkx in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (3.5)\n",
      "Requirement already satisfied: jinja2 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (3.1.6)\n",
      "Requirement already satisfied: fsspec in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (2025.5.1)\n",
      "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torchvision) (11.3.0)\n",
      "Requirement already satisfied: python-dateutil>=2.8.2 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from pandas) (2.9.0.post0)\n",
      "Requirement already satisfied: pytz>=2020.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from pandas) (2025.2)\n",
      "Requirement already satisfied: tzdata>=2022.7 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from pandas) (2025.2)\n",
      "Requirement already satisfied: contourpy>=1.0.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (1.3.2)\n",
      "Requirement already satisfied: cycler>=0.10 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (0.12.1)\n",
      "Requirement already satisfied: fonttools>=4.22.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (4.58.5)\n",
      "Requirement already satisfied: kiwisolver>=1.3.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (1.4.8)\n",
      "Requirement already satisfied: packaging>=20.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (25.0)\n",
      "Requirement already satisfied: pyparsing>=2.3.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (3.2.3)\n",
      "Requirement already satisfied: scipy>=1.8.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from scikit-learn) (1.16.0)\n",
      "Requirement already satisfied: joblib>=1.2.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from scikit-learn) (1.5.1)\n",
      "Requirement already satisfied: threadpoolctl>=3.1.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from scikit-learn) (3.6.0)\n",
      "Collecting huggingface-hub<1.0,>=0.30.0 (from transformers)\n",
      "  Downloading huggingface_hub-0.33.4-py3-none-any.whl.metadata (14 kB)\n",
      "Requirement already satisfied: pyyaml>=5.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from transformers) (6.0.2)\n",
      "Collecting regex!=2019.12.17 (from transformers)\n",
      "  Downloading regex-2024.11.6-cp313-cp313-macosx_11_0_arm64.whl.metadata (40 kB)\n",
      "Requirement already satisfied: requests in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from transformers) (2.32.4)\n",
      "Collecting tokenizers<0.22,>=0.21 (from transformers)\n",
      "  Downloading tokenizers-0.21.2-cp39-abi3-macosx_11_0_arm64.whl.metadata (6.8 kB)\n",
      "Collecting safetensors>=0.4.3 (from transformers)\n",
      "  Downloading safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl.metadata (3.8 kB)\n",
      "Requirement already satisfied: tqdm>=4.27 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from transformers) (4.67.1)\n",
      "Collecting hf-xet<2.0.0,>=1.1.2 (from huggingface-hub<1.0,>=0.30.0->transformers)\n",
      "  Downloading hf_xet-1.1.5-cp37-abi3-macosx_11_0_arm64.whl.metadata (879 bytes)\n",
      "Collecting pyarrow>=15.0.0 (from datasets)\n",
      "  Downloading pyarrow-20.0.0-cp313-cp313-macosx_12_0_arm64.whl.metadata (3.3 kB)\n",
      "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
      "  Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
      "Collecting xxhash (from datasets)\n",
      "  Downloading xxhash-3.5.0-cp313-cp313-macosx_11_0_arm64.whl.metadata (12 kB)\n",
      "Collecting multiprocess<0.70.17 (from datasets)\n",
      "  Downloading multiprocess-0.70.16-py312-none-any.whl.metadata (7.2 kB)\n",
      "Collecting fsspec (from torch)\n",
      "  Downloading fsspec-2025.3.0-py3-none-any.whl.metadata (11 kB)\n",
      "Collecting aiohttp!=4.0.0a0,!=4.0.0a1 (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
      "  Downloading aiohttp-3.12.14-cp313-cp313-macosx_11_0_arm64.whl.metadata (7.6 kB)\n",
      "Requirement already satisfied: psutil in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from accelerate) (7.0.0)\n",
      "Collecting aiohappyeyeballs>=2.5.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
      "  Downloading aiohappyeyeballs-2.6.1-py3-none-any.whl.metadata (5.9 kB)\n",
      "Collecting aiosignal>=1.4.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
      "  Downloading aiosignal-1.4.0-py3-none-any.whl.metadata (3.7 kB)\n",
      "Requirement already satisfied: attrs>=17.3.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets) (25.3.0)\n",
      "Collecting frozenlist>=1.1.1 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
      "  Downloading frozenlist-1.7.0-cp313-cp313-macosx_11_0_arm64.whl.metadata (18 kB)\n",
      "Collecting multidict<7.0,>=4.5 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
      "  Downloading multidict-6.6.3-cp313-cp313-macosx_11_0_arm64.whl.metadata (5.3 kB)\n",
      "Collecting propcache>=0.2.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
      "  Downloading propcache-0.3.2-cp313-cp313-macosx_11_0_arm64.whl.metadata (12 kB)\n",
      "Collecting yarl<2.0,>=1.17.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
      "  Downloading yarl-1.20.1-cp313-cp313-macosx_11_0_arm64.whl.metadata (73 kB)\n",
      "Requirement already satisfied: idna>=2.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from yarl<2.0,>=1.17.0->aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets) (3.10)\n",
      "Requirement already satisfied: six>=1.5 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n",
      "Requirement already satisfied: charset_normalizer<4,>=2 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from requests->transformers) (3.4.2)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from requests->transformers) (2.5.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from requests->transformers) (2025.7.9)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from sympy>=1.13.3->torch) (1.3.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from jinja2->torch) (3.0.2)\n",
      "Downloading transformers-4.53.2-py3-none-any.whl (10.8 MB)\n",
      "\u001b[2K   \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.8/10.8 MB\u001b[0m \u001b[31m18.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mMB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m:01\u001b[0m\n",
      "\u001b[?25hDownloading huggingface_hub-0.33.4-py3-none-any.whl (515 kB)\n",
      "Downloading hf_xet-1.1.5-cp37-abi3-macosx_11_0_arm64.whl (2.6 MB)\n",
      "\u001b[2K   \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.6/2.6 MB\u001b[0m \u001b[31m17.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hDownloading tokenizers-0.21.2-cp39-abi3-macosx_11_0_arm64.whl (2.7 MB)\n",
      "\u001b[2K   \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hDownloading datasets-4.0.0-py3-none-any.whl (494 kB)\n",
      "Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
      "Downloading fsspec-2025.3.0-py3-none-any.whl (193 kB)\n",
      "Downloading multiprocess-0.70.16-py312-none-any.whl (146 kB)\n",
      "Downloading accelerate-1.8.1-py3-none-any.whl (365 kB)\n",
      "Downloading aiohttp-3.12.14-cp313-cp313-macosx_11_0_arm64.whl (465 kB)\n",
      "Downloading multidict-6.6.3-cp313-cp313-macosx_11_0_arm64.whl (43 kB)\n",
      "Downloading yarl-1.20.1-cp313-cp313-macosx_11_0_arm64.whl (88 kB)\n",
      "Downloading aiohappyeyeballs-2.6.1-py3-none-any.whl (15 kB)\n",
      "Downloading aiosignal-1.4.0-py3-none-any.whl (7.5 kB)\n",
      "Downloading frozenlist-1.7.0-cp313-cp313-macosx_11_0_arm64.whl (45 kB)\n",
      "Downloading propcache-0.3.2-cp313-cp313-macosx_11_0_arm64.whl (41 kB)\n",
      "Downloading pyarrow-20.0.0-cp313-cp313-macosx_12_0_arm64.whl (30.8 MB)\n",
      "\u001b[2K   \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m30.8/30.8 MB\u001b[0m \u001b[31m21.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m0:01\u001b[0m02\u001b[0m\n",
      "\u001b[?25hDownloading regex-2024.11.6-cp313-cp313-macosx_11_0_arm64.whl (284 kB)\n",
      "Downloading safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl (418 kB)\n",
      "Downloading xxhash-3.5.0-cp313-cp313-macosx_11_0_arm64.whl (30 kB)\n",
      "Installing collected packages: xxhash, safetensors, regex, pyarrow, propcache, multidict, hf-xet, fsspec, frozenlist, dill, aiohappyeyeballs, yarl, multiprocess, huggingface-hub, aiosignal, tokenizers, aiohttp, accelerate, transformers, datasets\n",
      "\u001b[2K  Attempting uninstall: fsspecm\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
      "\u001b[2K    Found existing installation: fsspec 2025.5.15;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
      "\u001b[2K    Uninstalling fsspec-2025.5.1:;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
      "\u001b[2K      Successfully uninstalled fsspec-2025.5.18;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
      "\u001b[2K   \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m20/20\u001b[0m [datasets]\u001b[0m \u001b[32m19/20\u001b[0m [datasets]ers]\n",
      "\u001b[1A\u001b[2KSuccessfully installed accelerate-1.8.1 aiohappyeyeballs-2.6.1 aiohttp-3.12.14 aiosignal-1.4.0 datasets-4.0.0 dill-0.3.8 frozenlist-1.7.0 fsspec-2025.3.0 hf-xet-1.1.5 huggingface-hub-0.33.4 multidict-6.6.3 multiprocess-0.70.16 propcache-0.3.2 pyarrow-20.0.0 regex-2024.11.6 safetensors-0.5.3 tokenizers-0.21.2 transformers-4.53.2 xxhash-3.5.0 yarl-1.20.1\n"
     ]
    }
   ],
   "source": [
    "!pip install torch torchvision numpy pandas matplotlib scikit-learn transformers datasets accelerate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aca99530-0cea-4026-a9bb-cdfc9998e34f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "import torch.optim as optim\n",
    "from torch.utils.data import DataLoader, Dataset\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.metrics import accuracy_score, classification_report\n",
    "import math\n",
    "import time\n",
    "\n",
    "# Custom Dataset class to handle text data and convert to tokens\n",
    "class TextDataset(Dataset):\n",
    "    def __init__(self, texts, labels, vocab_to_idx, max_length=128):\n",
    "        \"\"\"\n",
    "        Initialize the dataset with texts, labels, vocabulary mapping, and max sequence length\n",
    "        \"\"\"\n",
    "        self.texts = texts  # List of text strings\n",
    "        self.labels = labels  # List of corresponding labels (0 or 1 for binary classification)\n",
    "        self.vocab_to_idx = vocab_to_idx  # Dictionary mapping words to indices\n",
    "        self.max_length = max_length  # Maximum sequence length for padding/truncation\n",
    "        \n",
    "    def __len__(self):\n",
    "        \"\"\"Return the total number of samples in the dataset\"\"\"\n",
    "        return len(self.texts)\n",
    "    \n",
    "    def __getitem__(self, idx):\n",
    "        \"\"\"\n",
    "        Get a single sample from the dataset\n",
    "        Returns tokenized and padded text along with its label\n",
    "        \"\"\"\n",
    "        text = self.texts[idx]\n",
    "        label = self.labels[idx]\n",
    "        \n",
    "        # Tokenize text by splitting on whitespace and converting to lowercase\n",
    "        tokens = text.lower().split()\n",
    "        \n",
    "        # Convert tokens to indices using vocabulary, use <UNK> for unknown words\n",
    "        token_ids = [self.vocab_to_idx.get(token, self.vocab_to_idx['<UNK>']) for token in tokens]\n",
    "        \n",
    "        # Truncate if sequence is longer than max_length\n",
    "        if len(token_ids) > self.max_length:\n",
    "            token_ids = token_ids[:self.max_length]\n",
    "        else:\n",
    "            # Pad with <PAD> tokens if sequence is shorter than max_length\n",
    "            token_ids.extend([self.vocab_to_idx['<PAD>']] * (self.max_length - len(token_ids)))\n",
    "        \n",
    "        # Convert to PyTorch tensors\n",
    "        return torch.tensor(token_ids, dtype=torch.long), torch.tensor(label, dtype=torch.long)\n",
    "\n",
    "# Positional Encoding module to add position information to embeddings\n",
    "class PositionalEncoding(nn.Module):\n",
    "    def __init__(self, d_model, max_length=5000):\n",
    "        \"\"\"\n",
    "        Initialize positional encoding with sinusoidal patterns\n",
    "        d_model: dimension of the model embeddings\n",
    "        max_length: maximum sequence length to support\n",
    "        \"\"\"\n",
    "        super().__init__()\n",
    "        \n",
    "        # Create a matrix to hold positional encodings\n",
    "        pe = torch.zeros(max_length, d_model)\n",
    "        \n",
    "        # Create position indices (0, 1, 2, ..., max_length-1)\n",
    "        position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)\n",
    "        \n",
    "        # Create the divisor term for the sinusoidal pattern\n",
    "        # This creates different frequencies for different dimensions\n",
    "        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))\n",
    "        \n",
    "        # Apply sine to even indices (0, 2, 4, ...)\n",
    "        pe[:, 0::2] = torch.sin(position * div_term)\n",
    "        \n",
    "        # Apply cosine to odd indices (1, 3, 5, ...)\n",
    "        pe[:, 1::2] = torch.cos(position * div_term)\n",
    "        \n",
    "        # Reshape to (max_length, 1, d_model) for broadcasting\n",
    "        pe = pe.unsqueeze(0).transpose(0, 1)\n",
    "        \n",
    "        # Register as buffer so it's saved with the model but not trained\n",
    "        self.register_buffer('pe', pe)\n",
    "    \n",
    "    def forward(self, x):\n",
    "        \"\"\"\n",
    "        Add positional encoding to input embeddings\n",
    "        x: input embeddings of shape (seq_len, batch_size, d_model)\n",
    "        \"\"\"\n",
    "        # Add positional encoding to input, only for the sequence length of x\n",
    "        return x + self.pe[:x.size(0), :]\n",
    "\n",
    "# Multi-Head Attention mechanism - the core of the Transformer\n",
    "class MultiHeadAttention(nn.Module):\n",
    "    def __init__(self, d_model, num_heads):\n",
    "        \"\"\"\n",
    "        Initialize multi-head attention\n",
    "        d_model: dimension of the model\n",
    "        num_heads: number of attention heads\n",
    "        \"\"\"\n",
    "        super().__init__()\n",
    "        self.d_model = d_model\n",
    "        self.num_heads = num_heads\n",
    "        \n",
    "        # Each head processes d_k dimensions\n",
    "        self.d_k = d_model // num_heads\n",
    "        \n",
    "        # Linear transformations for Query, Key, Value, and Output\n",
    "        self.W_q = nn.Linear(d_model, d_model)  # Query projection\n",
    "        self.W_k = nn.Linear(d_model, d_model)  # Key projection\n",
    "        self.W_v = nn.Linear(d_model, d_model)  # Value projection\n",
    "        self.W_o = nn.Linear(d_model, d_model)  # Output projection\n",
    "        \n",
    "    def scaled_dot_product_attention(self, Q, K, V, mask=None):\n",
    "        \"\"\"\n",
    "        Compute scaled dot-product attention\n",
    "        Q, K, V: Query, Key, Value matrices\n",
    "        mask: optional mask to prevent attention to certain positions\n",
    "        \"\"\"\n",
    "        # Compute attention scores: Q * K^T / sqrt(d_k)\n",
    "        scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)\n",
    "        \n",
    "        # Apply mask if provided (set masked positions to large negative value)\n",
    "        if mask is not None:\n",
    "            scores = scores.masked_fill(mask == 0, -1e9)\n",
    "        \n",
    "        # Apply softmax to get attention weights\n",
    "        attention_weights = F.softmax(scores, dim=-1)\n",
    "        \n",
    "        # Apply attention weights to values\n",
    "        output = torch.matmul(attention_weights, V)\n",
    "        \n",
    "        return output, attention_weights\n",
    "    \n",
    "    def forward(self, query, key, value, mask=None):\n",
    "        \"\"\"\n",
    "        Forward pass of multi-head attention\n",
    "        query, key, value: input tensors (can be the same for self-attention)\n",
    "        mask: optional attention mask\n",
    "        \"\"\"\n",
    "        batch_size = query.size(0)\n",
    "        \n",
    "        # Apply linear transformations and reshape for multi-head processing\n",
    "        # Shape: (batch_size, seq_len, d_model) -> (batch_size, num_heads, seq_len, d_k)\n",
    "        Q = self.W_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
    "        K = self.W_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
    "        V = self.W_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
    "        \n",
    "        # Apply scaled dot-product attention\n",
    "        attention_output, attention_weights = self.scaled_dot_product_attention(Q, K, V, mask)\n",
    "        \n",
    "        # Concatenate heads and reshape back to original dimensions\n",
    "        # Shape: (batch_size, num_heads, seq_len, d_k) -> (batch_size, seq_len, d_model)\n",
    "        attention_output = attention_output.transpose(1, 2).contiguous().view(\n",
    "            batch_size, -1, self.d_model)\n",
    "        \n",
    "        # Apply final linear transformation\n",
    "        output = self.W_o(attention_output)\n",
    "        return output\n",
    "\n",
    "# Single Transformer block containing attention and feed-forward layers\n",
    "class TransformerBlock(nn.Module):\n",
    "    def __init__(self, d_model, num_heads, d_ff, dropout=0.1):\n",
    "        \"\"\"\n",
    "        Initialize a Transformer block\n",
    "        d_model: model dimension\n",
    "        num_heads: number of attention heads\n",
    "        d_ff: dimension of feed-forward network\n",
    "        dropout: dropout probability\n",
    "        \"\"\"\n",
    "        super().__init__()\n",
    "        \n",
    "        # Multi-head attention layer\n",
    "        self.attention = MultiHeadAttention(d_model, num_heads)\n",
    "        \n",
    "        # Layer normalization layers\n",
    "        self.norm1 = nn.LayerNorm(d_model)\n",
    "        self.norm2 = nn.LayerNorm(d_model)\n",
    "        \n",
    "        # Feed-forward network: two linear layers with ReLU activation\n",
    "        self.feed_forward = nn.Sequential(\n",
    "            nn.Linear(d_model, d_ff),\n",
    "            nn.ReLU(),\n",
    "            nn.Linear(d_ff, d_model)\n",
    "        )\n",
    "        \n",
    "        # Dropout layer for regularization\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        \n",
    "    def forward(self, x, mask=None):\n",
    "        \"\"\"\n",
    "        Forward pass through the Transformer block\n",
    "        x: input tensor\n",
    "        mask: optional attention mask\n",
    "        \"\"\"\n",
    "        # Self-attention with residual connection and layer normalization\n",
    "        attention_output = self.attention(x, x, x, mask)\n",
    "        x = self.norm1(x + self.dropout(attention_output))\n",
    "        \n",
    "        # Feed-forward with residual connection and layer normalization\n",
    "        ff_output = self.feed_forward(x)\n",
    "        x = self.norm2(x + self.dropout(ff_output))\n",
    "        \n",
    "        return x\n",
    "\n",
    "# Complete Transformer model for text classification\n",
    "class TransformerClassifier(nn.Module):\n",
    "    def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff, max_length, num_classes, dropout=0.1):\n",
    "        \"\"\"\n",
    "        Initialize the Transformer classifier\n",
    "        vocab_size: size of vocabulary\n",
    "        d_model: model dimension\n",
    "        num_heads: number of attention heads\n",
    "        num_layers: number of Transformer blocks\n",
    "        d_ff: feed-forward dimension\n",
    "        max_length: maximum sequence length\n",
    "        num_classes: number of output classes\n",
    "        dropout: dropout probability\n",
    "        \"\"\"\n",
    "        super().__init__()\n",
    "        self.d_model = d_model\n",
    "        \n",
    "        # Embedding layer to convert token indices to dense vectors\n",
    "        self.embedding = nn.Embedding(vocab_size, d_model)\n",
    "        \n",
    "        # Positional encoding to add position information\n",
    "        self.positional_encoding = PositionalEncoding(d_model, max_length)\n",
    "        \n",
    "        # Stack of Transformer blocks\n",
    "        self.transformer_blocks = nn.ModuleList([\n",
    "            TransformerBlock(d_model, num_heads, d_ff, dropout)\n",
    "            for _ in range(num_layers)\n",
    "        ])\n",
    "        \n",
    "        # Final layer normalization\n",
    "        self.norm = nn.LayerNorm(d_model)\n",
    "        \n",
    "        # Classification head\n",
    "        self.classifier = nn.Linear(d_model, num_classes)\n",
    "        \n",
    "        # Dropout for regularization\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        \n",
    "    def forward(self, x, mask=None):\n",
    "        \"\"\"\n",
    "        Forward pass through the entire model\n",
    "        x: input token indices\n",
    "        mask: optional attention mask\n",
    "        \"\"\"\n",
    "        # Convert token indices to embeddings and scale by sqrt(d_model)\n",
    "        x = self.embedding(x) * math.sqrt(self.d_model)\n",
    "        \n",
    "        # Add positional encoding\n",
    "        x = self.positional_encoding(x)\n",
    "        \n",
    "        # Apply dropout\n",
    "        x = self.dropout(x)\n",
    "        \n",
    "        # Pass through each Transformer block\n",
    "        for transformer in self.transformer_blocks:\n",
    "            x = transformer(x, mask)\n",
    "        \n",
    "        # Apply final layer normalization\n",
    "        x = self.norm(x)\n",
    "        \n",
    "        # Global average pooling to get sequence representation\n",
    "        x = torch.mean(x, dim=1)\n",
    "        \n",
    "        # Apply classification head\n",
    "        x = self.classifier(x)\n",
    "        \n",
    "        return x\n",
    "\n",
    "def create_sample_dataset():\n",
    "    \"\"\"\n",
    "    Create a sample dataset of movie reviews for sentiment analysis\n",
    "    Returns lists of texts and corresponding labels (1=positive, 0=negative)\n",
    "    \"\"\"\n",
    "    # Positive movie reviews\n",
    "    positive_reviews = [\n",
    "        \"this movie is absolutely fantastic and amazing\",\n",
    "        \"i loved every minute of this incredible film\",\n",
    "        \"outstanding performance by all actors brilliant\",\n",
    "        \"best movie i have seen in years\",\n",
    "        \"wonderful story and excellent cinematography\",\n",
    "        \"this film exceeded all my expectations\",\n",
    "        \"amazing plot and great character development\",\n",
    "        \"absolutely loved the soundtrack and visuals\",\n",
    "        \"this is a masterpiece of modern cinema\",\n",
    "        \"fantastic acting and brilliant direction\"\n",
    "    ]\n",
    "    \n",
    "    # Negative movie reviews\n",
    "    negative_reviews = [\n",
    "        \"this movie was terrible and boring\",\n",
    "        \"worst film i have ever watched\",\n",
    "        \"awful acting and poor storyline\",\n",
    "        \"complete waste of time and money\",\n",
    "        \"terrible plot and bad character development\",\n",
    "        \"boring and uninteresting throughout\",\n",
    "        \"poor directing and weak performances\",\n",
    "        \"disappointing and predictable story\",\n",
    "        \"bad cinematography and awful soundtrack\",\n",
    "        \"terrible movie with no redeeming qualities\"\n",
    "    ]\n",
    "    \n",
    "    # Combine texts and create labels\n",
    "    texts = positive_reviews + negative_reviews\n",
    "    labels = [1] * len(positive_reviews) + [0] * len(negative_reviews)\n",
    "    \n",
    "    return texts, labels\n",
    "\n",
    "def build_vocabulary(texts, min_freq=1):\n",
    "    \"\"\"\n",
    "    Build vocabulary from a list of texts\n",
    "    texts: list of text strings\n",
    "    min_freq: minimum frequency for a word to be included in vocabulary\n",
    "    Returns: dictionary mapping words to indices\n",
    "    \"\"\"\n",
    "    # Count word frequencies\n",
    "    word_counts = {}\n",
    "    for text in texts:\n",
    "        words = text.lower().split()\n",
    "        for word in words:\n",
    "            word_counts[word] = word_counts.get(word, 0) + 1\n",
    "    \n",
    "    # Initialize vocabulary with special tokens\n",
    "    vocab_to_idx = {'<PAD>': 0, '<UNK>': 1}\n",
    "    idx = 2\n",
    "    \n",
    "    # Add words that meet minimum frequency requirement\n",
    "    for word, count in word_counts.items():\n",
    "        if count >= min_freq:\n",
    "            vocab_to_idx[word] = idx\n",
    "            idx += 1\n",
    "    \n",
    "    return vocab_to_idx\n",
    "\n",
    "def create_padding_mask(x, pad_idx=0):\n",
    "    \"\"\"\n",
    "    Create a mask to prevent attention to padding tokens\n",
    "    x: input tensor with token indices\n",
    "    pad_idx: index of padding token\n",
    "    Returns: mask tensor\n",
    "    \"\"\"\n",
    "    return (x != pad_idx).unsqueeze(1).unsqueeze(2)\n",
    "\n",
    "def train_model(model, train_loader, val_loader, num_epochs, device):\n",
    "    \"\"\"\n",
    "    Train the Transformer model\n",
    "    model: the model to train\n",
    "    train_loader: DataLoader for training data\n",
    "    val_loader: DataLoader for validation data\n",
    "    num_epochs: number of training epochs\n",
    "    device: device to train on (CPU/GPU/MPS)\n",
    "    \"\"\"\n",
    "    # Define loss function and optimizer\n",
    "    criterion = nn.CrossEntropyLoss()\n",
    "    optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
    "    \n",
    "    # Lists to store training progress\n",
    "    train_losses = []\n",
    "    val_accuracies = []\n",
    "    \n",
    "    # Training loop\n",
    "    for epoch in range(num_epochs):\n",
    "        # Training phase\n",
    "        model.train()\n",
    "        total_loss = 0\n",
    "        num_batches = 0\n",
    "        \n",
    "        # Iterate through training batches\n",
    "        for batch_idx, (data, target) in enumerate(train_loader):\n",
    "            # Move data to device\n",
    "            data, target = data.to(device), target.to(device)\n",
    "            \n",
    "            # Create padding mask\n",
    "            mask = create_padding_mask(data).to(device)\n",
    "            \n",
    "            # Zero gradients\n",
    "            optimizer.zero_grad()\n",
    "            \n",
    "            # Forward pass\n",
    "            output = model(data, mask)\n",
    "            \n",
    "            # Calculate loss\n",
    "            loss = criterion(output, target)\n",
    "            \n",
    "            # Backward pass\n",
    "            loss.backward()\n",
    "            \n",
    "            # Update weights\n",
    "            optimizer.step()\n",
    "            \n",
    "            # Accumulate loss\n",
    "            total_loss += loss.item()\n",
    "            num_batches += 1\n",
    "        \n",
    "        # Calculate average training loss\n",
    "        avg_loss = total_loss / num_batches\n",
    "        train_losses.append(avg_loss)\n",
    "        \n",
    "        # Validation phase\n",
    "        model.eval()\n",
    "        correct = 0\n",
    "        total = 0\n",
    "        \n",
    "        # Evaluate on validation set\n",
    "        with torch.no_grad():\n",
    "            for data, target in val_loader:\n",
    "                data, target = data.to(device), target.to(device)\n",
    "                mask = create_padding_mask(data).to(device)\n",
    "                \n",
    "                # Forward pass\n",
    "                output = model(data, mask)\n",
    "                \n",
    "                # Get predictions\n",
    "                _, predicted = torch.max(output.data, 1)\n",
    "                total += target.size(0)\n",
    "                correct += (predicted == target).sum().item()\n",
    "        \n",
    "        # Calculate validation accuracy\n",
    "        val_accuracy = 100 * correct / total\n",
    "        val_accuracies.append(val_accuracy)\n",
    "    \n",
    "    return train_losses, val_accuracies\n",
    "\n",
    "def evaluate_model(model, test_loader, device):\n",
    "    \"\"\"\n",
    "    Evaluate the trained model on test data\n",
    "    model: trained model\n",
    "    test_loader: DataLoader for test data\n",
    "    device: device to run evaluation on\n",
    "    \"\"\"\n",
    "    # Set model to evaluation mode\n",
    "    model.eval()\n",
    "    all_predictions = []\n",
    "    all_targets = []\n",
    "    \n",
    "    # Evaluate without gradient computation\n",
    "    with torch.no_grad():\n",
    "        for data, target in test_loader:\n",
    "            data, target = data.to(device), target.to(device)\n",
    "            mask = create_padding_mask(data).to(device)\n",
    "            \n",
    "            # Forward pass\n",
    "            output = model(data, mask)\n",
    "            \n",
    "            # Get predictions\n",
    "            _, predicted = torch.max(output, 1)\n",
    "            \n",
    "            # Store predictions and targets\n",
    "            all_predictions.extend(predicted.cpu().numpy())\n",
    "            all_targets.extend(target.cpu().numpy())\n",
    "    \n",
    "    # Calculate metrics\n",
    "    accuracy = accuracy_score(all_targets, all_predictions)\n",
    "    report = classification_report(all_targets, all_predictions, target_names=['Negative', 'Positive'])\n",
    "    \n",
    "    return accuracy, all_predictions, all_targets\n",
    "\n",
    "def main():\n",
    "    \"\"\"\n",
    "    Main function to orchestrate the entire training and evaluation process\n",
    "    \"\"\"\n",
    "    # Determine the best available device\n",
    "    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "    if device.type == 'cuda':\n",
    "        print(f\"Using GPU: {torch.cuda.get_device_name(0)}\")\n",
    "    elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():\n",
    "        device = torch.device('mps')\n",
    "        print(\"Using Apple Silicon MPS acceleration\")\n",
    "    else:\n",
    "        print(\"Using CPU\")\n",
    "    \n",
    "    # Create sample dataset\n",
    "    texts, labels = create_sample_dataset()\n",
    "    \n",
    "    # Build vocabulary from the texts\n",
    "    vocab_to_idx = build_vocabulary(texts)\n",
    "    \n",
    "    # Split data into train, validation, and test sets\n",
    "    X_train, X_temp, y_train, y_temp = train_test_split(texts, labels, test_size=0.4, random_state=42)\n",
    "    X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)\n",
    "    \n",
    "    # Create datasets and data loaders\n",
    "    max_length = 32\n",
    "    train_dataset = TextDataset(X_train, y_train, vocab_to_idx, max_length)\n",
    "    val_dataset = TextDataset(X_val, y_val, vocab_to_idx, max_length)\n",
    "    test_dataset = TextDataset(X_test, y_test, vocab_to_idx, max_length)\n",
    "    \n",
    "    train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)\n",
    "    val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False)\n",
    "    test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)\n",
    "    \n",
    "    # Define model configuration\n",
    "    model_config = {\n",
    "        'vocab_size': len(vocab_to_idx),\n",
    "        'd_model': 64,\n",
    "        'num_heads': 4,\n",
    "        'num_layers': 2,\n",
    "        'd_ff': 128,\n",
    "        'max_length': max_length,\n",
    "        'num_classes': 2,\n",
    "        'dropout': 0.1\n",
    "    }\n",
    "    \n",
    "    # Create and move model to device\n",
    "    model = TransformerClassifier(**model_config).to(device)\n",
    "    \n",
    "    # Count model parameters\n",
    "    total_params = sum(p.numel() for p in model.parameters())\n",
    "    trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
    "    \n",
    "    # Train the model\n",
    "    train_losses, val_accuracies = train_model(model, train_loader, val_loader, num_epochs=10, device=device)\n",
    "    \n",
    "    # Evaluate on test set\n",
    "    test_accuracy, predictions, targets = evaluate_model(model, test_loader, device)\n",
    "    \n",
    "    # Create visualization of training progress\n",
    "    plt.figure(figsize=(12, 4))\n",
    "    \n",
    "    # Plot training loss\n",
    "    plt.subplot(1, 2, 1)\n",
    "    plt.plot(train_losses)\n",
    "    plt.title('Training Loss')\n",
    "    plt.xlabel('Epoch')\n",
    "    plt.ylabel('Loss')\n",
    "    \n",
    "    # Plot validation accuracy\n",
    "    plt.subplot(1, 2, 2)\n",
    "    plt.plot(val_accuracies)\n",
    "    plt.title('Validation Accuracy')\n",
    "    plt.xlabel('Epoch')\n",
    "    plt.ylabel('Accuracy (%)')\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig('transformer_training_progress.png')\n",
    "    plt.show()\n",
    "    \n",
    "    # Function to make predictions on new text\n",
    "    def predict_sentiment(text, model, vocab_to_idx, device, max_length=32):\n",
    "        \"\"\"\n",
    "        Predict sentiment for a given text\n",
    "        text: input text string\n",
    "        model: trained model\n",
    "        vocab_to_idx: vocabulary mapping\n",
    "        device: device to run prediction on\n",
    "        max_length: maximum sequence length\n",
    "        \"\"\"\n",
    "        model.eval()\n",
    "        \n",
    "        # Tokenize and convert to indices\n",
    "        tokens = text.lower().split()\n",
    "        token_ids = [vocab_to_idx.get(token, vocab_to_idx['<UNK>']) for token in tokens]\n",
    "        \n",
    "        # Pad or truncate to max_length\n",
    "        if len(token_ids) > max_length:\n",
    "            token_ids = token_ids[:max_length]\n",
    "        else:\n",
    "            token_ids.extend([vocab_to_idx['<PAD>']] * (max_length - len(token_ids)))\n",
    "        \n",
    "        # Convert to tensor and add batch dimension\n",
    "        input_tensor = torch.tensor([token_ids], dtype=torch.long).to(device)\n",
    "        mask = create_padding_mask(input_tensor).to(device)\n",
    "        \n",
    "        # Make prediction\n",
    "        with torch.no_grad():\n",
    "            output = model(input_tensor, mask)\n",
    "            probabilities = F.softmax(output, dim=1)\n",
    "            _, predicted = torch.max(output, 1)\n",
    "        \n",
    "        # Convert prediction to sentiment label\n",
    "        sentiment = \"Positive\" if predicted.item() == 1 else \"Negative\"\n",
    "        confidence = probabilities[0][predicted.item()].item()\n",
    "        \n",
    "        return sentiment, confidence\n",
    "    \n",
    "    # Test the model with sample sentences\n",
    "    test_sentences = [\n",
    "        \"this movie is absolutely amazing\",\n",
    "        \"terrible film with bad acting\",\n",
    "        \"good story but poor execution\"\n",
    "    ]\n",
    "    \n",
    "    print(\"\\nSample predictions:\")\n",
    "    for sentence in test_sentences:\n",
    "        sentiment, confidence = predict_sentiment(sentence, model, vocab_to_idx, device)\n",
    "        print(f\"Text: '{sentence}' -> Sentiment: {sentiment} (Confidence: {confidence:.3f})\")\n",
    "\n",
    "# Run the main function if this script is executed directly\n",
    "if __name__ == \"__main__\":\n",
    "    main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "be43abe2-06cf-4d29-8590-f72d3cbecc7b",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2025-07-14 13:11:54,911 - INFO - Starting M4-optimized Transformer implementation\n",
      "2025-07-14 13:11:54,912 - INFO - Using Apple Silicon M4 MPS acceleration\n",
      "2025-07-14 13:11:54,912 - INFO - Creating extensive movie review dataset for M4 chip\n",
      "2025-07-14 13:11:54,912 - INFO - Created dataset with 200 samples\n",
      "2025-07-14 13:11:54,912 - INFO - Positive: 100, Negative: 100\n",
      "2025-07-14 13:11:54,913 - INFO - Building vocabulary from text data\n",
      "2025-07-14 13:11:54,913 - INFO - Vocabulary size: 106\n",
      "2025-07-14 13:11:54,915 - INFO - Dataset splits - Train: 140, Val: 30, Test: 30\n",
      "2025-07-14 13:11:54,934 - INFO - Total parameters: 544,002\n",
      "2025-07-14 13:11:54,935 - INFO - Starting model training\n",
      "2025-07-14 13:11:54,935 - INFO - Epoch 1/30\n",
      "2025-07-14 13:11:54,937 - INFO - Input data shape: torch.Size([16, 24])\n",
      "2025-07-14 13:11:54,937 - INFO - Target shape: torch.Size([16])\n",
      "2025-07-14 13:11:55,233 - INFO - Model output shape: torch.Size([16, 2])\n",
      "2025-07-14 13:11:55,535 - INFO - Batch 0/9, Loss: 0.8154\n",
      "2025-07-14 13:11:56,072 - INFO - Epoch 1 - Loss: 0.6878, Val Acc: 80.00%\n",
      "2025-07-14 13:11:56,073 - INFO - Epoch 2/30\n",
      "2025-07-14 13:11:56,095 - INFO - Batch 0/9, Loss: 0.6519\n",
      "2025-07-14 13:11:56,305 - INFO - Epoch 2 - Loss: 0.5778, Val Acc: 100.00%\n",
      "2025-07-14 13:11:56,305 - INFO - Epoch 3/30\n",
      "2025-07-14 13:11:56,329 - INFO - Batch 0/9, Loss: 0.5265\n",
      "2025-07-14 13:11:56,517 - INFO - Epoch 3 - Loss: 0.4763, Val Acc: 96.67%\n",
      "2025-07-14 13:11:56,517 - INFO - Epoch 4/30\n",
      "2025-07-14 13:11:56,541 - INFO - Batch 0/9, Loss: 0.3375\n",
      "2025-07-14 13:11:56,731 - INFO - Epoch 4 - Loss: 0.3694, Val Acc: 96.67%\n",
      "2025-07-14 13:11:56,732 - INFO - Epoch 5/30\n",
      "2025-07-14 13:11:56,755 - INFO - Batch 0/9, Loss: 0.4018\n",
      "2025-07-14 13:11:56,938 - INFO - Epoch 5 - Loss: 0.2218, Val Acc: 100.00%\n",
      "2025-07-14 13:11:56,938 - INFO - Epoch 6/30\n",
      "2025-07-14 13:11:56,960 - INFO - Batch 0/9, Loss: 0.1139\n",
      "2025-07-14 13:11:57,145 - INFO - Epoch 6 - Loss: 0.0939, Val Acc: 96.67%\n",
      "2025-07-14 13:11:57,145 - INFO - Epoch 7/30\n",
      "2025-07-14 13:11:57,172 - INFO - Batch 0/9, Loss: 0.0501\n",
      "2025-07-14 13:11:57,344 - INFO - Epoch 7 - Loss: 0.0513, Val Acc: 96.67%\n",
      "2025-07-14 13:11:57,345 - INFO - Early stopping at epoch 7\n",
      "2025-07-14 13:11:57,362 - INFO - Best validation accuracy: 100.00%\n",
      "2025-07-14 13:11:57,362 - INFO - Evaluating model on test set\n",
      "2025-07-14 13:11:57,371 - INFO - Test Accuracy: 0.8667\n",
      "2025-07-14 13:11:57,373 - INFO - Classification Report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "    Negative       0.87      0.87      0.87        15\n",
      "    Positive       0.87      0.87      0.87        15\n",
      "\n",
      "    accuracy                           0.87        30\n",
      "   macro avg       0.87      0.87      0.87        30\n",
      "weighted avg       0.87      0.87      0.87        30\n",
      "\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1eBJREFUeJzs3Qd4FFXXwPGTHhJ6C71D6B0C2EAQREVA6ShFmiigYsUCdhQVlfJJ711F7CCCikgJvZPQe+gQkpC+33MubN4EEuomk938f88zJrM7O3uywdyZM2fOdbPZbDYBAAAAAAAAAADXcb/+IQAAAAAAAAAAoEiiAwAAAAAAAACQBpLoAAAAAAAAAACkgSQ6AAAAAAAAAABpIIkOAAAAAAAAAEAaSKIDAAAAAAAAAJAGkugAAAAAAAAAAKSBJDoAAAAAAAAAAGkgiQ4AAAAAAAAAQBpIogMuoEePHlKqVKk7eu27774rbm5uDo8JAABnc/DgQTMmTps27Y7GSd1Ot3ekxo0bmwUAANw+PU/W82W7v//+24zX+tVR0mP8z4y5g7v97PX4Sj+r9evXZ8j7cwwFRyOJDqQjHSBuZXHkAO5MdEDNnj271WEAAJzQ448/Ln5+fnLp0qU0t+natat4e3vL2bNnJTPbuXOnOfnWJH5m9Ntvv5njlSJFikhiYqLV4QAAnIQ9aWpffH19pUKFCjJgwAA5efKkOBMdCzNbotx+od++6HFRiRIlpFWrVjJ16lSJiYlx+eOUzBwbXI+n1QEArmzmzJkp1mfMmCFLly697vFKlSrd1ftMnDjxjk9q3377bXnjjTfu6v0BAMhomiD/+eef5YcffpBu3bpd93xUVJT8+OOP8vDDD0u+fPnu+H0yYpzUE8D33nvPVEtdWx32xx9/iNVmz55t4tIT1OXLl0uzZs2sDgkA4ETef/99KV26tERHR8vKlSvlm2++MUnp7du3m8RvRrr//vvl8uXL5iL77dB4x44dm2oiXffn6Wldek0/Ty1O06T5sWPHZMmSJfLMM8/IV199Jb/88osUL178rnIHNzpOuZGQkBBxd3fP0sdQcC0k0YF09NRTT6VYX7NmjUmiX/t4aif+t3Mw4eXldccx6mBv5YAPAMCdVqLnyJFD5syZk2oSXRPokZGRJtl+N6weJ2/3JN/R9DPUz3L48OGmqk0T6pk1ia6x+vv7Wx0GAOAaLVu2lLp165rve/fubS5ujxw50owvnTt3ztC/6ZrU1Yp4R3L0/m5Xu3btJH/+/EnrQ4cONeO1Hh+1b9/e5CEckTu4FTabzVwsyZYtm/j4+IiVrD6GguuhnQtgMb1iWrVqVdmwYYO5Kq7J8zfffNM8pwcVjz76qLl9WgegsmXLygcffCAJCQk37Gtm7+n6+eefy4QJE8zr9PX16tWTdevWpXhtar1edV1vsVu0aJGJTV9bpUoVWbx48XXxaysaPSDSAwd9n/Hjxzu8z/q3334rderUMQOxHhzoRQi9wp5cWFiY9OzZU4oVK2biLVy4sLRu3TrFbV3ae61FixZmH7ovrYbQK/QAAOejf8efeOIJWbZsmZw6deq65zW5rkl2TbafO3dOXnnlFalWrZqp1MqZM6c5od+yZctN3ye1MU0rvV566SUpUKBA0nscPXr0utceOnRInnvuOQkMDDTxatJAT2aTj016q7s+ppo0aXJdq7fU+nnqz9urVy8JCAgw42+NGjVk+vTpKba5nWOBG9FKf62w0xg7deokCxcuNCfH19LH9LPS2/Q1Jh2H9fezb9++pG208u3rr782vwfdRj8/vVPA3hs1tZ70afWbtf9etAKtS5cukidPHrn33nvNc1u3bjXHRmXKlDHvU6hQITPep9bWR48n9LO0H2vpsUH//v0lNjZW9u/fb97jyy+/vO51q1atMs/NnTv3lj9LAMAVDz74oPl64MCBFG0+dcx45JFHzNhqvwiuY4dWVOv5qP5N17GvX79+cv78+euStx9++KE5H9Rzah1Td+zYcd17p9UTfe3atea9dTzR5H316tXNmGWPT6vQVfL2KTfqib5p0yZzrKHHHPqzNW3aNEUyO3m7m//++08GDx5sxkV977Zt28rp06fv6jPWz08vWOjPpYV8N+qJPm/ePHO+rZ+7xqvjtP1nv9lxiu7rscceM9XvmhfQ4x3NCaTWEz150aD+DvW4SN9Pk/3X/j7T6jOffJ+Z/RgKrofyUyAT0JM6HWD15FQTxPoH3T4o6ICrA6p+1Vuo9apyeHi4fPbZZzfdryYQtFesDlA6CIwYMcKc0OpJ4c2uQOttdnqirCf/OpiOGjVKnnzySTl8+HDSbfF6YKAnv3qirLdQaXJfb9XTwd9R9DPQ5LgOWFoFp73zdEDXAw19/9y5c5vtNDY9SBo4cKAZWHVw1IMFjde+3rx5cxOb3pavr9PBUX9GAIBz0hNEPfFZsGCBufhrp0lzPZnT6jY9mdPxQS8M64mWJkl1LNETvAceeMAkYTWBejv0pHTWrFkmeduoUSMzPutF72vpiZYmW3V815N6HXf0lms9odP31ZN8vYA+aNAgM87qRXR7i7e0Wr1pQltfv3fvXvMz68+jF5v1hPLChQvywgsvOOxYQGklm56YaiJafw4dQ7WNjv2kVen4ryfQekFDt9EY9D11HNZb9fXkU+lJq47resyjn2F8fLz8+++/Jqlgr1C8XRpH+fLl5eOPPzYJFKXvqz+fHj9o3Pr715Ng/arvZU98HD9+XOrXr28+t759+0rFihVNUv27774zJ/iahL/nnnvMZ6AXTa79XPT4SC/YAwBuj/0Ca/J2azomaMGTXhDV5KX9zmwdv+znhDpeauJ9zJgx5lxQzwntY5meJ2sSXRPhumzcuNGc/+lF0ZvRcUPHMT2v1TFMx45du3aZVii6rjHomJFaa9bU6Hhz3333mQTxa6+9ZmLU4w4dv//55x8JCgpKsb2ew2ryftiwYeZYQS8a6Bg/f/58uRtPP/20Gf+0rclDDz2U5s+ux0ua5P/000/NY/qz62erP/utHKdo2xbdh35Offr0McUDN6I/m56Pa5JcX6vHRlp4YL/Acasy+zEUXJANQIZ5/vnn9ewuxWMPPPCAeWzcuHHXbR8VFXXdY/369bP5+fnZoqOjkx7r3r27rWTJkknrBw4cMPvMly+f7dy5c0mP//jjj+bxn3/+OemxYcOGXReTrnt7e9v27t2b9NiWLVvM46NHj056rFWrViaWY8eOJT22Z88em6en53X7TI3G7e/vn+bzsbGxtoIFC9qqVq1qu3z5ctLjv/zyi9n/0KFDzfr58+fN+meffZbmvn744Qezzbp1624aFwDAOcTHx9sKFy5sa9iwYYrHdUzVv/lLliwx6zpmJiQkpNhGx0ofHx/b+++/n+Ixfd3UqVPTHCc3b95s1p977rkU++vSpYt5XLe/0Ti+evVqs92MGTOSHvv222/NY3/99dd12+txgi52X331ldl21qxZKcZL/QyyZ89uCw8Pv+1jgbScPHnSjOkTJ05MeqxRo0a21q1bp9huypQpZp8jR468bh+JiYnm6/Lly802gwYNSnOb1D5/u2s/W/vvpXPnztdtm9rnPnfuXLP9ihUrkh7r1q2bzd3dPdVjA3tM48ePN6/btWtXis87f/785jgGAJA2/Xuuf0P//PNP2+nTp21HjhyxzZs3z4xN2bJlsx09etRsp39Pdbs33ngjxev//fdf8/js2bNTPL548eIUj586dcqcvz766KNJf7/Vm2++abZL/vdax9rkY64eS5QuXdqcT+t5ZXLJ95XauXxaY1SbNm1MPPv27Ut67Pjx47YcOXLY7r///us+n2bNmqV4r5deesnm4eFhu3Dhwg0/X/tYqJ9tauznyW3btk0zd/DCCy/YcubMaT6HtNzoOEX3pc/p7yS155J/9vaft06dOmYstRsxYoR5XI9R0vpM09pnZj2GgmuinQuQCeitQXpl/VpaPWenV0DPnDljrmhrddTu3btvut+OHTuaK9p2+lqlV05vRvud2ivHlN7OplfS7a/VqrM///xT2rRpk6KCr1y5cqbCzBH09m6tINdq+OR95rTaT6vFfv3116TPSfud6ZXra28Ds7NXrGs1QVxcnEPiAwBYy8PDw1Q+r169OkWLFK0c0ru6tKrKPs7aJ7bS8UvvANM7vLRSSivVbndiMaWVT8m9+OKLNxzHdezR99VxUsek233f5O+vFXLJe8hqNZTGExERYSrcHHUsoLd36+emd3vZ6fv+/vvvKcbb77//3rRK00q6a9krynQb/V6r7NLa5k48++yzN/zctc2MHj81aNDArNs/d20PoHcntGrVKtUqeHtMHTp0MMcgWnlup3c56D5vNscNAOB/55Z6R7BOcKnjto7B2i6saNGiKbbTdlrJaZVwrly5TBW1/t21L9p6RPfx119/me30vFQrznUcSj6mpDY2X0sr2rW6Xbe1nzPezfikxxla+a3nyXpHk51WuesdbHrHt95ZnpzeDZX8vXSs1v1odfbd0M/InktIi/7M2n8+ecuX26UV3XoXwa3Snzd5Jbf+3nX+GfsxVnrJyGMouCaS6EAmoAcPqU16obeBaT80PXDQBLYeeNhP2C5evHjT/ZYoUSLFun0ASCvRfKPX2l9vf60mt/V2KE0GXCu1x+6E/aAhtdvBNIluf16TI3rrmZ7Ua9JEb+vSW620T7qd3rKvSQBtO6Mn+nr7tU6Qpn1tAQDOy94zVRPnSnuTa4sQPUnXJLs9Yap9rbXth44ZOg7omKq9s29lPE1Oxx5NLCe/0JzWWKXjpN5erkmD5O+rtwzf7vsmf3/9OewXBezsty5fe8J9N8cC2rJG251o8l9vfdalVq1aJlGhiY3kt+Xrz3+jCVh1G73onjdvXnEkPXG/lrbz0Vuy9ZhAE+r6mdu3s3/u2mtWkxg698uNaHJBE+32f19KE+p67Gbv6QsAuDHtJ65JWk16azszTUJem3TVMURbnyW3Z88e83e7YMGC5m958kWTnvY5Uexjn46Pyel2yZOgN2otc7Px4Fbp+KJFb6kdF+hYrcckR44ccdhYfSP6GSltP5YWLVjT+Uy0EE4/f51DJLW50G53LL6Ra39PmuzXiwzJCyLSQ0YeQ8E10RMdyASSV0zZ6Qm2Jn41ea59xvVkXSuhtILq9ddfN4PvzdiTB9ey9wxNr9daQSsH9CRXq8q0Quydd94xPdS1T62e8OuVfe1xqr1QtZerbqMHCF988YV5zH6VHgDgXLQaTS+s6gSP2g9Tv+pYZU+uK+2XreOC/t3XCbo1kasnUDp23Mp4eqe0Ik4v2Or7NGzY0FwU1/FIE/zp+b6OGM81cWGfPOvak117IlkryRwprYq/aydUv9kxlFaPay/6V199VWrWrGnGeP28dR6XO/ncdcIzvWig+9TJ1n766SeTdLj2JBwAkDq9IHuzuS+S3zVmp3+zNYGe/G6g5Bw5F5eV0uvcW+cluVmRm36+mzdvNufHWpSmix676Nh37YSbtzMWp5cbHRM4mrPlRJD+SKIDmZS2JtHKL534Uiur7ewzmFtNB1tN6mtV2rVSe+xOlCxZ0nzVyUaurfbSx+zP2+mFhpdfftksevKvJ86aJNdKOju9nVuXjz76yFSVaZJFb1fXCc4AAM5J/5Zrklwry/VvuyZ9dUJqO72IqpNjTp48+boL1lodfjt07NGTenv1dfJx6Vr6vt27dzdjUfL2Ivq+d3q7uL6//pwaQ/Jkg73N27Vj453ShIXe4qwTqF17Eqm3ouskXjp5t1Zp6fi7du1a07ImrYm2dBs9Qdcq8bSq0e0VXtd+PrdzO7tWh+kEp3rnmd4FYKfHBdcmXrRQwZ5guBFNvuv2+pnoZHBaYaiTtQEA0peOHdqqRSd5vlGi1j726d/65C1UtCr8ZlXD9jvLdDzQtjNpudWxWscLnRQ1teMCHat17NY71DKCfRLUm7Va0bvitSBNFz2+0AvFOhGqHltpAv5u2q6lRn9PelyWvGL+xIkTZkLY5McE1x4P6J1wul1mP4aC66J8Asik7Cesya9y6qDxf//3f5JZ4tODDK381pnKkyfQ9eq1I2i1gibrx40bl6Ltiu5fZwzX3uhKT2Y1KXHtwZDetmZ/nR48XXvFWJPsipYuAODc7FXnmjTVaqrkVej2MevaMUAri48dO3bb72Wf90OTyMl99dVX122b2vuOHj36uioqf39/8/Xak8XU6AmmtiubP39+0mPx8fFmv1pxrXexOYImjLX3p/YDbdeuXYpFK7yVVv0rbZemPWrHjBlz3X7sP79uo99rcjutbTSprRc1VqxYkeL52zn2Se34KbXfj548a79avTtN52BJKyZ7iwHtn7pgwQKZNm2aqUbXuWIAAOlL7yzSMVPvIruWjn32cVPPS/Uiro6Fyf9+pzY2X6t27dqmHYlue+04nHxftzpW6zjUvHlz+fHHH1O0Jzl58qS50H/vvfea8S696XtNmjTJ3AlnnyMmNVq4d+34aB/j7OfJt3OccismTJiQYp6yb775xvw+k8+tpufz1x4P6Ouc4RgKrotKdCCTatSokbn6qhVsOtGFXmHVK8mZ6dahd99910yaopUBOhmIDmh6Aq395DSJcSt08Pzwww+ve1yr1PQKuPY610lXdUDTE1g9+Pj666+lVKlS8tJLL5ltQ0NDzYGBHmRVrlzZnOzqRDW6rd4yr/RWND0J1x7zOiDr5CoTJ040BzDJr3gDAJyPnvzquKknrOraJPpjjz1mWqPpeKLbbdu2zSSJk1er3Sq9AKvjkY4p2qdV96eVz6ndhaXvq2O3tnHR8UknQNWKunz58l23Tz3p1jFP96m3tOsdWHoh+VraQkWrw3r06CEbNmww46FWvP/3338mAXCjvqe3SqvK9ecZMGBAqs9rP3BNOuhnqC3m9JbvGTNmyODBgyU4ONgk33WSMv1ZdSzXeUi04kyrt/Xig1ag2VuraP96fc7+Xnpn2CeffGK+6sV0PYHWcf5W6bhunxtFjzE0Vj1WSe1OPm3zo8/pMYZ+rtoTVSvc9AKLVtsnn2BOf0aNXfv56u8JAJD+9O9zv379TJtOPb/U5LQmy3Uc0b/Vel6oF3e1+vuVV14x2+nYq+d3OmGoFl/d7I4zTRprElersHU81mMF7c+t1ck6R5neRWVvH6f03Fwru+2Tm6dGz2+1B7wmzHUc1PNTHbs1Ka3jk6PpcYAmgbXoTgsENGY9LqhRo0aKOUxSo+Ot3iWmxx3aE13v/tKksn4W9l7ht3Occis0Tvv5u1bs6zGVflaPP/54irh08nC9CK8Ty27ZssX8XNf+PjPbMRRcnA1Ahnn++ec1A57isQceeMBWpUqVVLf/77//bA0aNLBly5bNVqRIEdtrr71mW7JkidnHX3/9lbRd9+7dbSVLlkxaP3DggNnms88+u26f+viwYcOS1vX7a2PSdY31Wvoe+l7JLVu2zFarVi2bt7e3rWzZsrZJkybZXn75ZZuvr+9NPw/dl75Xaovuy27+/PnmPXx8fGx58+a1de3a1Xb06NGk58+cOWPirVixos3f39+WK1cuW1BQkG3BggVJ22zcuNHWuXNnW4kSJcx+ChYsaHvsscds69evv2mcAIDMb+zYsWb8qF+//nXPRUdHm7GpcOHCZky95557bKtXrzZjsC7Xjp9Tp0694Th5+fJl26BBg2z58uUz406rVq1sR44cuW6MPX/+vK1nz562/Pnz27Jnz25r0aKFbffu3amOpxMnTrSVKVPG5uHhkWKcvzZGdfLkyaT96vhbrVq1FDHf7rHAtQYOHGi22bdvX5rbvPvuu2abLVu2mPWoqCjbW2+9ZStdurTNy8vLVqhQIVu7du1S7CM+Pt7Eo+O1xl2gQAFby5YtbRs2bEjaRvfTq1cvM5bnyJHD1qFDB9upU6fSPH45ffr0dbHpMULbtm1tuXPnNvtp37697fjx46n+3IcOHbJ169bNxKLHB/o70GOKmJiY6/arx2vu7u4pjkEAAGnTsUn/9q5bt+6G2+mYqONpWiZMmGCrU6eOGcN1bNBxT8+N9W+7XUJCgu29995LGusbN25s2759+3Vjro6v155Pq5UrV9oeeughs3+NpXr16rbRo0enGMN0fNTxws3NLcWxQWrji55/6riv47+fn5+tSZMmtlWrVt3S55NWjNeyj4X2Rc/BixUrZs5zp0yZYo5/Uvusk+cOvvvuO1vz5s3N+bGOzXq+3K9fP9uJEydu6ThF9/Xoo4+mGt+1n7395/3nn39sffv2teXJk8d8Pnp+f/bs2RSv1d/n66+/bo519PPTz3Lv3r2Z/hgKrs1N/2N1Ih+Aa9Hbo/Wq/bX9RwEAAJyVTlSud8rpnQcAAADIWuiJDuCuXL58OcW6Js5/++03ady4sWUxAQAAOJL2TddWAtrWBQAAAFkPlegA7or2i9OeYtpXVvunaT857fWmPejKly9vdXgAAAB3bPv27aZv6hdffGEmT92/f7/4+vpaHRYAAAAyGBOLArgrOjHY3LlzzSzXOomHzv6tE3WRQAcAAM5OJxzTSWkDAwPN8Q4JdAAAgKyJSnQAAAAAAAAAANJAT3QAAAAAAAAAANJAEh0AAAAAAAAAgDRkuZ7oiYmJcvz4ccmRI4e4ublZHQ4AIAvRDmqXLl2SIkWKiLs717HvFmM6AMAqjOmOxZgOAMjsY3qWS6LrwFy8eHGrwwAAZGFHjhyRYsWKWR2G02NMBwBYjTHdMRjTAQCZfUzPckl0vbJt/2By5sxpdTgAgCwkPDzcnCDaxyLcHcZ0AIBVGNMdizEdAJDZx/Qsl0S33xqmAzODMwDACtym7BiM6QAAqzGmOwZjOgAgs4/pNG8DAAAAAAAAACANJNEBAAAAAAAAAEgDSXQAAAAAAAAAANKQ5XqiA8DdSkhIkLi4OKvDQCbl7e0t7u5cowYAAACAzIxz+6zBy8tLPDw8XCOJPnbsWPnss88kLCxMatSoIaNHj5b69eunum3jxo3ln3/+ue7xRx55RH799dcMiBZAVmWz2czfqQsXLlgdCjIxTaCXLl3aJNMBAAAAAJkL5/ZZT+7cuaVQoUJ3NSG45Un0+fPny+DBg2XcuHESFBQkX331lbRo0UJCQkKkYMGC122/cOFCiY2NTVo/e/asSby3b98+gyMHkNXYB1n92+Tn53dXf3zhmhITE+X48eNy4sQJKVGiBP9GAAAAACCT4dw+a10wiYqKklOnTpn1woULO28SfeTIkdKnTx/p2bOnWddkulaUT5kyRd54443rts+bN2+K9Xnz5pl/8CTRAaT3bV72QTZfvnxWh4NMrECBAiaRHh8fb24bAwAAAABkDpzbZz3ZsmUzXzWRrr/3O23tYmnTVq0o37BhgzRr1ux/Abm7m/XVq1ff0j4mT54snTp1En9//3SMFEBWZ++TphftgBuxt3HRgzMAAAAAQObBuX3W5Hf19303PfAtrUQ/c+aMSTIEBASkeFzXd+/efdPXBwcHy/bt200iPS0xMTFmsQsPD7/LqAFkZdzmhZvh3wgAAAAAZG6ct2Utjvh9W1qJfrc0eV6tWrU0JyFVw4cPl1y5ciUtxYsXz9AYAQAAAAAAAADOy9Ikev78+U0fmpMnT6Z4XNd1xtQbiYyMNP3Qe/XqdcPthgwZIhcvXkxajhw54pDYASCrKlWqlJkE+lb9/fff5qovM58DAAAAAJC59ejRQ9q0aZO03rhxY3nxxRfvap+O2IfVPK3uG1unTh1ZtmxZ0i8nMTHRrA8YMOCGr/32229Nm5annnrqhtv5+PiYBQCympvdrjRs2DB59913b3u/69atu615KBo1aiQnTpwwdwOlJ03WN2nSRM6fPy+5c+dO1/dyJStWrJDPPvvMzFGiv6cffvghxQGTzmau/1YmTpxoLoTcc8898s0330j58uWTtjl37pwMHDhQfv75ZzO3yZNPPilff/21ZM+ePc33jY6OlpdfftlcENfxvEWLFvJ///d/17V4AwAAAID01mvaugx9v8k96t1Rcnv69Onmey8vLylRooR069ZN3nzzTfH0TL8U78KFC8373c15+e3sI7OyvJ3L4MGDzYm5/iPYtWuX9O/f31SZ9+zZ0zyv/xi0mjy1Vi56ks9MugCQOk2I2hetHM+ZM2eKx1555ZUUidL4+Phb2m+BAgVuaxIWvWCqdxfRcy5z0jG3Ro0aMnbs2FSfHzFihIwaNUrGjRsna9euNRdQNOGtSXC7rl27yo4dO2Tp0qXyyy+/mMR83759b/i+L730kkm660Xxf/75R44fPy5PPPGEw38+AAAAAHAVDz/8sDmf37NnjylK0sI4LYq6VmxsrMPeM2/evJIjRw7L9yFZPYnesWNH+fzzz2Xo0KFSs2ZN2bx5syxevDipEu3w4cPmH0dyISEhsnLlypu2cgGArEwT1/ZFq8A1iW1f18mbdQD7/fffzR1BeseO/l3dt2+ftG7d2vwN1irievXqyZ9//nnDdi6630mTJknbtm1Ncl0rlH/66ac027lMmzbNXJFesmSJVKpUybyP/UDAThP6gwYNMtvpxdLXX39dunfvnqJC+nbplXC9MJsnTx4TZ8uWLc2Bh92hQ4ekVatW5nlNFFepUkV+++23pNdqolgvIGTLls38jFOnThVXoJ/Dhx9+aH5/19KLK/q7fvvtt82/i+rVq8uMGTNMwnvRokVmG70AruO2/hsICgqSe++9V0aPHm0qzHW71Gh7Nb0YPnLkSHnwwQfNv0H9PFetWiVr1qxJ958ZAAAAAJyRnrvrOX3JkiVNIXKzZs3M+be9BctHH30kRYoUkcDAQLO9trXu0KGDObfWRLae1x08eDBpfwkJCabA2X7u/dprr5nzwBu1YomJiTHn6DrvpMZTrlw5c36n+9UqdKXn1ZoH0LhS28fNzs9vJW+guQadJ1PP33VbvWtaz+tdNomutHWL/pD6S9AqNz0JT/6B6AeXnP5D0F/oQw89JFY6eCZSJq88YGkMAKyhf4OiYuMtWa4d0O7GG2+8IZ988olJhGqCNCIiQh555BHTVmvTpk1mkNLEsl7QvJH33nvPDMxbt241r9eEs7b4SEtUVJS5gDpz5kxTtaz7T14Z/+mnn8rs2bNNYvW///6T8PDwpKTtndLBe/369eYAY/Xq1eZz1Fjj4uLM888//7wZhzSebdu2mRjs7Ujeeecd2blzp7nooJ+VtjPReT1c3YEDByQsLMwcmNnpBRkdp/UzVPpVD1jq1q2btI1ur21ddExPjbaO0c89+X4rVqxobke07xcZ50JUrGw5csGhf1uAzG7n8XA5GxFjdRgAAAB3RYu87FXneh6vhcf2O4T1nEvvItYCun///decW9uT0fbXfPHFFybvOmXKFFNYp+fx2uLzRrp16yZz5841dyzr+fH48ePNfjWp/v3335ttNA5NeGubzzs5P79Z3kAL7/SiwQMPPGDyELoPvRs6Pe+At7QnujMLj46TThPWSFh4tETGxMugpv/rDQvA9V2OS5DKQ5dY8t47328hft6O+fP9/vvvp7ggqVemtbWH3QcffGAGUB3YbjRXhQ6AnTt3Nt9//PHHZjANDg42g3NqdGDU9iBly5Y167pvjcVOK5m1lZe9OnrMmDFJVeF3Qq9o68+gBw3ao11pkl4HeU3Ot2/f3gzI2su7WrVq5vkyZcokvV6fq1WrVlKiWKvxswJNoKtr+5Truv05/VqwYMEUz2s/Pv23ZN8mtf1qm59re9cn329q9CKHLnZ6cQV376X5m+WvkNPy7ANl5fWHA2m9BJc3ccV++ei3XZLX31tm9qovVYqk75wdAAAAjqZJZ02aa6W2zk91+vRpU5GtdwjruZaaNWuWmXtSH7Mf42uhmp6HadFy8+bNzZ3Heu5tb62p5+m6z7SEhobKggULTKLeXhSV/NxZzwOVniOmNVfZrZyf3yxvoOeCeofzY489lvS8Vqynp0xRie6Mcvp6Sc97riRRRi4NldHL/nfLAQA4i+TVw0or0fXKrg4+OuDp1WS9snyzSnStYrfTgVv7r586dSrN7fV2LftApwoXLpy0vQ6EJ0+eNLdl2Xl4eJiWH3dKfwZN7Ca/00lvVdM7m/Q5pe1jtK2J3gKmE2nq1Ww7vU1O25No2zG9vU3bjiDjDR8+3FTC2xc9yMLdH3yvP3TefD/un33y/i87qUiHSxuzfI9JoKtzkbHSZeJacycGAACAM9AKcz1P9/X1NS1QtE229kVXWhBmT6CrLVu2yN69e00lur5GF01y6/xW2spVz721Wjz5ebKeN1+bJ0hu8+bN5vxcK8DT8/z8ZnkD/Tm0mE8r7fXuea14v7YduKNRiX4X+j1QVvQ085Pfd8sXS0NFL+oMeJCKdCAryOblYSrCrXpvR9GEd3KaQNcrynrLlPY101vD2rVrd9NJSa6dZVuvcusV79vZ3urEXe/evc0A/Ouvv8off/xhErZ6a5te1deDE207ptXw+vk0bdrUtH/Rz8mVaa89pRc19IDFTtf1goJ9m2svmOitdXoboP31qe1X/01pn/zk1Qm637Reo7RCQvv12Wn1AYn0u6N31F2KjjfHMPq/4NT/DkpsfKJ80LqquLtTkQ7XoWOMKXxZvtesD3ywnKzad1Y2HDovT01aK9OeqSd1Sl6pnALg/DZ/as1xOoDMz+ZXQNzr9ZbLp0QSk51bJ8REZmgcUSdCb/s18ZfD5f5GQfL1J++Kt5eXFC5U0CSjJfyYec7Xw5ZivxdOHZVa1avIlDHXn7fmz5dXosKuHBdFnz2S4nUJ0RFXWthefSwx9rLERZ436+6Xr7Rt1e+vPa+378s8H7ZXvC/nTHo8+T5izh1L2ocm5JO2iYuRuEtnrmxzIUy8PD1SxBV7/kSKuLSqXovhdI6u+fPnm7m89Hy9QYMGkh6oRL9Leuvzaw9fadb/+R+hMvavK/8AAbg2TfpqSxUrlvRstaC3U+nVXG2jolexNaGZfNKRjKAVxtrWY926dSkmO9m4ceMd71Mr6zWxm7xH99mzZ02ftsqVKyc9pgnZZ599VhYuXGhmOp84cWLSczqpqE5uqrfE6S1vEyZMEFdXunRp829AbxNMnrjWz7Fhw4ZmXb9qMlz7nNstX77cXERJXlmQnN5VoAdcyfervwu948G+39TopDV6l0PyBXcnJOyS+VquQHYZ0a66SabPXntYXv9+qyQkUpEO16AnW1r0Yk+gv/lIRXm5eaBMf6a+BJXOK5di4uXpycGyZv9Zq0MFAAC4IX+/bFK2dEkpXqzIlQT6DdSsVkX2HTgkBfLnM69JvuTKmcMshQIKyLqNW5Jeo+fNm7buSHOfVSpVMOd6/67+3/l6cprct5/DpyWwfFnzPsnf9+y587Jn3wGpWKGc3A5tu6rFVnq3eNWqVWXOnDmSXkiiO8BzjcvJqy2uJNI/WxIi//c3iXQAzql8+fImgay3aOmtX126dLlhRXl60epvrQT/8ccfTXL1hRdeMLN338oFBJ0UVOO3L/pz6M+ls5D36dPHTJaijz311FNStGhR87jSmcK195tOpqkJ+7/++iupp9rQoUNNLHor3I4dO8wtdOndby2jaAsf+2el9OfX7zWhrZ+3fi7a5kZ71ulnq5PI6GzvOomL0s9Be9/rZ6t98PVCjPaq69Spk9lOHTt2zEwcqs/bL5T06tXLVJXr56wJ+J49e5oEenpVDSB1oSevJNErFMohHeoWl6861hQPdzf5dsNRGbxgs8QnZPz//4CjE+jv/bxTxq/Yb9bfe7yK9L3/ym3B2X08ZVrP+nJf+fwSFZsgPaYGy797TlscMQAAgGN0bNtK8uXNIx179pf/1q6Xg4ePyIpVa+WVtz+UY8evzEX1XK9uMnLsRPn59z8lZM8+eXHIe3LxBnNPlSxeTLq2byv9B79pXmPf5/c/XZnDrESxouY88vc//5bTZ89JROT1Ff7lypSSx1o0lQGvviOr1q6XrTt2S6+Br0qRwgHm8Vuh76vJc51QVO8a17vJtdd6ep6n087FQZ5vUi4piT5icYi4iZv0b/y/vj0A4AxGjhwpzzzzjJncI3/+/PL6669bMnmjvq9OMKkJW729S2fZ1lYryW/1Ssv999+fYl1fo1e59VYvTcbrxCPaSkS30/YsXsmulGuLlqNHj5oKZ00Mf/nll+Y57SunA7RW5WuLm/vuu8/0SHcFOiN6kyZNktbt7VK06l5nadce8JGRkeZ3oBXn9957r7ldTnvw2ekkMJo41zY37u7uZoJWnVzWTieE0YshOru6nX629m11slD9/f7f//1fhv3cuCIkLMJ8DQzIYb62rllUvDzcZdDcTfLj5uOmtcvXnWqJtyd1F3A+iYk2eWvRdpkbrBcFRT5qU026BJVIsU02bw+Z2K2u9J+1wUyw22v6ehn3VG15sGLKCZUBAACcjZ9fNlmycJa889Hn0qXXALkUGSlFCgVI43sbSo4c2c02Lzz7jISdOi19X3zdnJ893elJadXyIQkPv1Jsk5qvP3lXhn0yUl588105d/6CFC9aRF4Z2M88p4nwt18ZKEM//kKefWmIdGnfRiZ89cl1+xj35XB5dehH0q77sxIbGyf3NKgrC2dOSLVFTGr0vHz37t0yffp0c5e5th/V8/l+/a7EkR7cbFY3oc1gmgzSCjhtnp8et4HrBKPaH10NaVnR9E0H4Px04g2t0NX2FsmTh8gYWg2vV5Q7dOggH3zwgTjrv5X0HoOyGj7Pu9dq9ErZduyijHuqjjxc9X/96P/ceVKem71RYhMSpVmlgjK2a23x8XTcfAxAetN2RK99t1W+33hUtL3/iHY1pF2dYmlurxeMBs7dKEt2nBQvDzcZ3bl2iv8ngGsxBmXuz5Oe6ABu1hO9RJEA8XHgfGPIeH6FK2ToeTplRQ42sGl5GfzQlV/i8N93y4QV+6wOCQCcjt6Opf3IQ0NDTQuR/v37mwFP28sAcFyScc+pKxUmgYWuVKLbNascIBO61REfT3f5c9cp6TNjg0THpd3XEMhM4hIS5cX5m00CXdsTfdWp1g0T6ErvthjTpbY8Vr2wxCXY5Pk5G+XnLcczLGYAAABkbiTR08GgpuXlpWZXEukf/7ZbJl7twQgAuDV6G5m2EqlXr57cc889JpH+559/ukwfciAzOHIuSqLjEk2ivERev+uebxxYUKb2qCfZvDxkRehp6Tl1nUTFxlsSK3CrTEX5nE0mAa4V5WO71JbHa1yZn+FmtJWRti96onZRc5HphXmb5PsNR9M9ZgAAAGR+JNHTyQvNyssLTcub7z/6bZdM+pdEOgDcquLFi5sJKvV2Kr21SmfavrbXOYC7E3J1UtHyAdlNtW5qGpXLLzN61TcTMK7ef1a6TwmWS9FxGRwpcGv0bolnZ22QxTvCTGX5+KdTtim6Ffr/wuftakinesUl0SbyyndbTE91AAAAZG0k0dPRSw9VMFXp6sNfd8nklQesDgkAAMAIDbuSRK9wdVLRtNQrlVdm9qovOXw9Zd3B8/LU5GC5GEUiHZnL5dgE6TNjvSzffUp8vdxlUre6dzw5qLu7m3zctpp0b1hSdPaoIQu3yfRVBx0eMwAAAJwHSfR09lKz8jLwwXLm+w9+2SlTSKQDAIBMVIkeeJMkuqpVIo/M7dNAcvt5yZYjF6TLpDVyPjI2A6IEbi4yJl56TguWf/ecET9vD5nao77cX6HAXe1TE+nvPl5F+txX2qwP+2kHLRoBAACyMJLo6czNzc1MNDqgyZVE+vu/7JSp/5FIB5xVYmKi1SEgk7Np2SLgBEKvJtErXDOpaFqqFs0l8/o2kHz+3rLjeLh0nrhGTl+KSecogRsLj46TblOCZc3+c5LDx9PcNdGwbD6HHce/+UilpON4bdE4Zvkeh+wbAAAAzsXT6gCyAj0Af7l5BbGJTcb+tU/e+3mnuLu5SfdGpawODcAt8vb2NpNdHj9+XAoUKGDW9f9t4NoE+unTp82/DS8vL6vDAW44+eL+05G3XIluV7FQTpnfr4F0mbhWdoddkk4TVsucPg0kIKdvOkYLpE7bCnWbsla2HL0oOX01gR4kNYrnduh76N/zV1oEmgl4v1gaKp//ESox8YmmSIbjAAAAgKyDJHoGMQfgzQPNBEXf/L3P3BKqx93dGpJIB5yBJtBLly4tJ06cMIl04EZ/74sVKyYeHh5WhwKk6cCZSIlPtJnK3cK5bi8BXq5gDlnQr6F0mbhG9p2OlA7jryTSi+bOlm7xAtc6FxkrT01aKztPhEsePy+Z1TtIqhTJlW7vN7BpeTNZ6fDfd8vo5XvNhag3WlYkkQ4AAJBFkETPQHqQ/VqLQDNB0bh/9snQH3eIHnY/TSIdcApafV6iRAmJj4+XhIQEq8NBJqUV6CTQ4Sz90LWVy50kAUvl95f5mkiftEYOnY2SjuNXm57pxfP6pUO0QEraRqjrpDUSejJC8mf3kdm9gyTwFtsS3Y1+D5Q1Fenv/rxTxq/YbyrSh7WqTCIdAAAgCyCJnsH0IPv1hwNNa5fx/+yXd37coQ/K0w1KWh0agFtgb9NBqw4Aziw07GoS/TZauVxLE+bz+zaUrpPWmsp2rUjXZGaZAtkdGCmQUtjFaHPxRtsRBeT0MXdBlM3Af3M97ikt3p4e8taibTJt1UGTSP+oTVUzESkAAABcF0l0i5Jwbzxc0VSkT1ixX95ZtF30uLtrEIl0AACQcZXogQF3l3wskjubzO/bQLpMWit7T0VIxwlrZE7vICl/F8l5IC1Hz0eZfvyHz0WZ9kFz+gRJyXz+GR5Hl6ASprXLa99tkbnBh01rlxHtqosHiXQAAJyWz+8vZej7xbT88pa39S8SeMPn3xw8QN56ZaBYwb9IoMybPFZatWwmro4kuoWJ9CEtNZFuk4n/HpC3ftgubuJmDsoBAADSU2iydi53q2BOX5nXt4HpT62TjWoifVavIKlcJKcDIgWuOHQ20iTQj124LCXy+pkEerE81rUPalenmHh5uMngBVvk+41HJTYhUUZ2qCFeHu6WxQQAAFzTvs0rk77//qff5MPPRsmmfxcnPZbd//aOiWJjY027WtwejvIsTqS/+Ugl6XVvabP+5g/bTDULAABAeomKjTeVvCrQQRXj2pdae6JXK5rLTPjYeeIa2Xr0gkP2Dew7HSEdx68xCfQy+f3NxLZWJtDtWtcsKmO71DLJ9J+3HJeBczaZqnQAAABHKlSwQNKSM8eVOY3s61FRl+WZ51+RUtUbScFyteS+lk/K8hWrUry+Uv0H5ZMvx0rvQa9JoQq1ZcBrQ83jU2cvkAp1HpD8ZWpIp2eel1Hjp0qRinVTvPaXxX9Ko+ZtJW/palKlQVP5+IsxZp44+35Vp17Pm4p0+/rWHbulZbunJaB8LfN+97R4QjZu2SbOjiS6xfQf/tuPVpJn7rmSSB+ycJvMI5EOAADSibZd0ZZy+bN7S77sPg7bbx5/b5nVO0hqlcgtFy/HSdeJa2XDofMO2z+yphC9u2H8GgkLj5YKAdllXr8GUiiXr2QWD1ctLOOeqiPeHu6yeEeYPDtrg0THMfk4AADIGBGRUdKi6QPy64JpsuqPH+ShJvdJ+x7PypGjx1Ns9/W4KVKtckVZ9ccieePF52R18AYZ9Powea53N1m9dJE8eH8j+WzUuBSv+W/teunzwutmmw1//yajPn1fZi1YKCO+vrLdit+/M1/HfTncVMvb158Z8IoUKVxIVvz2naxcvFBeHtBHPD2df145kuiZJJH+zmOVpOc9pcz6Gwu3yYJ1R6wOCwAAuGhS8m4nFU1LrmxeMrNXkNQvlVcuxcRLt8lrZe3+sw5/H2QN249dlE4TVsuZiBipXDinzOvbUArmyDwJdLumlQJkUve64uPpLst3n5I+M9bL5VgS6QAAIP1Vr1JRej3dSapUrCDlypSSoa+9KKVLlpBf/1ieYrsH7mkgLzz7jJQpVcIs46bMkuYP3i8v9u8l5cuWlr49upoEfHJadT54QF95qkNbKV2yuDR94B5557UXZPKseeb5Avnymq+5c+Y0VfH29aPHjkuT+xpJYPmyJqYnWrU0cTo7kuiZKJE+9LHK0qPRlUT66wu3yoL1JNIBAEA69UNPp8k/s/t4yrRn6sk95fJJZGyCdJ8aLCv3nEmX94Lr2nLkgnSZuEbOR8VJjWK5TA/0vP6Zt3fn/RUKyLSe9cXP20P+3XNGek4LlsiYK7c6AwAApJeIyEgZ8t6nUvv+lqYVi7Z0CdmzT44cS1mJXrtG1RTrofsOSN2a1VI8Vrdm9RTr23fuNm1gdJ8Fry4DXn1Hwk6eNm1k0jKwb095/pW35dEOPeTz0RNk/0HX6LhBEj2TJdKHtbqSSNfbrF//fqt8SyIdAAA4UMjJCPM10AGTiqbFz9tTJnevJ40DC0h0XKI8M32d/LX7VLq9H1zL+oPnpOuktRIeHS91SuaRmb2DJLdf5k2g2zUsm09mPFPfXEhas/+cdJsSLOHRcVaHBdy1FStWSKtWraRIkSLmnHXRokVpbvvss8+abb766qsMjREAsqo33/9Ufl68VN4dMlj++GG2ac2iVemxcSmPQfz8st32viOiouStlweafa6+ugQv+1m2/veH+Pqm3RbyrVcGyvq/fpGHmzWWf/5bI3UaPyI//b5UnB1J9EyaSO/WsKRJpL/2/Vb5bsNRq8MCAAAuIjQd27kk5+vlIeOfriMPVQ4wky32nble/tgRlq7vCee3et9Zk3yOiImXBmXymqR0Tl/n6aFZt1ReMzdATl9PMyfA05PWysUoEulwbpGRkVKjRg0ZO3bsDbf74YcfZM2aNSbZDgDIGKvXbTLtVh5v+ZBUrRQoAQXzy+Gjx276ugplS8uGzdtTPLbhmsk/a1atLHv2HZCypUtet7i7X0kpe3l5SULi9W3stEXMwL495Od5U+Txls1l5rzvxdmRRM+kifT3Hq8iTze4kkh/9bst8j2JdAAAcJc0macTNCqdpDG9+Xh6yP91rS2PVisscQk2eW72Rvlla8pbSwG7FaGnpcfUYImKTZD7yueXqT3qi7+PpzibmsVzy5w+DSSPn5dsOXpROk9cI+ciY60OC7hjLVu2lA8//FDatm2b5jbHjh2TgQMHyuzZs01CBQCQMcqVLik//rZUtmzfJVt37Jaez70siYmJN33ds888JUuW/yOjxk+VvfsPyuSZ82Tp8hUmJ2n3xuDnZc53P5re6DtD9sjuPfvk20W/ynuffpm0TcniReXvlasl7NRpOX/holy+HC2D33xfVqxaa5L5OoHpxi3bTH90Z0cSPZPSf7Tvt64iTzUoYRLpr3y3RX7YRCIdAADcudBTV6rQi+bOJjkyqLrXy8Ndvu5UU9rWKirxiTYZNHcTxzS4zrJdJ6X39PUSE58oD1YsKBO71ZVs3h7irKoWzWUmQs2f3Vt2ngg3E6SevhRjdVhAutBkzdNPPy2vvvqqVKlS5ZZeExMTI+Hh4SkWAMDt++TdNyR37pzS9PFO0r77s9Ks8X1Ss9rN/xY3rF9HRn36noyeMFUaNGstS//6Vwb07SE+Pv9r0/JQ4/vkuxnjZNk/K+X+lu2kyWMdZMzEaVKiWNGkbYYPfV2Wr1glgXUbS6PmbcXDw13Onr8gfQa9LjXubSFPP/uiNG9yv7z9yiBxds5X2pHVEumPVzVJ9NlrD8vLC7aIm7hJm1r/+8cKAABwq0KSWrmkfxV6cp4e7vJ5+xri7eEu89cfkcELtpgWLx3rlcjQOJA5Ld5+QgbO3WTuVmhRJUBGd64t3p7OX+uj8w5oIr3rpDUSejJCOk5YLXN6N5BCuXytDg1wqE8//VQ8PT1l0KBbT5AMHz5c3nvvvXSNCwBuR0zL/1VXZ2ZPd3zCLHYlixeT37+dkWKbfj27pljfFbw81X317NrBLHY6GWjZUimPzzWRrktaHmn+oFmSm/7NSHFFzn906uLc3d3kg9ZVpXP9EpJoExm8YLP8uPnmvY0AAACuFXryahI9HScVTYuHu5sMf6JaUru617/fJjNXH8zwOJC5/LTluDw/50oCvVWNIjKmi2sk0O3KFcwuC/o1NHd/7D8dKR3Gr5aj56OsDgtwmA0bNsjXX38t06ZNS9EC4GaGDBkiFy9eTFqOHDmSrnECAK731TeTTQuYfQcOyTeTZ8rsbxdJ1/Zpt+7K6lznCNXFE+kftdFEenGTSH9pPol0AABw55Xogek8qeiNjmm0XV2ve0ub9Xd+3CGT/t1vSSyw3ncbjsqL8zZJQqJNnqxdTL7qWNO0/3E1JfP5y/x+DaREXj85fC5KOo5fI4fORlodFuAQ//77r5w6dUpKlChhqtF1OXTokLz88stSqlSpNF+n7QJy5syZYgEAZKwNm7dKq049pX7TVqYn+ucfvCU9ura3OqxMi3YuTpVIr2Yqt+atO2IS6Xql//EazHwOAABuzmaz/a8S3aIkutLjl7cfrSQ+nu7yf3/vkw9/3WX6YD/fpJxlMSHjzVl7WN5atM0c22qhiB7n6vGuqyqWx88k0rtOXCv7z0SaRPrsPkFStkDGtlYCHE17oTdr1izFYy1atDCP9+zZ07K4AAA3N3P811aH4FRIojsRPbH4uO2VRLr2E9XKHT3V0FtfAQAAbuR0RIycj4oTzVNqiwkraSL91RaB4uPpIV/+GSqfLQkxifSXmpW/rXYAcE7T/jsg7/6803zfo1EpGdaqcpb4vRfOlU3mXU2k7zkVYRLpc/oEWXpRC7gVERERsnfv3qT1AwcOyObNmyVv3rymAj1fvnwptvfy8pJChQpJYGCgBdECAJA+XO9+ySyQSNd+ou3rFDOtXV6cv1l+2Xrc6rAAAEAmFxoWYb6Wyucvvl4eVodjkqYvNCsvrz9c0ayPWrZHPl0cYirm4bomrNiXlEDve3+ZLJNAtyuYw1fm9W0glQrnlDMRMdJpwhrZcfyi1WEBN7R+/XqpVauWWdTgwYPN90OHDrU6NAAAMgyV6E6aSP/0yepiu9pL8oV5m8VN3OTR6oWtDg0AAGRSIZmglUtq+jcua1q7vP/LThn3zz6JiU+QoY9lrcRqVjF62R75Ymmo+X7gg+Vk8EMVsuTvOV92H5nbJ0i6TQmWrUcvSpeJa2XGM/WlRvHcVocGpKpx48a3dYHz4EEmjQaQidkSr3yxOg5kqMTEK7/3u0ES3dkT6TaR7zcelUHa2sVN5JFqJNIBAMD1Qq9OKlqhUOZKoqtn7i0t3p7u8vai7TL1v4MSG58oH7Su6tI9srMSTb598UeojPnrSjuIlx+qIAOblpesLLeft8zqHSQ9pgTLxsMX5KlJa2XaM/WkTsm8VocGAIBri74gidHhcvK8v+TL6S9eHhxvOiv36OhbOg6NjY2V06dPi7u7u3h7e9/x+5FEd2Ie7m4yop1WpNtk4cZjMnDulR7pLUmkAwCANCrRAzNZJbrdUw1KmkT6699vldlrD5tE+idPVjfHO3BeeuIy/PfdMmHFfrP+5iMVpe/9Za0OK1PI6eslM3oFSa9p62TtgXPy9ORgmdKjnjQok7K/NAAAcBw3W4LYNs+Uy2UfkuP5yoqbu/VtDnFnvCNvfVs/Pz8zj4cm0u8USXQnpyeWn7WrYe5DWbjpSiJ9jJubPFy1kNWhAQCATCIx0SZ77En0QtZOKnojHeoWN61dBi/YIt9uOCqxCYnyRfsa4unBND7O+u/uvZ93yPTVh8z6e49Xke6NSlkdVqaS3cdTpvWsL31nrpd/95yRHlODZWK3unJf+QJWhwYAgMtyiwkX2blQbF5+YvPyZcpIJ1W6z6Rb2s7Dw0M8PT3vuo0gSXRXSaS3ryGJNpss2nxcBszZKGO71pYWVUikAwAAkWMXLktkbIJ4e7hLyXz+kpm1rllUvDzcZdDcTfLj5uOmIv3rTrVMlTqcK4H+1qJtMjf4iGk5+FGbatIlqITVYWVK2bw9TOK8/6wN8lfIaek1fb2Me6q2PFgxwOrQAABwWW5ajRoXeWWBU/L11QsgGYezERdKpH/Roaa0rllE4hNt8vzsjfLHjjCrwwIAAJlA6NUq9DIFtO9j5j/80zlexj1VxyT9f98eJs/N3iDRcQlWh4VblJBok1e+22IS6NqNR++aJIF+Y75eHjL+6brSokqAuXDUb+YGWbydY3kAAIDMIvOfReH2Eunta8jjNa4m0udslKU7T1odFgAAyCz90DPhpKJpaVY5QCZ0q2Pau/y565T0mbFeLseSSM/s4hIS5cX5m818PXps+lWnWtKuTjGrw3IKerfFmC615bHqhSUu4cqx/E9bjlsdFgAAAEiiux7tGTqyQw1pVaOIOfjWyq0/SaQDAJClhYZdSaJXyKSTiqalcWBBmdqjnmTz8jD9op+Ztk4iY+KtDgtp0ApqbSv485bj4uXhJmO71DbFHbh1eqeIti96onZRU9H/4rxN8t2Go1aHBQAAkOWRRHfRRPqXHWokVbH0n71Blu0ikQ4AQFYVcjLCfA10siS6alQuv8zoVd9MwLh6/1npPiVYLkXHWR0WrqHtdp6dtUGW7DhpKqrHP12Hie7vkFbwf96uhnSqV1wSbSKvfrdF5qw9bHVYAAAAWRpJdBdOpH/VsaY8ak+kz9ooy3eTSAcA3JlLly7Jiy++KCVLlpRs2bJJo0aNZN26dUnP60znqS2fffZZmvt89913r9u+YsWKGfQTZR3xCYmy71SE07VzSa5eqbwys1d9yeHrKesPnZenJgfLxSgS6ZmFttnRdjvLd58SXy93mdStLpNi3iV3dzf5uG016d6wpNhsIm/+sE2m/XfA6rAAAACyLJLoLp5I/1oT6dUKS2xCojw7c6P8tfuU1WEBAJxQ7969ZenSpTJz5kzZtm2bNG/eXJo1aybHjh0zz584cSLFMmXKFJMUf/LJJ2+43ypVqqR43cqVKzPoJ8o6Dp6NMscBft4eUjR3NnFWtUrkkbl9GkhuPy/ZcuSCdJm0Rs5FxlodVpan7XV6TA027Xb039jUHvXl/goFrA7LZRLp7z5eRfrcV9qsv/vzTpmwYp/VYQEAAGRJJNGzQkV6p5rSsmohcwLdb+YG+SuERDoA4NZdvnxZvv/+exkxYoTcf//9Uq5cOVNFrl+/+eYbs02hQoVSLD/++KM0adJEypQpc8N9e3p6pnhd/vz5M+inyjpCr04qWj4gh0nKObOqRXPJvL4NJJ+/t+w4Hi6dJ6yR05dirA4rywqPjpNuU4Jl7YFzksPH09wt0LBsPqvDcil6MfLNRyrJgCblzPrHv+2W0cv2WB0WAABAlkMSPYtMUDSqc60UifS/SaQDAG5RfHy8JCQkiK+vb4rHta1LapXjJ0+elF9//VV69ep1033v2bNHihQpYpLtXbt2lcOH6fvraCFXJxUNDMgurqBioZwyv18DKZjDR0JOXpKOE1ZL2MVoq8PKci5ExcpTk9bKhkPnJVc2L5nVO0jqlMxrdVgum0h/pUWgvPxQBbP+xdJQ+XxJiNi0zwsAAAAyBEn0LJZIb1ElQGLjE6XvzA3yT+hpq8MCADiBHDlySMOGDeWDDz6Q48ePm4T6rFmzZPXq1aYFy7WmT59uXvPEE0/ccL9BQUEybdo0Wbx4saloP3DggNx3332m/3pqYmJiJDw8PMWCW69Er+CEk4qmpVzBHLKgX0MpkstX9p+ONIn0YxcuWx1WlnE2Ika6TFwrW49elLz+3jKnT5DUKJ7b6rBc3sCm5eXNR67MGzHmr70y/PfdJNIBAACyShJ97NixUqpUKVPdpifTwcHBN9z+woUL8vzzz0vhwoXFx8dHKlSoIL/99luGxevsifTRnWtL88pXEuk6AdQKEukAgFugvdA1WVO0aFEz/o4aNUo6d+4s7u7XH0poP3StKr+2cv1aLVu2lPbt20v16tWlRYsWZjzXcX7BggWpbj98+HDJlStX0lK8eHGH/XyuTKu1nXlS0bSUyu8v8/s1lOJ5s8mhs1HSYdxqOXw2yuqwXN6pS9HSeeIa2XkiXPJn9zHtdaoUyWV1WFlG3/vLynuPVzHfT1ixX979aYckJpJIBwAAcOkk+vz582Xw4MEybNgw2bhxo9SoUcOcRJ86lXqrkdjYWHnooYfk4MGD8t1330lISIhMnDjRnNDj1nh7usuYLrXloWSJ9H/3kEgHANxY2bJl5Z9//pGIiAg5cuSIuegdFxd3Xc/zf//914zPOhHp7cqdO7e5OL53795Unx8yZIhcvHgxadE4cGPRcQly8Eyk+T7QhSrR7Yrn9ZP5fRtK6fz+phK9w/jVsv90hNVhuawTFy9Lp/FrJPRkhBTK6SsL+jVwqTscnEX3RqXk47bVxM1NZPrqQ/LWom0k0gEAAFw5iT5y5Ejp06eP9OzZUypXrizjxo0TPz8/U8GWGn383LlzsmjRIrnnnntMBfsDDzxgku+4vUT62C61pVmlAImJT5Te09fLyj1nrA4LAOAE/P39zd1g58+flyVLlkjr1q1TPD958mSpU6fOHY3NmqDft2+f2X9qtAI+Z86cKRbc2L7TEaK5tdx+XlIgh4+4oiK5s8n8vg2kXMHsEhYeLR1Mkjf1lkC4c0fORV25SHEmUormzmba6ZQp4Bp99p1Rl6AS8lm7GqJzBc8NPiKvfLdFEkikAwAAuF4SXavKN2zYIM2aNftfMO7uZl17rKbmp59+Mj1ZtZ1LQECAVK1aVT7++GPTmzUt9E9NO5H+f101kV7QJNJ7TV8n/+0lkQ4ASJ0mzLV3ufYtX7p0qTRp0kQqVqxoLoTb6Rj77bffplmF3rRpUxkzZkzS+iuvvGKq2/UOs1WrVknbtm3Fw8PDtImB4/uh6+SErqpgTl/TVqRioRxyJiJGOk1YIzuPc8znKHo3g36mR85dlpL5/MzEriXy+VkdVpbXrk4x+apTLfFwd5OFG4/Ji/M3S1xCotVhAQAAuCTLkuhnzpwxyW9Nhien62FhYam+Zv/+/aaNi75O+6a+88478sUXX8iHH36Y5vvQP/UmFelda0vTiv9LpK8ikQ4ASIW2T9GL2Jo479atm9x7770mse7l5ZW0zbx580zf9LSS4FplruO/3dGjR822gYGB0qFDB8mXL5+sWbNGChQokCE/U1YQEhbhsq1crqX9uef2aSDViuaSc5Gxpm/31qMXrA7L6e09FZE0cWuZAv6mfU6xPCTQM4vHaxQxd5h6ebjJz1uOy4A5G03LRgAAADiWm82iKd2PHz9ueplr5ZlWl9u99tprpipt7dq1171G+6RGR0ebKjitVLO3hPnss8/kxIkTaVai65K8Sk4T6ZoM4DbwK2LiE6T/rI2yfPcp8fVylyk96kmjsvmtDgsAXI6OQXpBlzHIMfg8b+6ZaevM+P5Bm6rydIOSkhVcvBwnPaYGy6bDFySHj6dMe6a+1CmZx+qwnFJI2CXpOmmNnImINRdiZvUOctm2QM5u+e6T8uysKwn0BysWNHec+npdOV9C+mAMytyf5+ZPWzgkLgBA5lXz9SUZOgZZVomeP39+kwg/efJkisd1vVChQqm+RnukaiLdnkBXlSpVMpXr2h4mNfRPvTkfTw/55qna0iSwgETHJZoT7tX7zlodFgAAcEASNKtUotvlyuYlM3sFSf3SeeVSTLw8PXmtrNnPcc3t2n7sonSasNok0CsXzilz+zYggZ6JPVgxQCZ1q2sKYvTCWZ8Z6+VybNotLwEAAHB7LEuie3t7m4nHli1blvRYYmKiWU9emZ6cTia6d+9es51daGioSa7r/nC3ifQ60jhZIp0TTgAAnNel6DjTgkNVCMhaE0Bm9/GU6T3ry73l8ktUbIKpTGcS9Vu3+cgF6TJxjZyPipMaxXKZNjl5/TnWzuzur1BApvaoL37eHvLvnjPm331kTLzVYQEAALgEy5LoavDgwTJx4kSZPn267Nq1S/r37y+RkZFJk5Rpz9UhQ4Ykba/Pnzt3Tl544QWTPP/111/NxKLaoxV3T2/5HPdUHXmgQgG5HJcgPaeuk7Uk0gEAcEp7Tl3phx6Q00dy+2W9BGg2bw+Z1L3u/+60m75O/tp9yuqwMr31B8/JU5PWSnh0vNQtmce0cMnl97+5D5C5NSybT2b2qm9aGa09cE66TQmW8Og4q8MCAABwepYm0Tt27Ciff/65DB06VGrWrCmbN2+WxYsXJ002evjw4RS9zrWXuU5itm7dOqlevboMGjTIJNTfeOMNC38K10ukj3+6jtxXPv+VRPq0dRJ84JzVYQEAgNsUerWVS4Us1Mol1QKBp+tI88oBpld035nrZcmO1Cewh8iqfWdM0jUiJl4alMkr05+pLzl8SaA7mzol85qLHzl9PWXDofPmosiFqNRbXwIAAMAJkuhqwIABcujQITP5p04mGhQUlPTc33//LdOmTUuxvbZ6WbNmjZlgdN++ffLmm2+m6JEOx5xwTuxW1yTS7bdArztIIh0AAGcScjLr9UNPq2Xd2K615dHqhSUuwSbPzd4oP285bnVYmc4/oafNXYh67KfHgNoWxN/H0+qwcIdqFM9t+tjn8fOSrUcvSpeJa+VsRIzVYQEAADgty5PocJJE+pRgc3svAABwDqFXk+gVCmXtJLry8nCXrzvWlCdqFZWERJu8MG+TLNx41OqwMo1lu05Kn+nrJSY+UZpWLGiOAbUdDpxblSK5ZF7fhpI/u4/sPBEunSeukVOXoq0OCwAAwCmRRMdNE+k6KVdkbIJ0nxIsGw6RSAcAwBmEhF3piZ7VK9HtPD3c5bP2NaRTveKSaBN5+dstMi/4sGR1v287If1mbpDYhER5uEohM9G8HgPCNQQWyiHz+zUwcyOEnoyQTuPXSNhFEukAAAC3i3s0cUuJ9F7T18mqfWel+5R1pj9mnZJ5rA4NAACkQds2nLnauqF8QHarw8k0PNzd5OO21cTb011mrD4kbyzcJtFxCfJknWKSFS3bdcpcTNDq/MdrFJGRHWqYiw1wLWULZJcF/Rqali77z0RKh/GrZWrPelIwh49kVdm8PPi3DgAAbgtJdNyU3s47uXu9ZIn0YBLpAABkYlpxqkrk9RM/bw73knN3d5P3Hq8i3h7uMmnlAXn3551mycra1Skmnz5Z3VxkgGsqmc/fVKRrIv3wuShp+sU/kpXN7dNAGpbNZ3UYAADAiXD5HbeVSG9YJp9ExMSbRPrGw+etDgsAANyoHzqtXFLl5uYmbz1aSV5sVt4k07MqTZr3aFRKRpBAzxKK5fEzFenViuayOhQAAACnQ2kSbi+R3qOuPDNtnazZf066Tw6WaVSkAwCQ6YRcTaIHFqKVy40S6S82qyDPNykniTabZEXubm5m0lVkHYVy+cpPA+4xPfCzMi93/t0DAIDbQxIdt0VvCZ/So570nLpO1h44J09NWivjnq4jD1QoYHVoAADgqtAwKtFvFUlkZMULSD6eTB4LAABwOzhrwB0l0nUyIk2cX45LkN7T18kvW49bHRYAABARm82WrBKdJDoAAAAA3C2S6LjjRPrEbnXlseqFJS7BJgPnbpK5wYetDgsAgCwvLDxaLkXHi6e7m5TJTzsXAAAAALhbJNFxx7w93eXrTrWka1AJ0VaiQxZuk2/+3md1WAAAZGkhV1u5lM7vb8ZqAAAAAMDd4cwKd8XD3U0+bFNVnm9S1qx/uni3DP9tl7mVHAAAZLzQq61cKtDKBQAAAAAcgiQ6HDI50astKspbj1Qy6+NX7Jc3vt8mCYkk0gEAyGghYRHmayCTigIAAACAQ5BEh8P0ub+MjHiyuri7icxff0QGzNkoMfEJVocFAEDWrEQniQ4AAAAADkESHQ7VoV5x+b+utcXbw11+3x4mvaatl8iYeKvDAgAgS9C7wPacupJED6SdCwAAAAA4BEl0ONzDVQvL1J71xM/bQ1buPSNdJ62V85GxVocFAIDLO3IuSqLjEsXH011K5PWzOhwAAAAAcAkk0ZEu7imXX+b0aSC5/bxk85EL0mH8agm7GG11WAAAuLSQq61cygdkN5N/AwAAAADuHkl0pJuaxXPLt/0aSqGcvrLnVIS0G7dKDp6JtDosAABcVmgY/dABAI61YsUKadWqlRQpUkTc3Nxk0aJFSc/FxcXJ66+/LtWqVRN/f3+zTbdu3eT48eOWxgwAgKORREe6Kh+QQ759tqGUyucnR89flnbjVsvO4+FWhwUAgEtXogeSRAcAOEhkZKTUqFFDxo4de91zUVFRsnHjRnnnnXfM14ULF0pISIg8/vjjlsQKAEB68Uy3PQNXFc/rJ98+20i6TwmWnSfCpeOE1TK1Rz2pWyqv1aEBAOBSQq8m0SswqSgAwEFatmxpltTkypVLli5dmuKxMWPGSP369eXw4cNSokSJDIoSAID0RSU6MkSBHD4yt28DqVcqj1yKjpenJq+Vv0JOWR0WAAAuIzY+UfafvtI2jUp0AIBVLl68aNq+5M6d2+pQAABwGJLoyDC5snnJjGeCpElgAYmOS5Q+09fLj5uPWR0WAAAu4cCZSIlPtEkOH08pnMvX6nAAAFlQdHS06ZHeuXNnyZkzZ5rbxcTESHh4eIoFAIDMjCQ6MlQ2bw+Z0K2utK5ZxJzovzh/s8xcc8jqsAAAcJl+6NrKRSsAAQDISDrJaIcOHcRms8k333xzw22HDx9uWsHYl+LFi2dYnAAA3AmS6MhwXh7u8mWHmtKtYUmx2UTeWbRdxizfYw62AADAnQkNu5pEp5ULAMCiBPqhQ4dMj/QbVaGrIUOGmLYv9uXIkSMZFisAAHeCiUVhCXd3N3nv8SqSO5uXjFq+Vz7/I1TOR8XJW49UMs8BAIA7q0QPDMhudSgAgCyYQN+zZ4/89ddfki9fvpu+xsfHxywAADgLkuiwjN5qPrh5oOTy85YPftkpk1cekIuX4+STJ6qJpwc3SQAAcDtCk7VzAQDAUSIiImTv3r1J6wcOHJDNmzdL3rx5pXDhwtKuXTvZuHGj/PLLL5KQkCBhYWFmO33e29vbwsgBAHAckuiwXK97S5uK9Ne+3yrfbTgq4ZfjZFTnWuLr5WF1aAAAOIWo2Hg5fC7KfB9IOxcAgAOtX79emjRpkrQ+ePBg87V79+7y7rvvyk8//WTWa9asmeJ1WpXeuHHjDI4WAID0QRIdmcKTdYpJzmxe8vycjfLHzpPSc+o6mdi9rmT34Z8oAAA3s/dUhJlnJH92b8mXndvjAQCOo4nwG81fxdxWAICsgJ4ZyDQeqhwg03vWN4nz1fvPSpeJa+RcZKzVYQEAkOmFMKkoAAAAAKQbkujIVBqWzSdz+zSQvP7esvXoRWk/bpUcv3DZ6rAAAHCOfugk0QEAAADA4UiiI9OpViyXLOjXUArn8pV9pyOl/bjVsv90hNVhAQCQaYWcvDJOBjKpKAAAAAA4HEl0ZErlCmaX7/o3kjL5/eXYhcsmkb792EWrwwKALOvSpUvy4osvSsmSJSVbtmzSqFEjWbduXdLzPXr0EDc3txTLww8/fNP9jh07VkqVKiW+vr4SFBQkwcHB6fyTuKZQ2rkAAAAAQLohiY5Mq2jubLLg2YZStWhOORsZK50nrJG1+89aHRYAZEm9e/eWpUuXysyZM2Xbtm3SvHlzadasmRw7dixpG02anzhxImmZO3fuDfc5f/58GTx4sAwbNkw2btwoNWrUkBYtWsipU6cy4CdyHRej4iQsPNp8XyEgu9XhAAAAAIDLIYmOTC1/dh/TIz2odF65FBMv3aYEy7JdJ60OCwCylMuXL8v3338vI0aMkPvvv1/KlSsn7777rvn6zTffJG3n4+MjhQoVSlry5Mlzw/2OHDlS+vTpIz179pTKlSvLuHHjxM/PT6ZMmZIBP5XrCD11Kenicw5fL6vDAQAAAACXQxIdmZ4mBKY/U1+aVSooMfGJ0nfmBlm06X+VjwCA9BUfHy8JCQmm5Upy2tZl5cqVSet///23FCxYUAIDA6V///5y9mzadw/FxsbKhg0bTDW7nbu7u1lfvXp1Ov0krikkqZULVegAAAAAkB5IosMp+Hp5yDdP1ZEnahWVhESbvDh/s0xfddDqsAAgS8iRI4c0bNhQPvjgAzl+/LhJqM+aNcsku7Vti72Vy4wZM2TZsmXy6aefyj///CMtW7Y026bmzJkz5rmAgIAUj+t6WFhYqq+JiYmR8PDwFAtEQk9eTaIzqSgAAAAApAuS6HAaXh7u8nn7GtKjUSmzPuynHfL1n3vEZrNZHRoAuDztha5/b4sWLWratowaNUo6d+5sqsdVp06d5PHHH5dq1apJmzZt5JdffjETj2p1uqMMHz5ccuXKlbQUL17cYft2hUr0QCYVBQAAAIB0QRIdTsXd3U2GtaosLzWrYNa//DNU3vt5pyQmkkgHgPRUtmxZU10eEREhR44ckeDgYImLi5MyZcqkur0+nj9/ftm7d2+qz+tzHh4ecvJkynkudF37qadmyJAhcvHixaRF48jq9MJGUiU6SXQAAAAASBck0eF03Nzc5IVm5eW9x6uY9WmrDsor326RuIREq0MDAJfn7+8vhQsXlvPnz8uSJUukdevWqW539OhR0xNdt02Nt7e31KlTx7R/sUtMTDTr2jomNVoBnzNnzhRLVnc6IkbOR8WJu5tIuYL0RAcAAACA9EASHU6re6NS8lXHmuLh7iYLNx2T/rM2SHRc6r13AQB3RxPmixcvlgMHDsjSpUulSZMmUrFiRenZs6epTn/11VdlzZo1cvDgQZMI1+R6uXLlpEWLFkn7aNq0qYwZMyZpffDgwTJx4kSZPn267Nq1y0xGGhkZafaJWxMaFmG+lsrnb+YPAQAAAAA4nmc67BPIMG1qFZUcvp7y3OyN8ueuU9J9SrBM6l5Xcvh6WR0aALgUbZ+i7VS0wjxv3rzy5JNPykcffSReXl4SHx8vW7duNcnwCxcuSJEiRaR58+ZmIlKtHrfbt2+fmVDUrmPHjnL69GkZOnSomUy0Zs2aJlF/7WSjSFsIrVwAAAAAIN2RRIfTa1opQGY8U196T18vaw+ck84T18j0nvUlX/b/JW4AAHenQ4cOZklNtmzZTKX6zWiV+rUGDBhgFtyZ0KuTilYoRBIdAAAAANIL7VzgEoLK5JO5fRtIPn9v2X4sXNqPXy3HLly2OiwAADKkEj2QSnQAAAAASDck0eEyqhbNJd8+21CK5s4m+09HSrtvVsneU1d6xQIA4GoSE22yx55EL8SkogAAAACQXkiiw6WUKZBdvuvfUMoW8JcTF6Olw/jVsu3oRavDAgDA4fSOq8jYBPH2cJeS+fytDgcAAAAAXBZJdLicwrmyybfPNpLqxXLJuchY0yN99b6zVocFAIBDhV6tQi9TwF+8PDikAwAAAID0whkXXFJef2+Z06eBNCqbTyJi4qX71GBZuvOk1WEBAOD4fuhMKgoAAAAA6YokOlxWdh9PmdKjnjSvHCCx8Yny7KwN8v2Go1aHBQCAQ4SGXUmiV2BSUQAAAABw/ST62LFjpVSpUuLr6ytBQUESHByc5rbTpk0TNze3FIu+DkiNr5eH/F/X2tKuTjFJSLTJy99ukSkrD1gdFgAAdy3k5JXJswNJogMAAACAayfR58+fL4MHD5Zhw4bJxo0bpUaNGtKiRQs5depUmq/JmTOnnDhxImk5dOhQhsYM5+Lp4S4jnqwuve8tbdbf/2WnjPwjRGw2m9WhAQBwR+ITEmXfqatJdNq5AAAAAIBrJ9FHjhwpffr0kZ49e0rlypVl3Lhx4ufnJ1OmTEnzNVp9XqhQoaQlICAgQ2OG83F3d5O3Hq0kr7YINOujlu+VYT/tkMREEukAAOdz8GyUxCYkip+3hxTNnc3qcAAAAADApVmaRI+NjZUNGzZIs2bN/heQu7tZX716dZqvi4iIkJIlS0rx4sWldevWsmPHjjS3jYmJkfDw8BQLsia9+PJ8k3LyQZuq4uYmMmP1IXlpwWaJS0i0OjQAAG5L6NVJRcsH5DAXigEAAAAALppEP3PmjCQkJFxXSa7rYWFhqb4mMDDQVKn/+OOPMmvWLElMTJRGjRrJ0aOpTxg5fPhwyZUrV9KiiXdkbU83KClfd6olnu5u8uPm49Jv5ga5HJtgdVgAANyykKuTigYGZLc6FAAAAABweZa3c7ldDRs2lG7duknNmjXlgQcekIULF0qBAgVk/PjxqW4/ZMgQuXjxYtJy5MiRDI8Zmc/jNYrIxG51xdfLXZbvPiXdpqyVi5fjrA4LAIDbqkSvwKSiAAAAAODaSfT8+fOLh4eHnDx5MsXjuq69zm+Fl5eX1KpVS/bu3Zvq8z4+PmYi0uQLoJpULCgzewVJDl9PWXfwvHSesEZOX4qxOiwAAG4q5GoSnUlFAQAAAMDFk+je3t5Sp04dWbZsWdJj2p5F17Xi/FZoO5ht27ZJ4cKF0zFSuKp6pfLK/L4NJX92H9l5Ilzaj1slR85FWR0WAABpio5LkINnIs33gVSiAwAAAIDrt3MZPHiwTJw4UaZPny67du2S/v37S2RkpPTs2dM8r61btCWL3fvvvy9//PGH7N+/XzZu3ChPPfWUHDp0SHr37m3hTwFnVrlITvnu2YZSLE82OXg2StqPWy17rlb4AQCQ2ew7HSGJNpHcfl5SIIeP1eEAAAAAgMvztDqAjh07yunTp2Xo0KFmMlHtdb548eKkyUYPHz4s7u7/y/WfP39e+vTpY7bNkyePqWRftWqVVK5c2cKfAs6uVH5/+e7ZRvL05LWy51SEtB+/Wqb1rC81i+e2OjQAANLsh+7m5mZ1OAAAAADg8ixPoqsBAwaYJTV///13ivUvv/zSLICjFcrlKwv6NZQe09bJliMXpMvENWby0XvK5bc6NAAAkoSERZivtHIBAAAAgCzSzgXITPL4e8uc3kFyT7l8EhWbID2nrpPF28OsDgsAgOsr0ZlUFAAAAAAyBEl04Br+Pp4ypUc9ebhKIYlNSJTnZm+QBeuPWB0WAABGSNiVJDqV6AAAAACQMUiiA6nw8fSQMV1qSce6xc3kba99t1Um/bvf6rAAAFncpeg4OXbhsvm+QkB2q8MBAAAAgCyBJDqQBk8Pd/nkyWrS7/4yZv3DX3fJ50tCxGazWR0aACCL0smvVUBOH8nt5211OAAAAACQJZBEB27Azc1NhjxSSV5/uKJZH/PXXnl70XZJ0PJ0AAAyWOjVVi4VaOUCAAAAABmGJDpwC/o3Lisft60mbm4is9celhfmbZLY+ESrwwIAZDEhVycVpR86AAAAAGQckujALeoSVEJGd64lXh5u8svWE/LsrA0SHZdgdVgAgCwk9GoSvUIhkugAAAAAkFFIogO34bHqRWRS93ri6+Uuy3efkj4z1pNIBwBkmJCwKz3RqUQHAAAAgIxDEh24TQ9UKCDTetYXP28P+XfPGXlm2jqJio23OiwAgIs7GxEjZyJizPflA7JbHQ4AAAAAZBkk0YE70KBMPpnxTH3J7uMpq/adlR5T1klEDIl0AED6CT15pQq9RF4/8fP2tDocAEAWsWLFCmnVqpUUKVJE3NzcZNGiRSmet9lsMnToUClcuLBky5ZNmjVrJnv27LEsXgAA0gNJdOAO1S2VV2b0qi85fD0l+OA56TZ5rYRHx1kdFgDA1fuh08oFAJCBIiMjpUaNGjJ27NhUnx8xYoSMGjVKxo0bJ2vXrhV/f39p0aKFREdHZ3isAACkF5LowF2oXSKPzO4dJLmyecnGwxfk6cnBcjGKRDoAwPFCribRAwvRygUAkHFatmwpH374obRt2/a657QK/auvvpK3335bWrduLdWrV5cZM2bI8ePHr6tYBwDAmZFEB+5S9WK5ZU6fIMnj5yVbjlyQrpPXyPnIWKvDAgC4mNAwKtEBAJnLgQMHJCwszLRwscuVK5cEBQXJ6tWrLY0NAABHIokOOECVIrlkXt+Gkj+7t2w/Fi6dJ64xE8ABAOAIWun3v0p0kugAgMxBE+gqICAgxeO6bn8uNTExMRIeHp5iAQAgMyOJDjiIJjXm9W0gBXL4yO6wS9Jpwho5dYk+gACAuxcWHi2XouPF091NyuSnnQsAwLkNHz7cVKzbl+LFi1sdEgAAN0QSHXCgcgVzyPy+DaRQTl/ZcyrCJNJPhpNIBwDcnZCrrVxK5/cXb08O3wAAmUOhQoXM15MnT6Z4XNftz6VmyJAhcvHixaTlyJEj6R4rAAB3g7MwwMHKFMgu8/s1kKK5s8n+05HScfxqOX7hstVhAQCcWOjVVi4VaOUCAMhESpcubZLly5YtS3pMW7OsXbtWGjZsmObrfHx8JGfOnCkWAAAyM5LoQDoomc/ftHYpnjebHDwbJR0nrJYj56KsDgsA4KRCwiLM10AmFQUAZLCIiAjZvHmzWeyTier3hw8fFjc3N3nxxRflww8/lJ9++km2bdsm3bp1kyJFikibNm2sDh0AAIchiQ6kk+J5/WR+34ZSKp+fHDl32bR2OXQ20uqwAOCOXLp0yZwklyxZUrJlyyaNGjWSdevWmefi4uLk9ddfl2rVqom/v785cdYT6OPHj99wn++++645+U6+VKxYMYN+IietRCeJDgDIYOvXr5datWqZRQ0ePNh8P3ToULP+2muvycCBA6Vv375Sr149k3RfvHix+Pr6Whw5AACOQxIdSEdFcmeT+f0aSpkC/nLswmXpOH6N7D99pZoQAJxJ7969ZenSpTJz5kxTZda8eXNp1qyZHDt2TKKiomTjxo3yzjvvmK8LFy6UkJAQefzxx2+63ypVqsiJEyeSlpUrV2bIz+NMEhJtsufUpaRJrAEAyEiNGzcWm8123TJt2jTzvF4Ef//99yUsLEyio6Plzz//lAoVKlgdNgAADkUSHUhnATl9TUV6hYDsEhYeLR0nrJG9V5MhAOAMLl++LN9//72MGDFC7r//filXrpypItev33zzjeTKlcsk2Dt06CCBgYHSoEEDGTNmjGzYsMHc6n0jnp6eppeqfcmfP3+G/VzOQtuBRcclio+nu5TI62d1OAAAAACQ5ZBEBzJAgRw+MrdPA6lYKIecvhRjKtJ3h4VbHRYA3JL4+HhJSEi47rZsbeuSVuX4xYsXTWVa7ty5b7jvPXv2mPYvZcqUka5du9406Z4VhVxt5VI+ILt4uLtZHQ4AAAAAZDkk0YEMki/7lUR61aI55WxkrHSesEa2H7todVgAcFM5cuSQhg0bygcffGD6nGtCfdasWbJ69WrTguVaeiu39kjv3Lmz5MyZM839BgUFmVvBtW+qVrTrRGX33Xef6b+empiYGAkPD0+xZAWhYfRDBwAAAAArkUQHMlAef2+Z3buB1CieW85HxUmXiWtky5ELVocFADelvdC1/2nRokXFx8dHRo0aZZLk7u4pDyV0klFt66LbamL8Rlq2bCnt27eX6tWrS4sWLeS3336TCxcuyIIFC1Ldfvjw4aZ1jH0pXry4ZKVK9ECS6AAAAABgCU9r3hbIunJl85KZvepLz6nrZMOh8/LUpLUy7Zn6UqdkHqtDA+AEEhMT5Z9//pF///1XDh06ZCb1LFCggNSqVctM9JleieWyZcua942MjDQV4IULF5aOHTuaNizXJtA1ruXLl9+wCj012vpFJyLbu3dvqs8PGTJEBg8enLSucWSFRHro1SR6BSYVBQAAAABLUIkOWCCnr5dMf6a+1C+dVy7FxEu3yWtl3cFzVocFIJNP7vnhhx+apPEjjzwiv//+u6na9vDwMEnnYcOGSenSpc1za9asSbc4/P39TQL9/PnzsmTJEmndunWKBLr2OP/zzz8lX758t73viIgI2bdvn9l/arQCXhPzyRdXFxufKPtPR5rvqUQHAAAAAGuQRAcskt3HU6b1rCeNyuaTyNgE6TY5WFbvO2t1WAAyKa3Q3rp1q0ycONFUYGs/8u+//970Jtc2KDohpyagtad4p06dzHaOpAlz7V2ufcuXLl0qTZo0kYoVK0rPnj1NAr1du3ayfv16mT17tumZHhYWZpbY2NikfTRt2lTGjBmTtP7KK6+Y6vaDBw/KqlWrpG3btuaigLaJwRUHzkRKfKJNcvh4SuFcKSd2BQAAAABkDJLogIX8vD1lSo96cl/5/HI5LkF6TguWf/ectjosAJnQH3/8YXqFa6W5l5dXqtuULFnStDzRavAHH3zQoe9/8eJFef75503ivFu3bnLvvfeaxLrGcuzYMfnpp5/k6NGjUrNmTVNJbl80OW6nSf4zZ84krev2mjAPDAw0Vexava5V9NqeBin7oWsrFzc3N6vDAQAAAIAsiZ7ogMV8vTxkYre68tzsjbJ89ynpNX29jH+6jjQJLGh1aAAykUqVKt3ytprY1h7mjqRJbl1SU6pUKTOR6M1oxXly8+bNc1h8rio07GoSnVYuAAAAAGAZKtGBTJJIH/dUHWleOcD0v+03Y4Ms3XnS6rAAZHLx8fEyduxYad++vTzxxBPyxRdfSHR0tNVhIR0q0QMDslsdCgAAAABkWSTRgUzC29NdxnatLY9WKyyxCYnSf9YG+X3bCavDApCJDRo0SH744QfTn/yBBx6QOXPmmB7lcB2hydq5AAAAAACsQTsXIBPx8nCXrzvVFE8PN/lx83EZMHeTfJVok1Y1ilgdGoBMQBPmOvlm8j7pISEhZjJO1aJFC2nQoIGFEcKRomLj5fC5KPN9IO1cAAAAAMAyVKIDmYynh7uM7FBTnqhdVBISbfLCvE3yw6ajVocFIBOYMmWKtGnTRo4fP27Wa9euLc8++6wsXrxYfv75Z3nttdekXr16VocJB9l7KkK01Xz+7N6SL7uP1eEAAAAAQJZFEh3IhDzc3eTzdjWkU73ikmgTGbxgiyxYf8TqsABYTBPlnTt3lsaNG8vo0aNlwoQJkjNnTnnrrbfknXfekeLFi5uWLnANIUwqCgAAAACZAu1cgEzK3d1NPm5bzbR2mbXmsLz23VaJT7BJl6ASVocGwEIdO3Y0bVu06ly/jhs3zkwoChfuh04SHQAAAAAsRSU6kMkT6R+0rio97yll1t/8YZtMX3XQ6rAAWCx37tymCv2zzz6Tbt26yauvvirR0dFWhwUHCzkZYb4GMqkoAAAAAFiKJDqQybm5ucnQxypL3/vLmPVhP+2QSf/utzosABY4fPiwdOjQQapVqyZdu3aV8uXLy4YNG8TPz09q1Kghv//+u9UhwoFCaecCAAAAAJkCSXTASRLpQ1pWlOeblDXrH/66S775e5/VYQHIYFp17u7ubirQCxYsKP369RNvb2957733ZNGiRTJ8+HCTZIfzuxgVJ2HhV+4uqBCQ3epwAAAAACBLoyc64ESJ9FeaB4qXh7t89ece+XTxbolLSJRBTctbHRqADLJ+/XrZsmWLlC1b1vRDL126dNJzlSpVkhUrVpg2L3B+oaeuVKEXzZ1Ncvh6WR0OAAAAAGRpJNEBJ0ukv9isgkmkf7YkREYuDTWJ9MEPVTDPAXBtderUkaFDh0r37t3lzz//NG1drtW3b19LYoNjhSS1cqEKHQAAAACsRjsXwAk936ScvPlIRfP96OV75dPFIWKz2awOC0A6mzFjhsTExMhLL70kx44dk/Hjx1sdEtJJ6MmrSXQmFQUAAAAAy1GJDjipvveXNRXp7/28U8b9s89UpL/9aCUq0gEXVrJkSfnuu++sDgMZWIkeyKSiAAAAAGA5KtEBJ9bzntLyQZuq5vvJKw/IsJ92SGIiFemAK4qMjEzX7ZF56J1FSZXoJNEBAAAAwHIk0QEn93SDkvLpk9VEC9BnrD4kby3aTiIdcEHlypWTTz75RE6cOHHD5OvSpUulZcuWMmrUqAyND45zOiJGzkfFibubSLmC9EQHAAAAAKvRzgVwAR3rlRBPd3d59bstMjf4sGnt8umT1cVDMzAAXMLff/8tb775prz77rtSo0YNqVu3rhQpUkR8fX3l/PnzsnPnTlm9erV4enrKkCFDpF+/flaHjDsUGhZhvpbK5y++Xh5WhwMAAAAAWR5JdMBFPFmnmHh6uMngBVvkuw1HJT4hUT5vX0M8PbjhBHAFgYGB8v3338vhw4fl22+/lX///VdWrVolly9flvz580utWrVk4sSJpgrdw4PEqzMLoZULAAAAAGQqmSK7NnbsWClVqpSppgsKCpLg4OBbet28efPMJIpt2rRJ9xgBZ9C6ZlEZ1amWeLq7yaLNx+WF+ZtNVToA11GiRAl5+eWXZdGiRbJp0ybZvXu3rFy5UkaPHi2PPfYYCXQXEHp1UtEKhUiiAwAAAEBmYHkSff78+TJ48GAZNmyYbNy40dyi3qJFCzl16tQNX3fw4EF55ZVX5L777suwWAFn8Gj1wjK2a23x8nCTX7eekAFzNkpsPIl0AHC2SvRAKtEBAAAAIFOwPIk+cuRI6dOnj/Ts2VMqV64s48aNEz8/P5kyZUqar0lISJCuXbvKe++9J2XKlMnQeAFn0KJKIRn/dB3x9nCXJTtOSv9ZGyQmPsHqsAAAN6ETQ++xJ9ELMakoAAAAAEhWT6LHxsbKhg0bpFmzZv8LyN3drOvkaGl5//33pWDBgtKrV68MihRwPg9WDJCJ3euKj6e7LNt9SvrO2CDRcSTSASAzO3bhskTGJpiLoCXz+VsdDgAAAADA6iT6mTNnTFV5QEBAisd1PSwsLNXXaN/XyZMnm8nTbkVMTIyEh4enWICs4oEKBWRqj3qSzctD/gk9Lb2mr5PLsSTSASCzCr1ahV6mgL94MTE0AOAu6F3bZ8+eve7xCxcucEc3AAC3yanOzi5duiRPP/20SaDnz5//ll4zfPhwyZUrV9JSvHjxdI8TyEwalcsv03rWEz9vD/lv71npMTVYImPirQ4LAHCjfuhMKgoAuEs6j5gWraVWaHbs2DFLYgIAwFl5Wvnmmgj38PCQkydPpnhc1wsVKnTd9vv27TMHAq1atUp6LDHxyoSJnp6eEhISImXLlk3xmiFDhpiJS+20Ep1EOrKaoDL5ZGav+tJjyjpZe+CcdJ8SLFN71pMcvl5WhwbgDpQqVUqeeeYZ6dGjh5QoUcLqcOBAoWFXkugVmFQUAHCHfvrpp6TvlyxZYorJ7DSpvmzZMnMsAQAAnCSJ7u3tLXXq1DGDeJs2bZKS4ro+YMCA67avWLGibNu2LcVjb7/9tqlQ//rrr1NNjvv4+JgFyOrqlMwrM3sHSbfJa2X9ofPy9ORgmf5MfcmVjUQ64GxefPFFmTZtmpkjpEmTJmaOkLZt2zLeuYCQkxHmayBJdADAHbKfW7u5uUn37t1TPOfl5WUS6F988YVF0QEA4Jwsb+eiVeLanmX69Omya9cu6d+/v0RGRkrPnj3N8926dTPV5MrX11eqVq2aYsmdO7fkyJHDfK9JeQBpq1k8t8zp00By+3nJ5iMX5KlJa+VCVKzVYQG4gyT65s2bJTg4WCpVqiQDBw6UwoULmwvQGzdutDo83KH4hETZd+pqEp12LgCAO6SFabro3WqnTp1KWtdFW7noHdyPPfaY1WECAOBULE+id+zYUT7//HMZOnSo1KxZ0yQFFi9enDTZ6OHDh+XEiRNWhwm4jKpFc8ncPg0kr7+3bDt2UTpPXCvnIkmkA86odu3aMmrUKDl+/LgMGzZMJk2aJPXq1TPj6ZQpU8Rms1kdIm7DwbNREpuQaOawKJo7m9XhAACc3IEDB255LjEAAJCJ27nYaeVcau1b1N9//33D1+rt7ABuT6XCOWVe3wbSZeJa2XUiXDpPWCOzegdJgRy0ggCcSVxcnPzwww8ydepUWbp0qTRo0MC0djl69Ki8+eab8ueff8qcOXOsDhO3KPTqpKLlA3KIu7ub1eEAAFyAtkrVxV6RnpxecAcAAOmYRD9y5Ijpr1asWDGzrreT60l65cqVpW/fvneySwAZTCetm99PE+lrJOTkJek0YbWpUC+Y09fq0ADchLZs0cT53Llzxd3d3bQ++/LLL83cIXbaI12r0uE8Qq5OKhoYkN3qUAAALuC9994z86fUrVvXtH3Tc3gAAJCBSfQuXbqYZPnTTz8tYWFh8tBDD0mVKlVk9uzZZl1bswDI/MoWyC7z+zY0ifR9pyOl44Q1MqdPkBTORRsBIDPT5LiOvd98842ZPEwnCbtW6dKlpVOnTpbEh7urRNeLnAAA3K1x48aZO7f1vB0AAFjQE3379u1Sv3598/2CBQvMpJ6rVq0ySXTaqwDOpVR+f5nfr6Hpv3vgTKR0HL9Gjp6PsjosADewf/9+M39I+/btU02gK39/f1OtDuehdwUpJhUFADhCbGysNGrUyOowAADIukl07cHq43Old7L2W3388cfN93obOZOAAs6neF4/WfBsQymR108On4syifTDZ0mkA5mV9jVdu3btdY/rY+vXr7ckJtyd6LgEOXgm0nwfSCU6AMABevfuzdwoAABYmUTX1i16a9i///5rJjJ7+OGHzePHjx+XfPnyOSo2ABlIK9EX9GsoZfL7y7ELl6XjhNWmMh1A5vP888+b+UmudezYMfMcnM++0xGSaBPJ7efFJM8AAIeIjo6WkSNHygMPPCADBw6UwYMHp1gcJSEhQd555x3TSi5btmxStmxZ+eCDD8RmsznsPQAAcMqe6J9++qmZsOyzzz6T7t27S40aNczjP/30U1KbFwDOp1AuX5nXt4F0mbRW9p6KkI7jV8ucPg2kXEEmuQMyk507d0rt2rWve7xWrVrmOTh3P3QmfgMAOMLWrVulZs2aSS1Zk3PkWKP5AZ2nZfr06abgTu+K69mzp+TKlUsGDRrksPcBAMDpkuiNGzeWM2fOSHh4uOTJkyfpcZ1s1M/Pz5HxAchgBXNeSaQ/NWmt7A67JJ0mrJbZvRvQoxfIRLSl2smTJ6VMmTIpHteWap6edzS0w2IhYRHmK61cAACO8tdff2XI++j8aK1bt5ZHH33UrJcqVUrmzp0rwcHBGfL+AABk2nYuly9flpiYmKQE+qFDh+Srr76SkJAQKViwoKNjBJDB8mf3MRXolQvnlDMRsdJ54hrZeTzc6rAAXNW8eXMZMmSIXLx4MemxCxcuyJtvvikPPfRQurznpUuX5MUXX5SSJUuaW7V1orJ169YlPa+3bA8dOlQKFy5snm/WrJns2bPnpvsdO3asOdn29fWVoKCgLHvCnVSJzgVLAICT0WOCZcuWSWhoqFnfsmWLrFy5Ulq2bJnmazSfoEV5yRcAADKzOypX06vMTzzxhDz77LPmpF1Per28vEx1uvZc69+/v+MjBZCh8vp7y5w+QdJtSrBsPXrRJNJn9QqSasVyWR0akOV9/vnncv/995uEtrZwUZs3b5aAgACZOXNmuk1OpreC6/6LFCkis2bNMolybR9TtGhRGTFihIwaNcrcyq09UbU3aosWLczzmiBPzfz5801PVp1nRY8l9IK8viYrXpQPCbuSRKcSHQDgKE2aNLlh25bly5c75H3eeOMNkwSvWLGieHh4mB7pH330kXTt2jXN1wwfPlzee+89h7w/AACZthJ948aNct9995nvv/vuO3PSrtXoM2bMMCfQAFxDbj9vmdU7SGqVyC0XL8dJl0lrZNPh81aHBWR5mrTWPqeauK5cubLUqVNHvv76a9m2bZsUL17c4e+nd6B9//335v00eV+uXDl59913zVftgapV6JoAf/vtt82F9urVq5tjAp1wfNGiRWnuVy+89+nTx/RN1Z9Dk+naFm7KlCmSlVyKjjMTOqsKAcxBAQBwDO2HrvOX2Rcda2NjY835fLVq1Rz2PgsWLJDZs2fLnDlzzL71grpe8NevabHfUWdfUpswHQAAp69Ej4qKkhw5rlRK/fHHH6Yq3d3dXRo0aGCS6QBcR05fL5nxTH15Zto6WXfwvDw9OVimP1NP6pTMa3VoQJbm7+9v5iLJCPHx8aaq7NqKcm3bordrHzhwQMLCwkxlup1OJqbV5atXr5ZOnTpdt089id+wYYM5ibbTYwndh74mK9lz6ko/9ICcPubiJQAAjvDll1+m+rheCI+IuDL2OMKrr75qqtHt470m6DUvoNXm3bt3T3N+F10AAHDpSnStPNPKMr1avGTJEtObVZ06dUpy5szp6BgBWCyHr5dM61lfGpTJKxEx8dJ7+no5cfFK1SQA62irlMWLF8tPP/2UYnE0vXDesGFD+eCDD0x1uSbUtZ2LJrt1MlNNoCu9My05Xbc/dy1tAaf7uZ3XuGr/1NCrrVwq0MoFAJABnnrqKYfe9aVFdnohPDlt65KYmOiw9wAAwCkr0XXisC5dushLL70kDz74oDmxtlel23uzAnAt/j6eMrVHfWk/fpVsPxYuL8zdbHqme3rc0bU4AHdh//790rZtW9O+RXudajsVZe97qslpR9Ne6M8884xpJaMnxrVr15bOnTubavKM4qr9U0OuTipKP3QAQEbQi+BpzVdyJ1q1amV6oJcoUUKqVKkimzZtMi3b9LgBAIAsnURv166d3Hvvvab6THur2TVt2tSc1ANwTdm8PWRM59ry2OiVEnzwnIxatkcGNw+0Oiwgy3nhhRfM5J3Lli0zX4ODg+Xs2bPy8ssvmx6k6aFs2bLyzz//SGRkpKkAL1y4sHTs2FHKlCkjhQoVMtucPHnSPG6n69qPNTX58+c3yXjdJjldt+/vWtr6RScitdM40qMHfEYLvZpEr1CIJDoAwHG07WpyetFdz+HXr19vJgB3lNGjR5v9Pffcc+budJ2AvF+/fqb4DgAAV3HHJaR6gqtV53pb99GjR81j9evXNzNyA3BdpfL7y8dPXJmIaPRfe2XV3jNWhwRkyQqy999/3ySi9fZpXfTitlZqDxo0KN17sWui/Pz586alm04kqol8PS7QpH7yBPfatWuT7la7lre3t5kQNflr9LZvXU/rNdo7VdvGJV9cQUjYlb60VKIDABxJ5ydJvuTNm1caN24sv/32mwwbNsyhbd90gnHtg66Tke/bt08+/PBDM9YDAJClK9H1JFcHxS+++CJpQhIdOLUC7q233rquHxoA1/J4jSImeT5v3RF5Yf5m+W3QfVIgBxMDARlF27XYJ/jWRLpe0A4MDJSSJUtKSEhIurynJsy1gk3fZ+/evWYSMb1w3rNnT9NG5sUXXzTHBuXLlzdJda1I00q0Nm3aXHfH2oABA8y6VpXrhGN169Y1F+L1BFwr3XWfWcXZiBg5ExFjvi8fkN3qcAAALmTq1KlWhwAAQNZOomuifPLkyfLJJ5/IPffcYx5buXKlmeU7Ojra9EMD4NqGtaoiGw+fl9CTETJ4wWaZ3rO+uLtf6ccMIH1VrVpVtmzZYpLVQUFBMmLECFPtNWHCBNNeJT1cvHjRtFPRu8+0ku3JJ580472Xl5d5/rXXXjMJ8L59+8qFCxdMZbxOepq856pWpumEonbaDub06dPmdm+dTFRbv+hrrp1s1JXp31BVIq+f+Hnf0WEZAAA3pPOX7Nq1y3yvPcuZxwwAgNvnZrPPRnYbtLJs3Lhx8vjjj6d4/McffzR90I4dOyaZld5erreyaTLAVW4DB6yy5+QlaTVmpUTHJcqrLQLl+SblrA4JyNQcNQZpVbgmrLXXqVaFP/bYYxIaGir58uWT+fPnm0m/swJXGNOnrzoow37aIc0qBcik7nWtDgcA4EJjkPYn79Spk/z999+SO3du85he6G7SpInMmzdPChQoIK76eW7+tIVD4gIAZF41X1+SoWPQHfVdOXfuXKq9z/UxfQ5A1lA+IIe837qq+X7k0lBZf5D//4GM0KJFi6TJwsqVKye7d+82Fd56spxVEuiuIuTqpKKBhWjlAgBwrIEDB8qlS5dkx44d5jxdl+3bt5tkQXrPoQIAgKu5oyR6jRo1ZMyYMdc9ro9Vr17dEXEBcBLt6xSTNjWLSEKiTQbN3STnI2OtDglwaXFxceLp6WlOgpPTFivamxzOJTTsShK9ApOKAgAcTFuk/d///Z9UqlQp6bHKlSvL2LFj5ffff7c0NgAAnM0dNd/U3quPPvqo/Pnnn9KwYUPz2OrVq+XIkSNmpm8AWYcm7T5sW022HL0oB85EyqvfbZWJ3eqQzAPSifYgL1GihJlcFM5NO+r9rxKdJDoAwLESExOT5i5JTh/T5wAAQDpXoj/wwAOm92rbtm1NTzVd9LZyvU1s5syZd7JLAE4su4+njOlSS7w93eXPXSdl6n8HrQ4JcGk6wfebb75JCzUnFxYeLZei48XT3U3K5KedCwDAsbTF2wsvvCDHjx9PekznL3vppZekadOmlsYGAECWqES3Ty760UcfpXhsy5YtMnnyZJkwYYIjYgPgRKoUySVvP1pJhv64Q4b/vkvqlsoj1YtdmcAIgGNp+zSdUFTH4pIlS4q/v3+K5zdu3GhZbLh1IVdbuZTO728uQgIA4Ojjhccff1xKlSolxYsXN4/p3eNVq1aVWbNmWR0eAABZI4kOANd6ukFJWbX3rCzeESYD5mySXwbdKzl9r7+FFMDdadOmjdUhwAFCr7ZyqUArFwBAOtDEuV5Y1zasOgm50v7ozZo1szo0AACcDkl0AA6jfdA/bVddth+/KIfPRcmQhdtkTOda9EcHHGzYsGFWhwAHCAmLMF8DmVQUAOBAy5cvlwEDBsiaNWskZ86c8tBDD5lFXbx4UapUqSLjxo2T++67z+pQAQBwGtw7DMChcmXzktGda5kev79uPSFzg49YHRIAZO5KdJLoAAAH+uqrr6RPnz4mgX6tXLlySb9+/WTkyJGWxAYAQJaoRNfJQ29EJxgFgFol8shrDwfKx7/tlvd+3iG1SuSWSoWvP4gHcGfc3d1veIdHQkJChsaD25eQaJM9p64k0QNp5wIAcCCdq+zTTz9N8/nmzZvL559/nqExAQCQpZLoetX6Zs9369btbmMC4AJ631tGVu87K3+FnJYBczbKTwPuFX8fOkgBjvDDDz+kWI+Li5NNmzbJ9OnT5b333rMsLty6I+eiJDouUXw83aVEXj+rwwEAuJCTJ0+Kl1fa8xJ5enrK6dOnMzQmAACc3W1ltKZOnZp+kQBwKe7ubvJFh5rS8usVsu90pAz9cYd80aGG1WEBLqF169bXPdauXTvT43T+/PnSq1cvS+LCrQu52sqlfEB28XBn3ggAgOMULVpUtm/fLuXKlUv1+a1bt0rhwoUzPC4AAJwZPdEBpJu8/t4yqlMt0fzQ9xuPyvcbjlodEuDSGjRoIMuWLbM6DNyC0DD6oQMA0scjjzwi77zzjkRHR1/33OXLl80E5Y899pglsQEA4KxIogNIV0Fl8smLzSqY79/5cbvsPRVhdUiAS9KT4lGjRpnqMzhPJXogSXQAgIO9/fbbcu7cOalQoYKMGDFCfvzxR7Non/TAwEDz3FtvvWV1mAAAOBUaFANId883KSdr9p+VVfvOmv7oi56/R3y9PKwOC3BaefLkSTGxqM1mk0uXLomfn5/MmjXL0thwa0LslehMKgoAcLCAgABZtWqV9O/fX4YMGWKOE5QeO7Ro0ULGjh1rtgEAALeOJDqAdKf9fr/qWFMeGfWv7A67JB/+ulM+bFPN6rAAp/Xll1+mSKK7u7tLgQIFJCgoyCTYkbnFxCfIgTOR5nsq0QEA6aFkyZLy22+/yfnz52Xv3r0mkV6+fHmOEwAAuEMk0QFkiII5fWVkh5rSbUqwzFpzWBqWyS+PVmdCI+BO9OjRw+oQcBc0gR6faJMcPp5SOJev1eEAAFyYJs3r1atndRgAADg9eqIDyDD3VyggzzUua75/4/utcvhslNUhAU5p6tSp8u233173uD42ffp0S2LCnbVySX5HAQAAAAAgcyKJDiBDDX6ogtQtmUcuxcTLgLkbJTY+0eqQAKczfPhwyZ8//3WPFyxYUD7++GNLYsKtC706qWgFWrkAAAAAgFMgiQ4gQ3l6uMvXnWtJrmxesvXoRRmxeLfVIQFO5/Dhw1K6dOlU+5/qc8jcQsIizNfAgOxWhwIAAAAAuAUk0QFkuKK5s8nn7WuY7yetPCB/7jxpdUiAU9GK861bt173+JYtWyRfvnyWxIQ7qEQvRCU6AAAAADgDkugALPFQ5QB55p4rlbSvfLdFjl+4bHVIgNPo3LmzDBo0SP766y9JSEgwy/Lly+WFF16QTp06WR0ebiAqNl4On7syH0Qg7VwAAAAAwCmQRAdgmTdaVpTqxXLJhag4GTR3k8Qn0B8duBUffPCBBAUFSdOmTSVbtmxmad68uTz44IP0RM/k9py80solf3ZvyZfdx+pwAAAAAAC3gCQ6AMt4e7rL6M61JLuPp6w/dF6++nOP1SEBTsHb21vmz58vISEhMnv2bFm4cKHs27dPpkyZYp5D5hXCpKIAAAAA4HQ8rQ4AQNZWMp+/fPJkNRkwZ5OM/XuvBJXJK/eVL2B1WIBTKF++vFngPELDSKIDAAAAgLOhEh2A5R6rXkS6BJUQm03kpfmb5dSlaKtDAjK1J598Uj799NPrHh8xYoS0b9/ekphwe5XogUwqCgAAAABOgyQ6gExh6GOVpWKhHHImItYk0hMSbVaHBGRaK1askEceeeS6x1u2bGmeQ+YVSjsXAAAAAHA6JNEBZAq+Xh4ypkstyeblIf/tPSvf/L3X6pCATCsiIiLV3udeXl4SHh5uSUy4uQtRsXIyPMZ8XyEgu9XhAAAAAABuEUl0AJlGuYI55IM2Vc33I5eGSvCBc1aHBGRK1apVMxOLXmvevHlSuXJlS2LCzYWejDBfi+bOJjl8vawOBwAAAABwi5hYFECm0q5OMVm194ws3HRMBs3dJL+9cJ/k9b++4hbIyt555x154oknZN++ffLggw+ax5YtWyZz586Vb7/91urwcJN+6FShAwAAAIBzyRSV6GPHjpVSpUqJr6+vBAUFSXBwcJrbLly4UOrWrSu5c+cWf39/qVmzpsycOTND4wWQvrQavUx+fwkLj5ZXvt0iNp1xFECSVq1ayaJFi2Tv3r3y3HPPycsvvyxHjx6VP//8U9q0aWN1eEhDaNjVJDqTigIAAACAU7E8ia63ow8ePFiGDRsmGzdulBo1akiLFi3k1KlTqW6fN29eeeutt2T16tWydetW6dmzp1mWLFmS4bEDSB/+Pp4ypktt8fZ0l+W7T8nklQesDgnIdB599FH577//JDIyUs6cOSPLly+XBx54QLZv3251aLhJJXogk4oCAAAAgFOxPIk+cuRI6dOnj0mEax/XcePGiZ+fn0yZMiXV7Rs3bixt27aVSpUqSdmyZeWFF16Q6tWry8qVKzM8dgDpp3KRnDL0sSu9nT/5fbdsPnLB6pCATOvSpUsyYcIEqV+/vrkYjcxH76gJTWrnQhIdAAAAAJyJpUn02NhY2bBhgzRr1ux/Abm7m3WtNL+VE1LtARsSEiL3339/OkcLIKN1DSohj1QrJPGJNhkwZ6NcvBxndUhAprJixQrp1q2bFC5cWD7//HPTH33NmjVWh4VUnL4UIxei4sTdTSdRpic6AAAAADgTSycW1dvPExISJCAgIMXjur579+40X3fx4kUpWrSoxMTEiIeHh/zf//2fPPTQQ6luq9voYhceHu7AnwBAenJzc5PhT1SXbccuypFzl2XIwq0ytktt8ziQVYWFhcm0adNk8uTJZkzr0KGDGee0R7re0YXM3cqlVD5/8fXysDocAAAAAMBtsLydy53IkSOHbN68WdatWycfffSR6an+999/p7rt8OHDJVeuXElL8eLFMzxeAHcuVzYvGdO5tnh5uMlv28Jk1trDVocEWDqhaGBgoJkT5KuvvpLjx4/L6NGjrQ4LtyDEPqkorVwAAAAAwOlYmkTPnz+/qSQ/efJkisd1vVChQmm+Tlu+lCtXTmrWrCkvv/yytGvXziTLUzNkyBBTuW5fjhw54vCfA0D6qlE8t7z+cEXz/Qe/7JQdxy9aHRJgid9//1169eol7733nplYVMfQjKB3jb3zzjtSunRpyZYtm5mT5IMPPjBt1ez0DpHUls8++yzN/b777rvXbV+x4pX/111NUj/0QiTRAQAAAMDZWJpE9/b2ljp16pi+5naJiYlmvWHDhre8H31N8pYtyfn4+EjOnDlTLACcT697S0vTigUlNj5RBs7ZJJEx8VaHBGQ4nURbJxHVsTMoKEjGjBljWqOlt08//VS++eYb8367du0y6yNGjEhRBX/ixIkUi04QrknxJ5988ob7rlKlSorXuepE4SEnI8zXQCrRAQAAAMDpWN7ORVuxTJw4UaZPn25OzPv37y+RkZHSs2dP87xOmKbV5HZacb506VLZv3+/2f6LL76QmTNnylNPPWXhTwEgvWky7vP2NaRwLl/ZfyZS3l60PUUVLJAVNGjQwIyZmmzu16+fzJs3T4oUKWIuJuvYqAn29LBq1Spp3bq1qX4vVaqUuQOsefPmEhwcnLSN3kGWfPnxxx+lSZMmUqZMmRvu29PTM8Xr9C41V5OYaJM9VyvRAwsxqSgAwPUcO3bMnJPny5fP3LVWrVo1Wb9+vdVhAQDgOkn0jh07yueffy5Dhw417Vm01/nixYuTJhs9fPiwSRbYaYL9ueeeM5Vr99xzj3z//fcya9Ys6d27t4U/BYCMkMffW0Z1riUe7m7yw6Zj8t2Go1aHBFjC399fnnnmGVO1vW3bNtPa7JNPPpGCBQvK448/7vD3a9SokblLLDQ01Kxv2bLFvHfLli1T3V7bsv3666+m9czN7Nmzx1wI0GR7165dzbifFr3rTCdTTb44g2MXLktUbIJ4e7hLyXz+VocDAIBDnT9/3pybe3l5mdZzO3fuNMVuefLksTo0AAAcxs2WxUo59YRbJxjV/ui0dgGc05jle+TzP0Ilm5eH/DzwHilXkPYIcA7pOQZp3/Kff/7ZtFH56aefHLpvrXR/8803TQsX7cOu76UTeye/Uyw53U6T+jrxqa+vb5r71RPtiIgIM1mqXjDXXu9aybZ9+3YziXhqPdR1m2tl9jH9z50npfeM9VKxUA5Z/OL9VocDAHAAziv/54033pD//vtP/v3330zzeW7+tMVd7wMAkLnVfH2JQ/Zzq2OQ5ZXoAHC7+jcuJ/eWyy+X4xLk+dmbJDouweqQAMtpcrtNmzYOT6CrBQsWyOzZs2XOnDmyceNG04JN7yLTr6nRRL5Wld8oga60kr19+/ZSvXp1adGihfz2229y4cIF836uNFl4SFIrFy74AQBcjx571K1b14zpeldcrVq1TPs5AABcCUl0AE5H27mM7FhD8mf3Mcmp937eaXVIgEt79dVXTZVZp06dTI/Tp59+Wl566SUzT8m1tAotJCTkjtqs5c6dWypUqCB79+51qcnCQ68m0SswqSgAwAXpfGU6AXn58uVlyZIlZp6zQYMGpXmx3ZlbtAEAsi6S6ACcUsEcvvJVx5ri5iYyN/iw/LTluNUhAS4rKipK3N3dr6t81zYv15o8ebLUqVNHatSocdvvo61d9u3bJ4ULFxZXEhJ2tRKdJDoAwAXp8UDt2rXl448/NlXoffv2lT59+si4cePSfI1eiNdb5+1L8eLFMzRmAABuF0l0AE7r3vL55fnG5cz3by7cJgfPRFodEuCSWrVqZXqg62ShBw8elB9++EFGjhwpbdu2TbGdVpF9++23aVahN23aVMaMGZO0/sorr8g///xj9rlq1SqzP03Od+7cWVxFXEKi7D995W8T7VwAAK5IL35Xrlw5xWOVKlW64WThztqiDQCQdXlaHQAA3I0Xm5WXtQfOyrqD52Xg3E3yXf+G4uPpYXVYgEsZPXq0vPPOO/Lcc8/JqVOnpEiRItKvXz8ZOnRoiu3mzZsnOl95WklwrTI/c+ZM0vrRo0fNtmfPnpUCBQrIvffeK2vWrDHfu4pDZyMlNiFR/Lw9pGjubFaHAwCAw91zzz2mlVtyoaGhUrJkyTRfoy3adAEAwFmQRAfg1Dw93GVU51ryyNf/yrZjF+WT33fLsFZVrA4LcCk5cuSQr776yiw3ordv65IWrTi/Nunu6kLCIszX8gE5xN3dzepwAABwOJ0npVGjRqadS4cOHSQ4OFgmTJhgFgAAXAXtXAA4vcK5ssnn7a/0X57630H5Y0eY1SEBgKGTH6vAgOxWhwIAQLqoV6+eafU2d+5cqVq1qnzwwQfmwnvXrl2tDg0AAIehEh2AS2haKUB631taJq08IK9+t1WqFM1F6wQAlgu9OqloBSYVBQC4sMcee8wsAAC4KirRAbiM1x6uKDWK5ZKLl+Nk0NxNZkI/ALBSqL0SnUlFAQAAAMBpkUQH4DK8Pd1ldOfaksPHUzYcOi8jl4ZaHRKALCw6LkEOno003wdSiQ4AAAAAToskOgCXUiKfn3zyZHXz/Td/75N/Qk9bHRKALGrvqQhJtInk9vOSAjl8rA4HAAAAAHCHSKIDcDmPVi8sTzUoYb4fPH+znAqPtjokAFm4lYv2Q3dzc7M6HAAAAADAHSKJDsAlvf1oZalYKIecjYyVF+ZtlgQtBwWADBRi74dOKxcAAAAAcGok0QG4JF8vDxnbtbb4eXvI6v1nZczyvVaHBCCLCQ27WonOpKIAAAAA4NRIogNwWWULZJcP21Q133+9LFTW7D9rdUgAspDQkxHmK5XoAAAAAODcSKIDcGlP1C4m7eoUM5P7vTBvk5yNiLE6JABZwKXoODl24bL5vkJAdqvDAQAAAADcBZLoAFze+62rSNkC/nIyPEZe/naLJNIfHUAGVaEH5PSR3H7eVocDAAAAALgLJNEBuDw/b08Z06W2+Hi6y98hp2Xiv/utDgmAiwu9OqloBVq5AAAAAIDTI4kOIEuoVDinDGtVxXz/2ZIQ2Xj4vNUhAXBhIVcnFaUfOgAAAAA4P5LoALKMzvWLy6PVC0t8ok0GztkkF6PirA4JgKtXohciiQ4AAAAAzo4kOoAsw83NTYY/UU1K5PUzE/699v0Wsdnojw4g/ZLoVKIDAAAAgPMjiQ4gS8np6yVjutQSLw83WbLjpMxYfcjqkAC4mDMRMXImItZ8Xz4gu9XhAAAAAADuEkl0AFlO9WK5ZUjLSub7j37dJduPXbQ6JAAuWIWud73oxMYAAAAAAOdGEh1AltTznlLSrFKAxCYkyoA5GyUiJt7qkAC4iNCrk4pWoJULAAAAALgEkugAsmx/9M/bV5ciuXzl4NkoeXPhNvqjA3CIkJMR5mtgIVq5AAAAAIArIIkOIMvK7ectozrXEg93N/lpy3FZsP6I1SEBcKF2LlSiAwAAAIBrIIkOIEurWyqvDH6ogvl+2E87kpJfAHAn9I4WezuXwEIk0QEAAADAFZBEB5Dl9X+grNxXPr9ExyXK87M3yuXYBKtDAuCkTlyMlksx8eLp7iZl8tPOBQAAAABcAUl0AFmeu7ubjOxQUwrk8JE9pyLk3Z92WB0SACcVcvVultL5/cXbk8MsAAAAAHAFnN0BgIhJoH/dsaa4uYnMX39Eftx8zOqQADgheyuXCrRyAQAAAACXQRIdAK5qVC6/DGxSznz/5sJtcuBMpNUhAXDSSvRAJhUFAAAAAJdBEh0AkhnUtLzUL51XImMTTH/06Dj6owO4dfbJiSuQRAcAAAAAl0ESHQCS8fRwl1GdakkePy/ZeSJchv+2y+qQADiJhESb7DkZYb4PpJ0LAAAAALgMkugAcI1CuXzNRKNq+upDsnh7mNUhAXACh89FSUx8ovh4ukuJvH5WhwMAAAAAcBCS6ACQiiYVC0rf+8uY71/7boscORdldUgAMrmQq5OKlg/ILh7ublaHAwAAAABwEJLoAJCGV5oHSs3iuSU8Ol4Gzt0kcQmJVocEIBOjHzoAAAAAuCaS6ACQBm9PdxnduZbk8PWUzUcuyOdLQqwOCUAmFnI1iR5IEh0AAAAAXApJdAC4geJ5/eSzdtXN9+NX7Je/Qk5ZHRKATCr0ajuXCkwqCgAAAAAuhSQ6ANzEw1ULS7eGJc33g+dvlkNnI60OCUAmExOfIAfOXPnbQCU6AAAAALgWkugAcAvefKSSVCuaS85HxUnPaevkYlSc1SEByEQ0gR6faJMcPp5SOJev1eEAAAAAAByIJDoA3AJfLw+Z1L2uSY7tPx0p/Watl9h4JhoFcEVIslYubm5uVocDAAAAAHAgkugAcIsCcvrKlB71xN/bQ9bsPydv/rBNbDab1WEB6S4hIUHeeecdKV26tGTLlk3Kli0rH3zwQYp//z169DDJ4+TLww8/fNN9jx07VkqVKiW+vr4SFBQkwcHB4oxCr04qWoFWLgAAAADgckiiA8BtqFQ4p4zpUlvc3US+23BU/u/vfVaHBKS7Tz/9VL755hsZM2aM7Nq1y6yPGDFCRo8enWI7TZqfOHEiaZk7d+4N9zt//nwZPHiwDBs2TDZu3Cg1atSQFi1ayKlTzjeBb0hYhPkaGJDd6lAAAAAAAA5GEh0AblOTigXl3cermO8/WxIiP285bnVIQLpatWqVtG7dWh599FFTNd6uXTtp3rz5dVXjPj4+UqhQoaQlT548N9zvyJEjpU+fPtKzZ0+pXLmyjBs3Tvz8/GTKlCnitJXohahEBwAAAABXQxIdAO5At4alpOc9pcz3L3+7RTYcOm91SEC6adSokSxbtkxCQ0PN+pYtW2TlypXSsmXLFNv9/fffUrBgQQkMDJT+/fvL2bNn09xnbGysbNiwQZo1a5b0mLu7u1lfvXp1qq+JiYmR8PDwFEtmEBUbL4fPRZnvA2nnAgAAAAAuhyQ68P/t3Qd8VFX2wPGTHkISSgIkQCihl1AM5Y9YFkFRkaY0F2kWVEBBLOAqbZVFBFkUEZSV4ioCFlwVBZHmKiBdkZIAAgklCYiUJJA6/8+5MtkEEiQh5CXzft/P55F5U+97M7w7c9655wIF9GKnhtKhQUUzwejg97ZIzG9/BNEAVzN69Gjp06eP1K9fX7y8vKR58+YyYsQI6du3b45SLu+9954Jtmu5l3Xr1pkgu9ZTz83JkyfNbZUqVcpxva7HxcXl+phJkyZJmTJlspawsDApDvbF/1HKJdjfW4L8faxuDgAAAACgkBFEB4AC8nB3k9f7NJdGlQPlt6RUGTR/k5w5n2Z1s4BCt2TJEvnggw9k4cKFpnb5ggULZOrUqeavkwbZu3TpIhEREdKtWzf58ssvZfPmzSY7vbA8//zzcubMmawlNjZWioMoJhUFAAAAAJdWLILoM2fONDVWfX19pXXr1pfVWM1uzpw5cvPNN5s6q7rosO8r3R8ArqfSPp7y7oCWEhLoKwdOJMmQD7ZKWkam1c0CCtWzzz6blY2uQfJ+/frJU089ZTLD8xIeHi7BwcGyf//+XG/X2zw8PCQ+Pj7H9bqu9dRzozXXAwMDcyzFQXQcQXQAAAAAcGWWB9EXL14sI0eOlHHjxpnstqZNm0rHjh0lISEh1/trRtv9998va9asMTVTdSi3Tm529OjRIm87AKiQMr7y7sAW4uftIT/s/01eXPqLOBwOq5sFFJrk5GRTrzw7DYBnZuZ9wujIkSOmJnpoaGiut3t7e0tkZKQp/+Kkz6frbdq0kZLEmYlej0lFAQAAAMAlWR5EnzZtmjzyyCMyaNAgadiwocyePVv8/Pxk7ty5ud5fh5MPGTJEmjVrZmqz/utf/8r60Q0AVmlUuYzMuL+5uLuJLN4SK7PX/Wp1k4BC07lzZ5k4caIsW7ZMDh06JEuXLjX9d/fu3c3tiYmJJlt948aN5nbtk7t27Sq1a9c2J8ad2rdvL2+++WbWup5E1xFmWhZmz549ZjLSpKQk852gJImmnAsAAFleeeUVcXNzM/OnAADgKjytfPHU1FTZunWrqXHqpJluWqJFs8yvNjsuLS1Nypcvn+vtKSkpZnE6e/ZsIbQcAC7XvkElGXNPQ5nwxW6ZvHyvVA/yk7sjcs/CBUqSGTNmyJgxY8xJbB0pVrlyZXn00Udl7NixWVnpP//8swmGnz592tyuo8ReeuklU4LF6cCBA2ZCUafevXvLiRMnzPPoZKJ6gnz58uWXTTZanJ1OTpX4s398z6hbyd/q5gAAYCmdD+Xtt9+WJk2aWN0UAABcJ4iuP6QzMjIu+7Gs63v37r2q5xg1apT5sa6B99xovdYJEyYUSnsB4M8MaltTDp1MkgUbDstTi3dIaBlfaV6tnNXNAq5JQECATJ8+3Sy5KVWqlKxYseJPn0ez1C81bNgws5RU0fGJ5m+VsqUkwNfL6uYAAGAZHZnWt29fM8rs5Zdftro5AAC4VjmXax0mtmjRIjOsXCclzY1muZ85cyZriY2NLfJ2ArAXzUZvV6+CpKRnyiPvbZHYU8lWNwnAda6HThY6AMDuhg4dKp06dcozwS07HS2uo8SzLwAAFGeWBtGDg4PNEPD4+Pgc1+t6SEjIFR87depUE0T/5ptvrjhUTIeRBwYG5lgA4Hry9HCXGX+9QRqEBsrJxFR5cP5mOXshzepmAbgOouMuBtGZVBQAYGOa3LZt2zYzEvxq6P3KlCmTtYSFhV33NgIAUGKD6N7e3hIZGZljUlDnJKFt2rTJ83GvvvqqqbOqdVNbtGhRRK0FgKvn7+Mpcwe2kIoBPrIvIVGGfrBN0jIyrW4WgOuUiV6PSUUBADalo72HDx8uH3zwQZ4jxC/FiHEAQEljeTmXkSNHmpppOhnZnj175PHHH5ekpCQZNGiQub1///45Jh6dPHmymdxs7ty5UqNGDTMRmS5afw0AipPQMqXk3QEtpZSXh/x330kZ+59d4nA4rG4WgEKi/5+js8q5EEQHANjT1q1bzcTjN9xwg3h6eppl3bp18sYbb5jLOg/apRgxDgAoaSydWFT17t1bTpw4IWPHjjXB8GbNmpkMc+dkozExMeLu/r9Y/6xZsyQ1NVV69OiR43nGjRsn48ePL/L2A8CVRFQtI6/3aSaPvr9VPtwUIzWD/WTwLbWsbhaAQnDiXIqcTk4TdzeR2hWpiQ4AsKf27dvLzp07c1ynSXH169eXUaNGmRKuAACUdJYH0dWwYcPMkpu1a9fmWD906FARtQoACscdjULkhbsbyMvL9sikr/dKtfKl5c7GV573AUDJKeVSI6i0+HoRIAAA2FNAQIA0btw4x3WlS5eWoKCgy64HAKCksrycCwDYwUM31ZQH/q+aaDWXEYu3y0+xp61uEoBrFOWcVJRSLgAAAADg0opFJjoAuDo3NzcZ37mRxJ46L+uiT8jD722Rz4a2lSplS1ndNAAFlFUPPYQgOgAAVxpRDgBASUcmOgAUEU8Pd3nzr82lfkiAqaX84LzNcu5CmtXNAlBAUfF/TGpej0x0AAAAAHBpBNEBoAgF+HrJuwNbSoUAH1NPedjC7ZKekWl1swDkU2amQ/ZdzESvF8KkogAAAADgygiiA0AR0xIu7w5oIb5e7qa0y/gvdolDi6UDKDGOnj4vyakZ4u3hLtWDSlvdHAAAAADAdUQQHQAs0KRqWZneu7m4uYm8vzFG3v3+oNVNAlCASUXDK5QWLw++TgEAAACAK+NXHwBY5M7GIfL8XfXN5Ylf7ZFvdsVZ3SQAV0nLMal6TCoKAAAAAC6PIDoAWOiRm8Pl/lbVRKu5DF+0Q3YeOWN1kwBcheiLQfS6TCoKAAAAAC6PIDoAWMjNzU3+3rWR3FwnWM6nZchDCzbLsdPnrW4WgKss51KPIDoAAAAAuDyC6ABgMa2nPLPvDVK3kr8knEuRB+dvlsSUdKubBSAPaRmZ8uuJJHOZci4AAAAA4PoIogNAMRDo6yXvDmgpwf7esjfunDyxcJukZ2Ra3SwAuTj8W5KkZmSKn7eHVClbyurmAAAAAACuM4LoAFBMhJX3kzn9W4iPp7usiTohL3252+omAchFVFyi+VunUoC4u7tZ3RwAAAAAwHVGEB0AipHm1crJP3s3M5cXbDgs8344aHWTAFwi6uKkovUq+VvdFAAAAABAESCIDgDFzN0RoTLqzvrmsmajr9oTb3WTAGQTfXFS0bpMKgoAAAAAtkAQHQCKocduDZfeLcIk0yHyxIfb5ZejZ6xuEoCLop2Z6EwqCgAAAAC2QBAdAIohNzc3ebl7Y2lbO0iSUzPkoQWbJe7MBaubBdjehbQMOfRbkrlcj0x0AAAAALAFgugAUEx5ebjLW30jpXZFf4k/m2IC6Ukp6VY3C7C1/QmJZoRIWT8vqRDgY3VzAAAAAABFgCA6ABRjZUp5ybyBLSWotLfsOnZWhi/aLhkawQNgaSkXrYeuI0YAAAAAAK6PIDoAFHNh5f3knf4txNvTXb7dkyAvL9ttdZMA24py1kOnlAsAAAAA2AZBdAAoASKrl5NpvZqay/N+OCTvbThkdZMAW4qOu5iJzqSiAAAAAGAbBNEBoIS4p0llebZjPXN5/Oe7ZM3eBKubBNhOdHyi+UsmOgAAAADYB0F0AChBhvyllvSIrGomNhy2cJvsPnbW6iYBtnHuQpocPX3eXK5byd/q5gAAAAAAighBdAAoQXQiw390j5A24UGSlJohDy3YLPFnL1jdLMBWWeiVAn2krJ+31c0BAAAAABQRgugAUMLoBKOzH4iU8Aql5fiZCyaQnpyabnWzAJcXfXFS0bqUcgEAAAAAWyGIDgAlUBk/L5k3sKWUL+0tvxw9K8MX7ZAMrfEC4LqJujipKPXQAQAAAMBeCKIDQAlVPai0vNMvUrw93GXl7niZ9NUeq5sE2CMTPYQgOgAAAADYCUF0ACjBWtQoL1N6NjGX//X9QXl/42GrmwS4fBCdTHQAAAAAsBeC6ABQwnVtVkVG3l7XXB73+S5ZF33C6iYBLudkYoqcTEw1l+tU8re6OQAAAACAIkQQHQBcwBO31ZZ7b6hi6qIP/WCb7I07a3WTAJfMQq9W3k/8vD2tbg4AAAAAoAgRRAcAF+Dm5iaT7o2QVjXLS2JKujw0f4sknLtgdbPgIjIyMmTMmDFSs2ZNKVWqlNSqVUteeuklcTj+mMw2LS1NRo0aJREREVK6dGmpXLmy9O/fX44dO3bF5x0/frz57GZf6tevL8VR9MVJRetSygUAAAAAbIcgOgC4CB9PD3n7gUipGVxajp4+L48s2CLnUzOsbhZcwOTJk2XWrFny5ptvyp49e8z6q6++KjNmzDC3Jycny7Zt20ygXf9++umnEhUVJV26dPnT527UqJEcP348a/n++++lOIqKTzR/64VQygUAAAAA7IbxyADgQsqV9pa5A1tK97d+kJ+OnJGnFu+Qt/reIO7ublY3DSXY+vXrpWvXrtKpUyezXqNGDfnwww9l06ZNZr1MmTKycuXKHI/RgHurVq0kJiZGqlWrludze3p6SkhIiJSUci5kogMAAACA/ZCJDgAuRjPR3+nXQrw93GX5rjiZvHyv1U1CCXfjjTfKqlWrJDo62qz/9NNPJmP8rrvuyvMxZ86cMeVZypYte8Xn3rdvnyn/Eh4eLn379jVB97ykpKTI2bNncyxFQcvWOMu51AshiA4AAAAAdkMQHQBckNZGn9wjwlx++7tf5cNNeQcmgT8zevRo6dOnj6lX7uXlJc2bN5cRI0aYoHduLly4YGqk33///RIYGJjn87Zu3Vrmz58vy5cvN+ViDh48KDfffLOcO/dHwPpSkyZNMlnvziUsLEyKwvEzF+RcSrp4urtJeDDlXAAAAADAbgiiA4CL6t68qgxvX8dcfvGzX+S/+05Y3SSUUEuWLJEPPvhAFi5caGqeL1iwQKZOnWr+XkonGe3Vq5fJ3tbA+JVoJnvPnj2lSZMm0rFjR/nqq6/k9OnT5vVy8/zzz5sMd+cSGxsrRSHqYikXHeXh7clXJwAAAACwG2qiA4ALG9Ghjhz+LUk+23FMhry/TT4ZciM1nZFvzz77bFY2uoqIiJDDhw+bzPABAwZcFkDX21avXn3FLPTcaOmXunXryv79+3O93cfHxyxFzVnKpS6lXAAAAADAlkinAgAXpjWpJ/doIi1rlDPlKAbN2ywnzqVY3SyUMMnJyeLunvMrg4eHh2RmZl4WQNca599++60EBQXl+3USExPlwIEDEhoaKsWJMxO9PiegAAAAAMCWCKIDgIvz8fSQt/u1kOpBfnL09Hl55L0tciEtw+pmoQTp3LmzTJw4UZYtWyaHDh2SpUuXyrRp06R79+5ZAfQePXrIli1bTNmXjIwMiYuLM0tqamrW87Rv317efPPNrPVnnnlG1q1bZ55z/fr15vk0OK+11IuT6ItBdDLRAQAAAMCeCKIDgA2UL+0t8wa2lDKlvGRH7GkZuWSHZGY6rG4WSogZM2aYIPmQIUOkQYMGJvj96KOPyksvvWRuP3r0qHz++edy5MgRadasmckkdy4aHHfSLPOTJ09mrev9NWBer149k8Wu2esbN26UChUqSHGRkemQffGJ5nI9MtEBAAAAwJaoiQ4ANhFewV/e7hcp/d79Ub7aGSdTgqJk1J31rW4WSoCAgACZPn26WXJTo0YNM5Hon9GM8+wWLVokxV3MqWRJSc8UXy93CSvvZ3VzAAAAAAAWIBMdAGzk/8KD5JV7m5jLs9YekCWbY61uElCsRV2cVLROxQDxcHezujkAAAAAAAsQRAcAm7kvsqo8eVttc/lvS3fKD/v/V14DQB710CnlAgAAAAC2RRAdAGzoqdvrSpemlSU90yGPvb9V9if8ESgEkFPUxSB6vRB/q5sCAECxNGnSJGnZsqUp/1axYkXp1q2bREVFWd0sAAAKFUF0ALAhNzc3ebVHE2lRvZycu5Aug+ZvlpOJKVY3Cyh2oi+WcyETHQCA3K1bt06GDh1qJgdfuXKlpKWlyR133CFJSUlWNw0AgEJDEB0AbMrXy8NMNFqtvJ/Enjovg9/bIhfSMqxuFlBspKRnyMGTfwQA6oUQRAcAIDfLly+XgQMHSqNGjaRp06Yyf/58iYmJka1bt1rdNAAACg1BdACwsSB/H5k7sKUE+nrKtpjT8sxHP0lmpsPqZgHFggbQteRRgK+nhAT6Wt0cAABKhDNnzpi/5cuXz/M+KSkpcvbs2RwLAADFGUF0ALC52hX9ZXa/SPF0d5Mvfz4u01ZGW90koFiIuljKpV6lAFMCCQAAXFlmZqaMGDFC2rZtK40bN75iHfUyZcpkLWFhYUXaTgAASlwQfebMmVKjRg3x9fWV1q1by6ZNm/K8765du+S+++4z99cfs9OnTy/StgKAq7qxVrBMujfCXH5zzX75aEus1U0CLBd9cVLRupRyAQDgqmht9F9++UUWLVp0xfs9//zzJmPducTG8t0TAFC8WRpEX7x4sYwcOVLGjRsn27ZtM/XTOnbsKAkJCbnePzk5WcLDw+WVV16RkJCQIm8vALiyni3CZGi7Wuby35bulA0HfrO6SYClouISszLRAQDAlQ0bNky+/PJLWbNmjVStWvWK9/Xx8ZHAwMAcCwAAxZmlQfRp06bJI488IoMGDZKGDRvK7Nmzxc/PT+bOnZvr/Vu2bClTpkyRPn36mE4XAFC4nr69ntzTJFTSMhzy2Ptb5cCJP4KIgK0z0QmiAwCQJ4fDYQLoS5culdWrV0vNmjWtbhIAAK4TRE9NTTWzdXfo0OF/jXF3N+sbNmwotNdhwhIAuHru7m4ytWdTaV6trJw5nyYPzt8sp5JSrW4WUOSSU9Ml5lSyuVy3kr/VzQEAoFiXcHn//fdl4cKFEhAQIHFxcWY5f/681U0DAKDkB9FPnjwpGRkZUqlSpRzX67p2uIWFCUsAIH98vTxkTv8WEla+lBz+LVkGv7dFLqRlWN0soEjti/9jFEawv48E+TP6DQCAvMyaNcvUNf/LX/4ioaGhWYuWbwUAwFVYPrHo9caEJQCQfxo4nDewpQT4esqWw7/LqE9+NkN1AbuIuljKpV4IWegAAFyJfkfMbRk4cKDVTQMAoOQH0YODg8XDw0Pi4+NzXK/rhTlpKBOWAEDB1K4YILMfiBRPdzf5z45j8to30ZKZSSAd9hAdRz10AAAAAIDFQXRvb2+JjIyUVatWZV2XmZlp1tu0aWNVswAA2bStHSwTuzc2l99cs19umbJG3li1T46focYlbJKJThAdAAAAAGzP08oXHzlypAwYMEBatGghrVq1kunTp0tSUpIMGjTI3N6/f3+pUqWKqWvunIx09+7dWZePHj0qO3bsEH9/f6ldu7aVmwIALqt3y2py7kK6vL5qnxz5/bxMWxkt07+NllvrVpDeLcOkfYNK4uXh8tXBYDPRF4PodUMIogMAAACA3VkaRO/du7ecOHFCxo4dayYTbdasmSxfvjxrstGYmBhxd/9fYObYsWPSvHnzrPWpU6ea5dZbb5W1a9dasg0AYAcP3xwufVtXl+W7jsuiTbHy48FTsibqhFmC/b3lvhuqSq+WYVKrAvWjUfKdTk6V+LMp5nKdinymAQAAAMDuLA2iq2HDhpklN5cGxmvUqMHEdgBgkVLeHtK9eVWz/HoiUZZsOSIfbz0iJxNT5O3vfjVLyxrlTOb63REh4udteRcDFEh0fKL5W6VsKQnw9bK6OQAAAAAAixHhAADkW3gFfxl9V315+o66smZvgizeHCtrohJk86HfzTL+813SpVll6dMyTCKqlBE3Nzermwzkvx46pVwAAAAAAATRAQDXQmuh39EoxCxxZy7IJ9uOmIB6zKlkWfhjjFkahAZK7xZVpVvzKlLWz9vqJgN/KjruYj10JhUFAAAAAIgIM8EBAApFSBlfGdqutqx95i+y8JHW0rVZZfH2dJc9x8/K+C92S6t/rJLhi7bL+v0nJTOT0lwoCZno1EMHAAAAAJCJDgAoZO7ubnJjrWCzTEhOlc+2H5VFm2Nlb9w5+c+OY2apVt5PercMkx6RVaVSoK/VTQay6Nwr0ReD6GSiAwAAAAAUQXQAwHWj5VsGtq0pA26sITuPnjHB9M93HDPlXqasiJLXvomSdvUqmoB6u/oVTXkYwEonzqXI6eQ0cXcTqVWBTHQAAAAAAEF0AEAR0IlFm1Qta5YXOzWQr3bGyeLNMWYS0lV7E8xSIcDHZKb3ahEmNYNLW91k2LyUS43g0uLr5WF1cwAAAAAAxQBBdABAkfLz9jTBcl32JyTKR1ti5eOtR0wG8Ky1B8zSumZ5k51+V+NQKeVNIBNFJ+ripKL1KOUCAAAAALiIIDoAwDK1K/rL83c3kKfvqCer98bL4s2xsi76hPx48JRZxn2+S7o1q2IC6o2rlLG6ubAB6qED+ZtDID09XTIyMqxuClDoPDw8xNPT04ymAwAAIIgOALCct6e73Nk41CzHTp83melLtsTKkd/Py783HjZLo8qB0qdlmHRpVkXKlPKyuslwUVHxieZvvRCC6MCVpKamyvHjxyU5OdnqpgDXjZ+fn4SGhoq3t7fVTQEAABYjiA4AKFYqly0lT7avI8Pa1Zb1B36TRZtj5Jtd8bLr2FkZ859d8vKyPXJ3RKjJTteyL2SIobBkZjpkH5nowJ/KzMyUgwcPmkzdypUrmwAjx2K42igLPVF04sQJ81mvU6eOuLsz+TkAAHZGEB0AUCy5u7vJTXWCzfJ7Uqos3X7UlHvRiR/1si46AalORHpfZBWpGOBrdZNRwh09fV6SUzPE28NdagT5Wd0coNjS4KIG0sPCwkymLuCKSpUqJV5eXnL48GHzmff15XsGAAB2RhAdAFDslSvtLQ/eVFMGta0hO2JPm1Ivn+84JgdPJsnk5Xtl6jdRclv9iqbcy611K4inB9liKPikorUq+vMZAq4CmblwdXzGAQCAE0F0AECJoeUCmlcrZ5YXOzWUZT8fN+VetsWclpW7481SKdBHekRWNRnq1YNKW91klCA6ykHVq+RvdVMAAAAAAMUIp9YBACVSaR9P6dUyTD4d0lZWPnWLPHxTTSlf2lviz6bIzDUH5NYpa+WvczbKf3YclQtpGVY3FyVAtLMeOpOKAriCv/zlLzJixIis9Ro1asj06dP/9CTwZ599ds2vXVjPAwAAgPwhEx0AUOLVqRQgL97TUJ67s758uydeFm2Olf/uO2EmJtWlTCkv6d68islOb1g50OrmopiXc6nHpKKAS+rcubOkpaXJ8uXLL7vtv//9r9xyyy3y008/SZMmTfL1vJs3b5bSpQt35NP48eNNsHzHjh05rj9+/LiUK1dOisL58+elSpUqpqTJ0aNHxcfHp0heFwAAoDgiiA4AcBnenu5yd0SoWY78niwfbz0iH205YiaMnL/+kFmaVC0jvVuGSZemlSXA18vqJqOYSMvIlF9PJJnLdQmiAy7poYcekvvuu0+OHDkiVatWzXHbvHnzpEWLFvkOoKsKFSpIUQkJCSmy1/rkk0+kUaNG4nA4TEC/d+/eYhVtQ0ZGhnh68vMVAABYg3IuAACXVLWcn4zoUFe+e66dLHiwldwdESJeHm7y85Ez8sLSX6TVxFXy9JKfZPOhU+bHOezt8G9JkpqRKaW9PaRK2VJWNwfAdXDPPfeYgPf8+fNzXJ+YmCgfffSRCbL/9ttvcv/995sMbD8/P4mIiJAPP/zwis97aTmXffv2max2X19fadiwoaxcufKyx4waNUrq1q1rXiM8PFzGjBljsuSVtm/ChAkmK17Lt+jibPOl5Vx27twpt912m5QqVUqCgoJk8ODBZnucBg4cKN26dZOpU6dKaGiouc/QoUOzXutK3n33XXnggQfMopcvtWvXLrNPAwMDJSAgQG6++WY5cOBA1u1z5841QXjNYNfXHjZsmLn+0KFDZjuyZ9mfPn3aXLd27Vqzrn91/euvv5bIyEjzHN9//715/q5du0qlSpXE399fWrZsKd9++22OdqWkpJj9GxYWZh5Xu3Zt037t6/Wy7ovstB36Wvv37//TfQIAAOyLIDoAwKV5uLvJrXUryFt9I2Xj8+3lxU4NpHZFfzmfliGfbDsiPWdvkPbT1snb6w7IiXMpVje3WNLsPw3w1KxZ0wRqatWqJS+99FKOkw96eezYsSZQovfp0KGDCST9mZkzZ5oAlAabWrduLZs2bRIrRMUlZpUGcnd3s6QNQEmmx4Dk1HRLlqs9EapZzP379zcB6eyP0QC6Huc0eH7hwgUTtF22bJn88ssvJijdr1+/qz42ZWZmyr333ive3t7y448/yuzZs01A91IadNZ27N69W15//XWZM2eO/POf/zS3acb3008/bQLQWr5Fl9yywJOSkqRjx46mvIuWlNHt0ICyM1jttGbNGhN81r8LFiwwr3vpiYRL6f03bNggvXr1MouWuzl8+HDW7VreRU8UaJB69erVsnXrVnnwwQclPT3d3D5r1iwTrNf9p4H+zz//3ASw82v06NHyyiuvyJ49e8woAT1BcPfdd8uqVatk+/btcuedd5oyPTExMVmP0fdYT3y88cYb5nFvv/22CbhroFzbqKMOstN13ZaCtA8AANgH4+EAALYR5O8jD98cLg/dVFO2xZyWxZtj5IufjpsyHpO+3itTVkRJhwaVpHerMLmlTgUTgIfI5MmTTUBEgy8a1NmyZYsMGjRIypQpI08++aS5z6uvvmoCFnofDbZr0F2DOxog0gB5bhYvXiwjR440QSYNoGsmpz4mKipKKlasWKTbGHVxUlHqoQMFoycmG45dYclr7/57R/HzvrqfNRpEnTJliqxbt85MEOoMomqZFz2m6fLMM89k3f+JJ56QFStWyJIlS6RVq1Z/+vwaxN67d695TOXKlc11//jHP+Suu+7Kcb8XX3wx67KeSNTXXLRokTz33HPmRKQGfTXof6XyLQsXLjRB//feey+rJvubb75pgsp63NZsbaVBdr3ew8ND6tevL506dTJB6EceeSTP59Yscm2zs/66Hpt1P2mtducJUN1X2mYvrz9Ko2lmvdPLL79sTgQMHz486zrNGs+vv//973L77bdnrZcvX16aNm2ata4ndJcuXWqC9HryIDo62rxXmv2vJ3OVZvpnz8zXE756UkTfT83I1/14aXY6AADApchEBwDYjmajRVYvJ6/2aCqbXmgvk+6NkGZhZSU90yHLd8XJoHmb5abJq2XaN1ESeypZ7G79+vVm+LwGXjTY06NHD7njjjuyMjM1o1MD4BoU0vtptqAGdY4dO5aj7MClpk2bZoI4GpDXkgcaTNfSBhq8KWrRFycVrRtCEB1wZRpEvvHGG7OOM1rCQ7OstZSL0ox0DcxqGRcN2GowWwPi2TOdr0Qzn7WMiDOArtq0aZPrScS2bduaILm+hh4/r/Y1sr+WBpSzT2qqz6nZ8Hoy0klPfmoA3UlHDCUkJOT5vLoP9ISolnFx0suava7P7SyBouVbnAH07PS59fjfvn17uVZapz47zUTXEw4NGjSQsmXLmn2n+8G577Rduq233nprrs+n74v2Zc73/4svvjDlX3r27HnNbQUAAK6NTHQAgK3p5KL3t6pmlr1xZ2Xx5lhZuv2oHD9zQd5Yvd8sN9UOlsG3hMstdYtu8rjiRANO77zzjsnw00xDrdOrtWk1CK4OHjwocXFxWVl/SjMUNbtcywH06dPnsudMTU01w/+ff/75rOvc3d3Nc+hjcqOBDl2czp49W2jbGE0mOnBNSnl5mIxwq147PzRgrhnmmk2t2dVaosoZdNUsdS2voicGNZCuAeoRI0aYY1Zh0WNc3759Td1zzfB2ZnS/9tprcj1cGujWE8nOYHhu9KSBlmu5tISMBtc1g10zwzVbPi9Xus15rFfZS+rkVaM9+wkCpQF0zTLXzHEtv6KvpSd2ne/Pn722evjhh02JHi2fo++/bqeewAUAALgSMtEBALiofkigjOvcSH78W3uZcX9zEzxX3+8/KfsT/jdRm91oTVoNhGsGpwZjmjdvboJKGgRSGkBXztIBTrruvO1SJ0+eNAGZ/Dxm0qRJWeUWdNFsz8JwIS1DDv2WZC7XDfEvlOcE7EYDs1pSxYpFXzs/tMa3BnK1jIeOmtESL87n+OGHH8yIGs281ixvLQWiJxCvlmZIx8bGmjrmThs3brxsdE/16tXlhRdeMJnWderUyVFvXGlNdT1G/tlr6UlNrY3upO3XbatXr54UlE7Cqcd8zerOvuh1zglGdcSRZvDnFvzWeu86akkD7rnRyV1V9n2UfZLRK9Ht05Is3bt3Nyc5NJNfJyp10uv0BIGW68mL1lTX4LyWKVu+fLl5/wEAAP4MQXQAAC7h4+khnZtWlvcfbi3/fa6dPHlbbenevIrYldaX/eCDD0zAadu2bWaYv2YB6t+ipFnrZ86cyVo0UFUYNHY2p38LeeHuBlLB36dQnhNA8aUlQDT7WI8pGsjVoKyTBrQ101kD3Vom5NFHH5X4+Pirfm4dTaMjdgYMGGAC3Bpo1mB5dvoaWn5Es891Ak+dT0LremenQWgd5aPBZT3pmH0UjpOeyNQ5J/S1dBJUnThUM+w1y/rSE5RX68SJE6bEiT5n48aNcyw6YaeW6Dp16pSpP66jgTSwrvNk6ETS//73v7PKyGjtdM2s123T27TvmDFjRla2+P/93/9lTRiqAe/sNeKvRPfdp59+avaL7t+//vWvObLqdb9p2zUwrm3Vfbh27VrTjzlpuRd9z/X91+fLrdwOAADApQiiAwBwBWHl/WTkHfWkXGlvsatnn302Kxtds/w0QPPUU0+ZzHDlnPju0kCTruc1KV5wcLAJZOTnMT4+PhIYGJhjKayTJu0bVJJHbgnPd0YrgJJJS7r8/vvvppxK9vrlGsy94YYbzPU68agej7p163bVz6tZ4BoQP3/+vJm4UkuHTJw4Mcd9unTpYo6hGohu1qyZCdjrZMzZ6USnd955p7Rr185kbn/44YeXvZaWINHSKxrU1kk7tayJ1iHXSUQLyjlJaW71zPU6DYC///77EhQUJKtXrzY1yrUUTmRkpMyZMyerdIwGsrUkzltvvWVqst9zzz0mmO6kNcnT09PN43Rkk05EejW0jJhOdqplxnQCVX2f9P3KTjPMdV8MGTLEjKDSuTeyZ+s7338tAaNzcgAAAFwNN0f2YnQ2oBkTOgRcM9gK68c3AACu3AdpsEQDHI8//njWdRpA11qyWuZAv0poEEpr1T799NNZ21qxYkUzEV1uNdGV1kzXIJMzO1GzCatVq2YCSxq0d9X9CZR0Fy5cMBm+NWvWNJnQQEmjIwT0pICOaLpS1v6VPuv0QYWrsPfnjsnWzNEAACg6zUatKNI+iIlFAQDAFWm2n2ZSaoBbMwq3b99usgGddWQ1e9uZSahD4zXYoFmVGljPnsGpAQutY6tBcjVy5EiTrag1gTWYrlmLmi1IZiAA4HrQsjhaskbLzfTs2bPAZW8AAID9EEQHAABXpJniGhTXofEJCQkmOK51gseOHZt1n+eee84EwAcPHiynT5+Wm266yUzYlj1zT2v/am1fJ61JrMEMfR6dTFTLGuhjCGoAAK4HLYujpVy0v9HSNQAAAFeLci4AABQR+qDCxf4ErEE5F9gF5VyKDuVcAADFvZwLE4sCAAAAAAAAAJAHgugAAAAAAAAAAOSBIDoAAACAfLNZVUjYEJ9xAADgRBAdAAAAwFXz8vIyf5OTk61uCnBdOT/jzs88AACwL0+rGwAAAACg5PDw8JCyZctKQkKCWffz8xM3NzermwUUaga6BtD1M66fdf3MAwAAeyOIDgAAACBfQkJCzF9nIB1wRRpAd37WAQCAvRFEBwAAAJAvmnkeGhoqFStWlLS0NKubAxQ6LeFCBjoAAHAiiA4AAACgQDTISKARgJo5c6ZMmTJF4uLipGnTpjJjxgxp1aqV1c0CAKBQMLEoAAAAAAAosMWLF8vIkSNl3Lhxsm3bNhNE79ixIyWfAAAugyA6AAAAAAAosGnTpskjjzwigwYNkoYNG8rs2bPNpMNz5861umkAABQKgugAAAAAAKBAUlNTZevWrdKhQ4es69zd3c36hg0bLG0bAACFxXY10R0Oh/l79uxZq5sCALAZZ9/j7ItwbejTAQBWoU//n5MnT0pGRoZUqlQpx/W6vnfv3lwfk5KSYhanM2fOFGqfnnghvVCeBwBQfJ0tpD7javt02wXRz507Z/6GhYVZ3RQAgE1pX1SmTBmrm1Hi0acDAKxGn14wkyZNkgkTJlx2PX06AOCqjS9TpH267YLolStXltjYWAkICBA3N7drPlOhnbw+X2BgoNiJnbfd7tvPtrPtbHvB6Zlt7Zi1L8K1o08vHGy7Pbfd7tvPtrPt9OmFJzg4WDw8PCQ+Pj7H9boeEhKS62Oef/55MxGpU2Zmppw6dUqCgoLo04sY+yt/2F9Xj32VP+yv4t+n2y6IrrXZqlatWqjPqW+WXT/gdt52u28/2862201hbTvZaoWHPr1wse323Ha7bz/bzrZfC/r0P3h7e0tkZKSsWrVKunXrlhUU1/Vhw4bl+hgfHx+zZFe2bNlCbZedP+MFwf7KH/bX1WNf5Q/7q/j26bYLogMAAAAAgMKjWeUDBgyQFi1aSKtWrWT69OmSlJQkgwYNsrppAAAUCoLoAAAAAACgwHr37i0nTpyQsWPHSlxcnDRr1kyWL19+2WSjAACUVATRr4EOPxs3btxlw9DswM7bbvftZ9vZdrux87bbiZ3fZ7bdnttu9+1n29l2FD4t3ZJX+ZaixPucP+yv/GF/XT32Vf6wv4r//nJzaPV0AAAAAAAAAABwGffLrwIAAAAAAAAAAIogOgAAAAAAAAAAeSCIDgAAAAAAAABAHgiiX4OZM2dKjRo1xNfXV1q3bi2bNm0SO/juu++kc+fOUrlyZXFzc5PPPvtM7GDSpEnSsmVLCQgIkIoVK0q3bt0kKipK7GDWrFnSpEkTCQwMNEubNm3k66+/Fjt65ZVXzOd+xIgRYgfjx48325t9qV+/vtjF0aNH5YEHHpCgoCApVaqUREREyJYtW6xuFq4DO/bpdu3PFX06fbqiT6dPp0+3T7/90Ucfmc+73l/f+6+++krsJD/7a86cOXLzzTdLuXLlzNKhQwdbfC+61u+EixYtMsdV/U5hJ/ndX6dPn5ahQ4dKaGiomRCybt26tvr/mN/9NX36dKlXr57pt8LCwuSpp56SCxcuiB18V4DfKmvXrpUbbrjBfLZq164t8+fPL9Q2EUQvoMWLF8vIkSPNTLDbtm2Tpk2bSseOHSUhIUFcXVJSktle/c9vJ+vWrTMH+40bN8rKlSslLS1N7rjjDrM/XF3VqlXND82tW7eaHxu33XabdO3aVXbt2iV2snnzZnn77bdN8MFOGjVqJMePH89avv/+e7GD33//Xdq2bSteXl4mwLR792557bXXzI8JuBa79ul27c8VfTp9On06fTp9un367fXr18v9998vDz30kGzfvt0EOXX55ZdfxA7yu780CKX7a82aNbJhwwYTuNM+Uk9EubqCfic8dOiQPPPMM+bkg53kd3+lpqbK7bffbvbXxx9/bBIY9KRNlSpVxA7yu78WLlwoo0ePNvffs2ePvPvuu+Y5/va3v4kdJOXzt8rBgwelU6dO0q5dO9mxY4dJknj44YdlxYoVhdcoBwqkVatWjqFDh2atZ2RkOCpXruyYNGmSw070I7R06VKHHSUkJJjtX7duncOOypUr5/jXv/7lsItz58456tSp41i5cqXj1ltvdQwfPtxhB+PGjXM0bdrUYUejRo1y3HTTTVY3A0WAPt3e/bmiT6dPtwP6dPp0u/bbvXr1cnTq1CnHda1bt3Y8+uijDju41u856enpjoCAAMeCBQscrq4g+0r3z4033mj60QEDBji6du3qsIv87q9Zs2Y5wsPDHampqQ47yu/+0vvedtttOa4bOXKko23btg67kav4rfLcc885GjVqlOO63r17Ozp27Fho7SATvQD07Jlm7+iwJid3d3ezrmdqYQ9nzpwxf8uXLy92kpGRYYaq6VlBHQJuF5qxqGc1s/+/t4t9+/aZIVTh4eHSt29fiYmJETv4/PPPpUWLFtKzZ09T7qF58+YmUwKuhT4dij6dPt0u6NPp0+3Yb+v1l/5/1+xPO/TzhfE9Jzk52YzYcvU+sqD76u9//7s5ruhIBzspyP7SY7F+39B+uFKlStK4cWP5xz/+Yb6PuLqC7K8bb7zRPMZZ8uXXX381pW/uvvvuImt3SbKhCI71noX2TDZy8uRJ859c/9Nnp+t79+61rF0oOpmZmWZoiA4L1QO/HezcudN0eFp/y9/fX5YuXSoNGzYUO9AAgw630qHfdqN12rSOmNZh02HfEyZMMMMUdfir1hJ2ZfolRWsH65A7HTKn7/+TTz4p3t7eMmDAAKubh0JCnw76dPp0u6BPp0+3a78dFxeX6/31eldXGN9zRo0aZU6+ufqJx4LsKy2JpSU2tHSE3RRkf+mxePXq1eYkrgaD9+/fL0OGDDEnabRkiSsryP7661//ah530003aRURSU9Pl8cee8w25VzyK69j/dmzZ+X8+fOmrvy1IogOFICeOdUfHHapI6n0B5d+OdBsPa1fpj84tKasq//ojo2NleHDh5uauTr5h93cddddWZe1bqz+AK9evbosWbLE5bMtNLCmWWuaHaE0a03/38+ePZsf3IALoU+nT7cL+nT6dCC/dA4NPfmoddLteNy8knPnzkm/fv3MqJbg4GCrm1NijsWatf/OO++Ih4eHREZGmlr7U6ZMcfkgekHo/zvtt9566y3TZ+tJB/0e89JLL8mYMWOsbp4tEUQvAD1A6n/4+Pj4HNfrekhIiGXtQtEYNmyYfPnll2amYJ2cyy40U0dnN1ba2WkGz+uvv24m5XJlOnxKJ/rQGZ6d9Ayyvv9vvvmmpKSkmOOBXZQtW9bMoK4duKvTGeMvDSg1aNBAPvnkE8vahMJHn25v9On06fTp9Olw/X5br7drP38t33OmTp1qgujffvutLSZhzu++OnDggJkgs3PnzjmCxMrT09NMmlmrVi1xVQX5bOmxWCd4zt7X6rFYM4i13Il+P3FVBdlfGijXEzU6OaaKiIgwJfgGDx4sL7zwgikHgz8/1gcGBhZKFrpijxeA/sfWHxyrVq3KcbDUdTvVk7QbHT6jP7Z1yLMOQapZs6bYmX7m9cemq2vfvr0Z9q4Ze85FM5l0CJpettOPbZWYmGi+MOoXIFenpR30y2920dHRJmsProM+3Z7o03OiT6dPd3X06fbut/X67PdXOiLFDv18Qb/nvPrqqybbdfny5eY4aQf53Vf169e/rE/p0qWLtGvXzlwOCwsTV1aQz5Yei/XErfNkg/NYrP2QKwfQC7q/dD6CSwPlzu8qf8y1iSI/1hfaFKU2s2jRIoePj49j/vz5jt27dzsGDx7sKFu2rCMuLs7h6s6dO+fYvn27WfQjNG3aNHP58OHDDlf2+OOPO8qUKeNYu3at4/jx41lLcnKyw9WNHj3asW7dOsfBgwcdP//8s1l3c3NzfPPNNw47uvXWWx3Dhw932MHTTz9tPvP63v/www+ODh06OIKDgx0JCQkOV7dp0yaHp6enY+LEiY59+/Y5PvjgA4efn5/j/ffft7ppKGR27dPt2p8r+nT6dCf6dPp0uF6/3a9fP3Nsc9LPu77/U6dOdezZs8cxbtw4h5eXl2Pnzp0OO8jv/nrllVcc3t7ejo8//jhHH6nfG1xdfvfVpQYMGODo2rWrwy7yu79iYmIcAQEBjmHDhjmioqIcX375paNixYqOl19+2WEH+d1feqzS/fXhhx86fv31V/NdrVatWo5evXo57ODcn/xW0X2l+8xJ95H27c8++6w51s+cOdPh4eHhWL58eaG1iSD6NZgxY4ajWrVqpoNp1aqVY+PGjQ47WLNmjfkAX7poh+HKcttmXebNm+dwdQ8++KCjevXq5rNeoUIFR/v27W37Y9tuP7h79+7tCA0NNe99lSpVzPr+/fsddvHFF184GjdubL7s1K9f3/HOO+9Y3SRcJ3bs0+3anyv6dPp0J/p0+nS4Xr+t/68v7cuWLFniqFu3rrl/o0aNHMuWLXPYSX72l/YRufWRGtCzg/x+tuwcRC/I/lq/fr2jdevW5lgcHh5uTm6mp6c77CI/+ystLc0xfvx4Ezj39fV1hIWFOYYMGeL4/fffHXaw5k9+q+hf3WeXPqZZs2Zm/+rnq7C/27vpP4WX1w4AAAAAAAAAgOugJjoAAAAAAAAAAHkgiA4AAAAAAAAAQB4IogMAAAAAAAAAkAeC6AAAAAAAAAAA5IEgOgAAAAAAAAAAeSCIDgAAAAAAAABAHgiiAwAAAAAAAACQB4LoAAAAAAAAAADkgSA6gCLh5uYmn332mdXNAAAA14g+HQCAokf/C1iLIDpgAwMHDjQd7qXLnXfeaXXTAABAPtCnAwDgmuLi4uSJJ56Q8PBw8fHxkbCwMOncubOsWrXK6qYBEBFPqxsAoGjoj+t58+bluE47ZgAAULLQpwMA4FoOHTokbdu2lbJly8qUKVMkIiJC0tLSZMWKFTJ06FDZu3ev1U0EbI9MdMAm9Md1SEhIjqVcuXLmNs1gmzVrltx1111SqlQpc+b7448/zvH4nTt3ym233WZuDwoKksGDB0tiYmKO+8ydO1caNWpkXis0NFSGDRuW4/aTJ09K9+7dxc/PT+rUqSOff/55EWw5AACuhT4dAADXMmTIENOHb9q0Se677z6pW7eu6YdHjhwpGzduzPUxo0aNMvfTvlj7+zFjxpjAu9NPP/0k7dq1k4CAAAkMDJTIyEjZsmWLue3w4cMmy12/P5QuXdq81ldffVVk2wuURATRARja4WpnrR1t3759pU+fPrJnzx5zW1JSknTs2NF0sJs3b5aPPvpIvv322xw/qPUHu54h1x/i+uNcf0zXrl07x2tMmDBBevXqJT///LPcfffd5nVOnTpV5NsKAIAro08HAKDk0P5z+fLlpu/VgPalNDs9Nxocnz9/vuzevVtef/11mTNnjvzzn//Mul375qpVq5r+fuvWrTJ69Gjx8vIyt+lrpaSkyHfffWf6+smTJ4u/v/913ErABTgAuLwBAwY4PDw8HKVLl86xTJw40dyuh4LHHnssx2Nat27tePzxx83ld955x1GuXDlHYmJi1u3Lli1zuLu7O+Li4sx65cqVHS+88EKebdDXePHFF7PW9bn0uq+//rrQtxcAAFdFnw4AgGv58ccfTT/66aefXvF+ep+lS5fmefuUKVMckZGRWesBAQGO+fPn53rfiIgIx/jx46+h1YD9UBMdsAkdxqWZZdmVL18+63KbNm1y3KbrO3bsMJc1e61p06Y5zoprvbbMzEyJiooyw86OHTsm7du3v2IbmjRpknVZn0uHlCUkJFzztgEAYCf06QAAuI4/4uP5t3jxYnnjjTfkwIEDpixbenq66Y+dtBTMww8/LP/+97+lQ4cO0rNnT6lVq5a57cknn5THH39cvvnmG3ObjmDL3rcDuBzlXACb0B+4OhQ7+5L9B/e10JqqV8M5dMxJf6jrj3YAAHD16NMBAHAdOreI9qP5mTx0w4YNplyLllT78ssvZfv27fLCCy9Iampq1n3Gjx8vu3btkk6dOsnq1aulYcOGsnTpUnObBtd//fVX6devnynn0qJFC5kxY8Z12T7AVRBEB2BcOlmJrjdo0MBc1r9aV1XrqDr98MMP4u7uLvXq1TO12GrUqCGrVq0q8nYDAICc6NMBACg59ES4zlcyc+bMHP2z0+nTpy+7bv369VK9enUTONcAuAbidbLQS+nEo0899ZTJOL/33ntl3rx5WbeFhYXJY489Jp9++qk8/fTTpqY6gLwRRAdsQicNiYuLy7GcPHky63adWGzu3LkSHR0t48aNM7OCOycZ0zPcvr6+MmDAAPnll19kzZo18sQTT5iz1pUqVco6y/3aa6+Z4WT79u2Tbdu2cSYbAIDrgD4dAADXogH0jIwMadWqlXzyySem/9USbNoXX1qmTWnQPCYmRhYtWmTKuej9nFnm6vz586bvX7t2rQmu6wlznWDUeVJ9xIgRsmLFCjl48KDp5/X7gPM2ALmjJjpgEzrbd2hoaI7rNOPMOWRswoQJpgMeMmSIud+HH35ohnspPz8/08EOHz5cWrZsada1Ztq0adOynkt/jF+4cMHMBv7MM89IcHCw9OjRo4i3EgAA10efDgCAawkPDzfB7IkTJ5qs8OPHj0uFChUkMjLysnlQVJcuXUyGuQbK9eS6lmwZM2aMORGuPDw85LfffpP+/ftLfHy86cs1E12/IygN2A8dOlSOHDli6qjfeeedpt8HkDc3nV30CrcDsAGtv6Znrbt162Z1UwAAwDWgTwcAAAAKH+VcAAAAAAAAAADIA0F0AAAAAAAAAADyQDkXAAAAAAAAAADyQCY6AAAAAAAAAAB5IIgOAAAAAAAAAEAeCKIDAAAAAAAAAJAHgugAAAAAAAAAAOSBIDoAAAAAAAAAAHkgiA4AAAAAAAAAQB4IogMAAAAAAAAAkAeC6AAAAAAAAAAA5IEgOgAAAAAAAAAAkrv/B071PXjc/eAvAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1500x500 with 3 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2025-07-14 13:11:57,628 - INFO - Testing model predictions on M4 chip\n",
      "2025-07-14 13:11:57,742 - INFO - 'this movie is absolutely amazing and fantastic wit...' -> Positive (0.629)\n",
      "2025-07-14 13:11:57,746 - INFO - 'terrible film with awful acting and poor boring st...' -> Negative (0.691)\n",
      "2025-07-14 13:11:57,750 - INFO - 'good story but disappointing execution and weak ch...' -> Positive (0.542)\n",
      "2025-07-14 13:11:57,760 - INFO - 'excellent film with brilliant performances and won...' -> Positive (0.626)\n",
      "2025-07-14 13:11:57,764 - INFO - 'boring movie with terrible plot and awful disappoi...' -> Negative (0.713)\n",
      "2025-07-14 13:11:57,767 - INFO - 'fantastic entertainment with amazing visuals and g...' -> Positive (0.706)\n",
      "2025-07-14 13:11:57,771 - INFO - 'poor acting with boring dialogue and terrible char...' -> Negative (0.649)\n",
      "2025-07-14 13:11:57,771 - INFO - Final test accuracy: 0.8667\n",
      "2025-07-14 13:11:57,772 - INFO - M4 Transformer implementation completed successfully!\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "import torch.optim as optim\n",
    "from torch.utils.data import DataLoader, Dataset\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.metrics import accuracy_score, classification_report\n",
    "import logging\n",
    "import math\n",
    "import random\n",
    "\n",
    "# Configure logging\n",
    "logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\n",
    "logger = logging.getLogger(__name__)\n",
    "\n",
    "# Set seeds for reproducibility\n",
    "torch.manual_seed(42)\n",
    "np.random.seed(42)\n",
    "random.seed(42)\n",
    "\n",
    "class TextDataset(Dataset):\n",
    "    def __init__(self, texts, labels, vocab_to_idx, max_length=32):\n",
    "        self.texts = texts\n",
    "        self.labels = labels\n",
    "        self.vocab_to_idx = vocab_to_idx\n",
    "        self.max_length = max_length\n",
    "        \n",
    "    def __len__(self):\n",
    "        return len(self.texts)\n",
    "    \n",
    "    def __getitem__(self, idx):\n",
    "        text = self.texts[idx]\n",
    "        label = self.labels[idx]\n",
    "        \n",
    "        tokens = text.lower().split()\n",
    "        token_ids = [self.vocab_to_idx.get(token, self.vocab_to_idx['<UNK>']) for token in tokens]\n",
    "        \n",
    "        if len(token_ids) > self.max_length:\n",
    "            token_ids = token_ids[:self.max_length]\n",
    "        else:\n",
    "            token_ids.extend([self.vocab_to_idx['<PAD>']] * (self.max_length - len(token_ids)))\n",
    "        \n",
    "        return torch.tensor(token_ids, dtype=torch.long), torch.tensor(label, dtype=torch.long)\n",
    "\n",
    "class PositionalEncoding(nn.Module):\n",
    "    def __init__(self, d_model, max_len=512):\n",
    "        super().__init__()\n",
    "        self.dropout = nn.Dropout(0.1)\n",
    "        \n",
    "        pe = torch.zeros(max_len, d_model)\n",
    "        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)\n",
    "        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))\n",
    "        \n",
    "        pe[:, 0::2] = torch.sin(position * div_term)\n",
    "        pe[:, 1::2] = torch.cos(position * div_term)\n",
    "        \n",
    "        self.register_buffer('pe', pe)\n",
    "        \n",
    "    def forward(self, x):\n",
    "        # x shape: (batch_size, seq_len, d_model)\n",
    "        seq_len = x.size(1)\n",
    "        x = x + self.pe[:seq_len, :].unsqueeze(0)\n",
    "        return self.dropout(x)\n",
    "\n",
    "class MultiHeadAttention(nn.Module):\n",
    "    def __init__(self, d_model, num_heads, dropout=0.1):\n",
    "        super().__init__()\n",
    "        assert d_model % num_heads == 0\n",
    "        \n",
    "        self.d_model = d_model\n",
    "        self.num_heads = num_heads\n",
    "        self.d_k = d_model // num_heads\n",
    "        \n",
    "        self.W_q = nn.Linear(d_model, d_model)\n",
    "        self.W_k = nn.Linear(d_model, d_model)\n",
    "        self.W_v = nn.Linear(d_model, d_model)\n",
    "        self.W_o = nn.Linear(d_model, d_model)\n",
    "        \n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        \n",
    "    def scaled_dot_product_attention(self, Q, K, V, mask=None):\n",
    "        d_k = Q.size(-1)\n",
    "        scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k)\n",
    "        \n",
    "        if mask is not None:\n",
    "            scores = scores.masked_fill(mask == 0, -1e9)\n",
    "        \n",
    "        attention_weights = F.softmax(scores, dim=-1)\n",
    "        attention_weights = self.dropout(attention_weights)\n",
    "        \n",
    "        return torch.matmul(attention_weights, V), attention_weights\n",
    "    \n",
    "    def forward(self, query, key, value, mask=None):\n",
    "        batch_size = query.size(0)\n",
    "        \n",
    "        # Linear transformations\n",
    "        Q = self.W_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
    "        K = self.W_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
    "        V = self.W_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
    "        \n",
    "        # Attention\n",
    "        attention_output, attention_weights = self.scaled_dot_product_attention(Q, K, V, mask)\n",
    "        \n",
    "        # Concatenate heads\n",
    "        attention_output = attention_output.transpose(1, 2).contiguous().view(\n",
    "            batch_size, -1, self.d_model)\n",
    "        \n",
    "        return self.W_o(attention_output)\n",
    "\n",
    "class FeedForward(nn.Module):\n",
    "    def __init__(self, d_model, d_ff, dropout=0.1):\n",
    "        super().__init__()\n",
    "        self.linear1 = nn.Linear(d_model, d_ff)\n",
    "        self.linear2 = nn.Linear(d_ff, d_model)\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        \n",
    "    def forward(self, x):\n",
    "        return self.linear2(self.dropout(F.relu(self.linear1(x))))\n",
    "\n",
    "class TransformerBlock(nn.Module):\n",
    "    def __init__(self, d_model, num_heads, d_ff, dropout=0.1):\n",
    "        super().__init__()\n",
    "        self.attention = MultiHeadAttention(d_model, num_heads, dropout)\n",
    "        self.feed_forward = FeedForward(d_model, d_ff, dropout)\n",
    "        self.norm1 = nn.LayerNorm(d_model)\n",
    "        self.norm2 = nn.LayerNorm(d_model)\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        \n",
    "    def forward(self, x, mask=None):\n",
    "        # Self-attention with residual connection\n",
    "        attn_output = self.attention(x, x, x, mask)\n",
    "        x = self.norm1(x + self.dropout(attn_output))\n",
    "        \n",
    "        # Feed-forward with residual connection\n",
    "        ff_output = self.feed_forward(x)\n",
    "        x = self.norm2(x + self.dropout(ff_output))\n",
    "        \n",
    "        return x\n",
    "\n",
    "class TransformerClassifier(nn.Module):\n",
    "    def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff, max_len, num_classes, dropout=0.1):\n",
    "        super().__init__()\n",
    "        self.d_model = d_model\n",
    "        self.embedding = nn.Embedding(vocab_size, d_model)\n",
    "        self.pos_encoding = PositionalEncoding(d_model, max_len)\n",
    "        \n",
    "        self.transformer_blocks = nn.ModuleList([\n",
    "            TransformerBlock(d_model, num_heads, d_ff, dropout)\n",
    "            for _ in range(num_layers)\n",
    "        ])\n",
    "        \n",
    "        self.norm = nn.LayerNorm(d_model)\n",
    "        self.classifier = nn.Linear(d_model, num_classes)\n",
    "        self.dropout = nn.Dropout(dropout)\n",
    "        \n",
    "    def forward(self, x, mask=None):\n",
    "        # Input shape: (batch_size, seq_len)\n",
    "        batch_size, seq_len = x.size()\n",
    "        \n",
    "        # Embedding: (batch_size, seq_len, d_model)\n",
    "        x = self.embedding(x) * math.sqrt(self.d_model)\n",
    "        \n",
    "        # Positional encoding\n",
    "        x = self.pos_encoding(x)\n",
    "        \n",
    "        # Transformer blocks\n",
    "        for transformer in self.transformer_blocks:\n",
    "            x = transformer(x, mask)\n",
    "        \n",
    "        # Final normalization\n",
    "        x = self.norm(x)\n",
    "        \n",
    "        # Global average pooling: (batch_size, d_model)\n",
    "        x = x.mean(dim=1)\n",
    "        \n",
    "        # Classification: (batch_size, num_classes)\n",
    "        x = self.classifier(x)\n",
    "        \n",
    "        return x\n",
    "\n",
    "def create_extensive_dataset():\n",
    "    logger.info(\"Creating extensive movie review dataset for M4 chip\")\n",
    "    \n",
    "    # 100 positive reviews\n",
    "    positive_reviews = [\n",
    "        \"this movie is absolutely fantastic and amazing\",\n",
    "        \"i loved every minute of this incredible film\",\n",
    "        \"outstanding performance by all actors brilliant\",\n",
    "        \"best movie i have seen in years wonderful\",\n",
    "        \"excellent story and great cinematography\",\n",
    "        \"this film exceeded all my expectations perfectly\",\n",
    "        \"amazing plot and fantastic character development\",\n",
    "        \"absolutely loved the soundtrack and visuals\",\n",
    "        \"this is a masterpiece of modern cinema\",\n",
    "        \"fantastic acting and brilliant direction\",\n",
    "        \"incredible storyline with amazing twists\",\n",
    "        \"wonderful performances throughout the film\",\n",
    "        \"excellent directing and great production values\",\n",
    "        \"loved the characters and their development\",\n",
    "        \"fantastic visual effects and sound design\",\n",
    "        \"amazing chemistry between the actors\",\n",
    "        \"brilliant writing and excellent execution\",\n",
    "        \"outstanding cinematography and direction\",\n",
    "        \"wonderful movie with great emotional depth\",\n",
    "        \"excellent film with fantastic performances\",\n",
    "        \"great story with amazing character arcs\",\n",
    "        \"loved the plot and character interactions\",\n",
    "        \"fantastic movie with excellent pacing\",\n",
    "        \"wonderful acting and brilliant storytelling\",\n",
    "        \"amazing film with great visual appeal\",\n",
    "        \"excellent direction and outstanding cast\",\n",
    "        \"loved the creativity and original story\",\n",
    "        \"fantastic entertainment with great humor\",\n",
    "        \"wonderful experience with amazing visuals\",\n",
    "        \"excellent movie with brilliant performances\",\n",
    "        \"superb acting and incredible storytelling\",\n",
    "        \"amazing cinematography and great direction\",\n",
    "        \"fantastic film with wonderful characters\",\n",
    "        \"excellent plot with brilliant execution\",\n",
    "        \"loved the soundtrack and visual effects\",\n",
    "        \"wonderful movie with great performances\",\n",
    "        \"fantastic story with amazing development\",\n",
    "        \"excellent film with brilliant acting\",\n",
    "        \"amazing direction and wonderful cast\",\n",
    "        \"great movie with fantastic visuals\",\n",
    "        \"excellent entertainment with brilliant story\",\n",
    "        \"wonderful film with amazing performances\",\n",
    "        \"fantastic movie with great character work\",\n",
    "        \"amazing story with excellent direction\",\n",
    "        \"brilliant film with wonderful acting\",\n",
    "        \"excellent movie with fantastic plot\",\n",
    "        \"great film with amazing performances\",\n",
    "        \"wonderful story with brilliant execution\",\n",
    "        \"fantastic acting and excellent direction\",\n",
    "        \"amazing movie with great entertainment value\"\n",
    "    ] * 2  # Duplicate to get 100\n",
    "    \n",
    "    # 100 negative reviews\n",
    "    negative_reviews = [\n",
    "        \"this movie was terrible and boring\",\n",
    "        \"worst film i have ever watched\",\n",
    "        \"awful acting and poor storyline\",\n",
    "        \"complete waste of time and money\",\n",
    "        \"terrible plot and bad character development\",\n",
    "        \"boring and uninteresting throughout\",\n",
    "        \"poor directing and weak performances\",\n",
    "        \"disappointing and predictable story\",\n",
    "        \"bad cinematography and awful soundtrack\",\n",
    "        \"terrible movie with no redeeming qualities\",\n",
    "        \"awful script with poor execution\",\n",
    "        \"boring storyline with terrible acting\",\n",
    "        \"disappointing film with weak characters\",\n",
    "        \"poor production and bad direction\",\n",
    "        \"terrible dialogue and awful performances\",\n",
    "        \"boring plot with predictable ending\",\n",
    "        \"awful movie with poor character development\",\n",
    "        \"disappointing story with weak execution\",\n",
    "        \"terrible film with boring characters\",\n",
    "        \"poor acting and awful screenplay\",\n",
    "        \"boring movie with terrible pacing\",\n",
    "        \"awful direction and poor cinematography\",\n",
    "        \"disappointing film with weak storyline\",\n",
    "        \"terrible performances and boring plot\",\n",
    "        \"poor script with awful character development\",\n",
    "        \"boring film with disappointing ending\",\n",
    "        \"awful movie with terrible acting\",\n",
    "        \"disappointing story with poor execution\",\n",
    "        \"terrible film with boring dialogue\",\n",
    "        \"poor movie with awful performances\",\n",
    "        \"boring story with terrible direction\",\n",
    "        \"awful film with poor character work\",\n",
    "        \"disappointing movie with weak plot\",\n",
    "        \"terrible acting and boring story\",\n",
    "        \"poor film with awful direction\",\n",
    "        \"boring movie with terrible performances\",\n",
    "        \"awful story with disappointing execution\",\n",
    "        \"terrible film with poor acting\",\n",
    "        \"boring plot with awful characters\",\n",
    "        \"disappointing movie with terrible story\",\n",
    "        \"poor acting and boring direction\",\n",
    "        \"awful film with terrible plot\",\n",
    "        \"boring movie with disappointing performances\",\n",
    "        \"terrible story with poor execution\",\n",
    "        \"awful acting and boring film\",\n",
    "        \"disappointing plot with terrible direction\",\n",
    "        \"poor movie with awful story\",\n",
    "        \"boring film with terrible acting\",\n",
    "        \"awful direction and disappointing story\",\n",
    "        \"terrible movie with boring performances\"\n",
    "    ] * 2  # Duplicate to get 100\n",
    "    \n",
    "    texts = positive_reviews + negative_reviews\n",
    "    labels = [1] * len(positive_reviews) + [0] * len(negative_reviews)\n",
    "    \n",
    "    # Shuffle\n",
    "    combined = list(zip(texts, labels))\n",
    "    random.shuffle(combined)\n",
    "    texts, labels = zip(*combined)\n",
    "    \n",
    "    logger.info(f\"Created dataset with {len(texts)} samples\")\n",
    "    logger.info(f\"Positive: {len(positive_reviews)}, Negative: {len(negative_reviews)}\")\n",
    "    \n",
    "    return list(texts), list(labels)\n",
    "\n",
    "def build_vocabulary(texts, min_freq=2):\n",
    "    logger.info(\"Building vocabulary from text data\")\n",
    "    \n",
    "    word_counts = {}\n",
    "    for text in texts:\n",
    "        words = text.lower().split()\n",
    "        for word in words:\n",
    "            word_counts[word] = word_counts.get(word, 0) + 1\n",
    "    \n",
    "    vocab_to_idx = {'<PAD>': 0, '<UNK>': 1}\n",
    "    idx = 2\n",
    "    \n",
    "    for word, count in word_counts.items():\n",
    "        if count >= min_freq:\n",
    "            vocab_to_idx[word] = idx\n",
    "            idx += 1\n",
    "    \n",
    "    logger.info(f\"Vocabulary size: {len(vocab_to_idx)}\")\n",
    "    return vocab_to_idx\n",
    "\n",
    "def create_padding_mask(x, pad_idx=0):\n",
    "    # Create mask for padding tokens\n",
    "    mask = (x != pad_idx).unsqueeze(1).unsqueeze(2)\n",
    "    return mask\n",
    "\n",
    "def train_model(model, train_loader, val_loader, num_epochs, device):\n",
    "    logger.info(\"Starting model training\")\n",
    "    \n",
    "    criterion = nn.CrossEntropyLoss()\n",
    "    optimizer = optim.AdamW(model.parameters(), lr=0.0001, weight_decay=0.01)\n",
    "    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)\n",
    "    \n",
    "    train_losses = []\n",
    "    val_accuracies = []\n",
    "    best_val_acc = 0\n",
    "    patience = 5\n",
    "    patience_counter = 0\n",
    "    \n",
    "    for epoch in range(num_epochs):\n",
    "        logger.info(f\"Epoch {epoch+1}/{num_epochs}\")\n",
    "        \n",
    "        # Training\n",
    "        model.train()\n",
    "        total_loss = 0\n",
    "        num_batches = 0\n",
    "        \n",
    "        for batch_idx, (data, target) in enumerate(train_loader):\n",
    "            data, target = data.to(device), target.to(device)\n",
    "            \n",
    "            # Debug shapes on first batch\n",
    "            if batch_idx == 0 and epoch == 0:\n",
    "                logger.info(f\"Input data shape: {data.shape}\")\n",
    "                logger.info(f\"Target shape: {target.shape}\")\n",
    "            \n",
    "            optimizer.zero_grad()\n",
    "            output = model(data)\n",
    "            \n",
    "            # Debug output shape\n",
    "            if batch_idx == 0 and epoch == 0:\n",
    "                logger.info(f\"Model output shape: {output.shape}\")\n",
    "            \n",
    "            loss = criterion(output, target)\n",
    "            loss.backward()\n",
    "            \n",
    "            # Gradient clipping\n",
    "            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)\n",
    "            \n",
    "            optimizer.step()\n",
    "            \n",
    "            total_loss += loss.item()\n",
    "            num_batches += 1\n",
    "            \n",
    "            if batch_idx % 20 == 0:\n",
    "                logger.info(f\"Batch {batch_idx}/{len(train_loader)}, Loss: {loss.item():.4f}\")\n",
    "        \n",
    "        avg_loss = total_loss / num_batches\n",
    "        train_losses.append(avg_loss)\n",
    "        \n",
    "        # Validation\n",
    "        model.eval()\n",
    "        correct = 0\n",
    "        total = 0\n",
    "        \n",
    "        with torch.no_grad():\n",
    "            for data, target in val_loader:\n",
    "                data, target = data.to(device), target.to(device)\n",
    "                output = model(data)\n",
    "                _, predicted = torch.max(output, 1)\n",
    "                total += target.size(0)\n",
    "                correct += (predicted == target).sum().item()\n",
    "        \n",
    "        val_accuracy = 100 * correct / total\n",
    "        val_accuracies.append(val_accuracy)\n",
    "        \n",
    "        # Early stopping and model saving\n",
    "        if val_accuracy > best_val_acc:\n",
    "            best_val_acc = val_accuracy\n",
    "            torch.save(model.state_dict(), 'best_transformer_model.pth')\n",
    "            patience_counter = 0\n",
    "        else:\n",
    "            patience_counter += 1\n",
    "        \n",
    "        logger.info(f\"Epoch {epoch+1} - Loss: {avg_loss:.4f}, Val Acc: {val_accuracy:.2f}%\")\n",
    "        \n",
    "        # Early stopping\n",
    "        if patience_counter >= patience:\n",
    "            logger.info(f\"Early stopping at epoch {epoch+1}\")\n",
    "            break\n",
    "            \n",
    "        scheduler.step()\n",
    "    \n",
    "    # Load best model\n",
    "    model.load_state_dict(torch.load('best_transformer_model.pth'))\n",
    "    logger.info(f\"Best validation accuracy: {best_val_acc:.2f}%\")\n",
    "    \n",
    "    return train_losses, val_accuracies\n",
    "\n",
    "def evaluate_model(model, test_loader, device):\n",
    "    logger.info(\"Evaluating model on test set\")\n",
    "    \n",
    "    model.eval()\n",
    "    all_predictions = []\n",
    "    all_targets = []\n",
    "    \n",
    "    with torch.no_grad():\n",
    "        for data, target in test_loader:\n",
    "            data, target = data.to(device), target.to(device)\n",
    "            output = model(data)\n",
    "            _, predicted = torch.max(output, 1)\n",
    "            \n",
    "            all_predictions.extend(predicted.cpu().numpy())\n",
    "            all_targets.extend(target.cpu().numpy())\n",
    "    \n",
    "    accuracy = accuracy_score(all_targets, all_predictions)\n",
    "    logger.info(f\"Test Accuracy: {accuracy:.4f}\")\n",
    "    \n",
    "    report = classification_report(all_targets, all_predictions, target_names=['Negative', 'Positive'])\n",
    "    logger.info(f\"Classification Report:\\n{report}\")\n",
    "    \n",
    "    return accuracy, all_predictions, all_targets\n",
    "\n",
    "def main():\n",
    "    logger.info(\"Starting M4-optimized Transformer implementation\")\n",
    "    \n",
    "    # M4 chip setup\n",
    "    if torch.backends.mps.is_available():\n",
    "        device = torch.device('mps')\n",
    "        logger.info(\"Using Apple Silicon M4 MPS acceleration\")\n",
    "    else:\n",
    "        device = torch.device('cpu')\n",
    "        logger.info(\"Using CPU\")\n",
    "    \n",
    "    # Create extensive dataset\n",
    "    texts, labels = create_extensive_dataset()\n",
    "    vocab_to_idx = build_vocabulary(texts)\n",
    "    \n",
    "    # Proper data splitting\n",
    "    X_train, X_temp, y_train, y_temp = train_test_split(\n",
    "        texts, labels, test_size=0.3, random_state=42, stratify=labels\n",
    "    )\n",
    "    X_val, X_test, y_val, y_test = train_test_split(\n",
    "        X_temp, y_temp, test_size=0.5, random_state=42, stratify=y_temp\n",
    "    )\n",
    "    \n",
    "    logger.info(f\"Dataset splits - Train: {len(X_train)}, Val: {len(X_val)}, Test: {len(X_test)}\")\n",
    "    \n",
    "    # Create datasets\n",
    "    max_length = 24\n",
    "    train_dataset = TextDataset(X_train, y_train, vocab_to_idx, max_length)\n",
    "    val_dataset = TextDataset(X_val, y_val, vocab_to_idx, max_length)\n",
    "    test_dataset = TextDataset(X_test, y_test, vocab_to_idx, max_length)\n",
    "    \n",
    "    # Data loaders optimized for M4\n",
    "    train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=0)\n",
    "    val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False, num_workers=0)\n",
    "    test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False, num_workers=0)\n",
    "    \n",
    "    # Model configuration optimized for M4\n",
    "    model = TransformerClassifier(\n",
    "        vocab_size=len(vocab_to_idx),\n",
    "        d_model=128,\n",
    "        num_heads=8,\n",
    "        num_layers=4,\n",
    "        d_ff=256,\n",
    "        max_len=max_length,\n",
    "        num_classes=2,\n",
    "        dropout=0.1\n",
    "    ).to(device)\n",
    "    \n",
    "    total_params = sum(p.numel() for p in model.parameters())\n",
    "    logger.info(f\"Total parameters: {total_params:,}\")\n",
    "    \n",
    "    # Train model\n",
    "    train_losses, val_accuracies = train_model(model, train_loader, val_loader, num_epochs=30, device=device)\n",
    "    \n",
    "    # Evaluate\n",
    "    test_accuracy, predictions, targets = evaluate_model(model, test_loader, device)\n",
    "    \n",
    "    # Visualization\n",
    "    plt.figure(figsize=(15, 5))\n",
    "    \n",
    "    plt.subplot(1, 3, 1)\n",
    "    plt.plot(train_losses, label='Training Loss')\n",
    "    plt.title('Training Loss')\n",
    "    plt.xlabel('Epoch')\n",
    "    plt.ylabel('Loss')\n",
    "    plt.legend()\n",
    "    \n",
    "    plt.subplot(1, 3, 2)\n",
    "    plt.plot(val_accuracies, label='Validation Accuracy')\n",
    "    plt.title('Validation Accuracy')\n",
    "    plt.xlabel('Epoch')\n",
    "    plt.ylabel('Accuracy (%)')\n",
    "    plt.legend()\n",
    "    \n",
    "    plt.subplot(1, 3, 3)\n",
    "    plt.hist(predictions, bins=2, alpha=0.7, label='Predictions')\n",
    "    plt.hist(targets, bins=2, alpha=0.7, label='Targets')\n",
    "    plt.title('Prediction Distribution')\n",
    "    plt.xlabel('Class')\n",
    "    plt.ylabel('Count')\n",
    "    plt.legend()\n",
    "    \n",
    "    plt.tight_layout()\n",
    "    plt.savefig('m4_transformer_results.png', dpi=300)\n",
    "    plt.show()\n",
    "    \n",
    "    # Test predictions\n",
    "    def predict_sentiment(text, model, vocab_to_idx, device, max_length=24):\n",
    "        model.eval()\n",
    "        tokens = text.lower().split()\n",
    "        token_ids = [vocab_to_idx.get(token, vocab_to_idx['<UNK>']) for token in tokens]\n",
    "        \n",
    "        if len(token_ids) > max_length:\n",
    "            token_ids = token_ids[:max_length]\n",
    "        else:\n",
    "            token_ids.extend([vocab_to_idx['<PAD>']] * (max_length - len(token_ids)))\n",
    "        \n",
    "        input_tensor = torch.tensor([token_ids], dtype=torch.long).to(device)\n",
    "        \n",
    "        with torch.no_grad():\n",
    "            output = model(input_tensor)\n",
    "            probabilities = F.softmax(output, dim=1)\n",
    "            _, predicted = torch.max(output, 1)\n",
    "        \n",
    "        sentiment = \"Positive\" if predicted.item() == 1 else \"Negative\"\n",
    "        confidence = probabilities[0][predicted.item()].item()\n",
    "        \n",
    "        return sentiment, confidence\n",
    "    \n",
    "    logger.info(\"Testing model predictions on M4 chip\")\n",
    "    \n",
    "    test_sentences = [\n",
    "        \"this movie is absolutely amazing and fantastic with great acting\",\n",
    "        \"terrible film with awful acting and poor boring story\",\n",
    "        \"good story but disappointing execution and weak characters\",\n",
    "        \"excellent film with brilliant performances and wonderful direction\",\n",
    "        \"boring movie with terrible plot and awful disappointing ending\",\n",
    "        \"fantastic entertainment with amazing visuals and great soundtrack\",\n",
    "        \"poor acting with boring dialogue and terrible character development\"\n",
    "    ]\n",
    "    \n",
    "    for sentence in test_sentences:\n",
    "        sentiment, confidence = predict_sentiment(sentence, model, vocab_to_idx, device)\n",
    "        logger.info(f\"'{sentence[:50]}...' -> {sentiment} ({confidence:.3f})\")\n",
    "    \n",
    "    logger.info(f\"Final test accuracy: {test_accuracy:.4f}\")\n",
    "    logger.info(\"M4 Transformer implementation completed successfully!\")\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "37c4844e-d5a5-4cc7-8dc7-9750c318bfcd",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}