File size: 154,647 Bytes
ad654f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 |
{
"cells": [
{
"cell_type": "markdown",
"id": "7e66aa3d-a00c-491a-91ad-2a64feb2805d",
"metadata": {},
"source": [
"# PHASE 1: EXPLAIN & BREAKDOWN (LEARNING PHASE)\n",
"\n",
"## 1. Simple Explanation of Transformers\n",
"\n",
"Transformers are a revolutionary neural network architecture that processes sequences (like sentences) by looking at all parts simultaneously rather than one word at a time. Think of it like reading a paragraph where you can instantly see how each word relates to every other word, rather than reading left-to-right. The key innovation is the \"attention mechanism\" - imagine highlighting the most important words in a sentence that help you understand the current word you're focusing on. This parallel processing makes Transformers much faster to train than older models like RNNs, and their ability to capture long-range dependencies makes them incredibly powerful for language tasks. They're the foundation behind ChatGPT, BERT, and most modern AI language models.\n",
"\n",
"## 2. Detailed Roadmap\n",
"\n",
"**Step 1: Foundation Concepts**\n",
"- Sequence-to-sequence problems\n",
"- Limitations of RNNs and CNNs for sequences\n",
"- Parallel processing vs sequential processing\n",
"\n",
"**Step 2: Core Attention Mechanism**\n",
"- Self-attention concept\n",
"- Query, Key, Value matrices\n",
"- Attention scores and weights\n",
"- Scaled dot-product attention\n",
"\n",
"**Step 3: Multi-Head Attention**\n",
"- Why multiple attention heads\n",
"- Parallel attention computations\n",
"- Concatenation and linear transformation\n",
"\n",
"**Step 4: Positional Encoding**\n",
"- Why position matters in sequences\n",
"- Sinusoidal encoding\n",
"- Learned vs fixed positional embeddings\n",
"\n",
"**Step 5: Encoder Architecture**\n",
"- Layer normalization\n",
"- Residual connections\n",
"- Feed-forward networks\n",
"- Encoder block stacking\n",
"\n",
"**Step 6: Decoder Architecture**\n",
"- Masked self-attention\n",
"- Encoder-decoder attention\n",
"- Autoregressive generation\n",
"\n",
"**Step 7: Training and Optimization**\n",
"- Loss functions for different tasks\n",
"- Teacher forcing\n",
"- Beam search for inference\n",
"\n",
"## 3. Key Formulas\n",
"\n",
"**Attention Formula:**\n",
"$$\\text{Attention}(Q, K, V) = \\text{softmax}\\left(\\frac{QK^T}{\\sqrt{d_k}}\\right)V$$\n",
"\n",
"- Q (Query): What we're looking for (d_model × d_k)\n",
"- K (Key): What we're looking at (d_model × d_k) \n",
"- V (Value): The actual information we extract (d_model × d_v)\n",
"- $d_k$: Dimension of key vectors (typically d_model/num_heads)\n",
"- $\\sqrt{d_k}$: Scaling factor to prevent softmax saturation\n",
"\n",
"**Multi-Head Attention:**\n",
"$$\\text{MultiHead}(Q, K, V) = \\text{Concat}(\\text{head}_1, ..., \\text{head}_h)W^O$$\n",
"$$\\text{head}_i = \\text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$$\n",
"\n",
"- $W_i^Q, W_i^K, W_i^V$: Learned projection matrices for each head\n",
"- $W^O$: Output projection matrix (d_model × d_model)\n",
"- h: Number of attention heads\n",
"\n",
"**Positional Encoding:**\n",
"$$PE_{(pos, 2i)} = \\sin(pos/10000^{2i/d_{model}})$$\n",
"$$PE_{(pos, 2i+1)} = \\cos(pos/10000^{2i/d_{model}})$$\n",
"\n",
"- pos: Position in sequence\n",
"- i: Dimension index\n",
"- Creates unique encoding for each position\n",
"\n",
"## 4. Step-by-Step Numerical Example\n",
"\n",
"Let's work through a simple attention calculation with a 3-word sequence: \"I love AI\"\n",
"\n",
"**Given:**\n",
"- Sequence length: 3\n",
"- Embedding dimension: 4\n",
"- Single attention head\n",
"\n",
"**Step 1: Input Embeddings**\n",
"```\n",
"X = [[1, 0, 1, 0], # \"I\"\n",
" [0, 1, 0, 1], # \"love\" \n",
" [1, 1, 0, 0]] # \"AI\"\n",
"```\n",
"\n",
"**Step 2: Create Q, K, V matrices**\n",
"```\n",
"W_Q = [[1, 0], [0, 1], [1, 1], [0, 0]] # 4×2\n",
"W_K = [[0, 1], [1, 0], [0, 1], [1, 1]] # 4×2 \n",
"W_V = [[1, 1], [0, 1], [1, 0], [0, 0]] # 4×2\n",
"```\n",
"\n",
"**Step 3: Compute Q, K, V**\n",
"```\n",
"Q = X × W_Q = [[2, 1], [1, 2], [1, 1]] # 3×2\n",
"K = X × W_K = [[1, 2], [2, 1], [1, 1]] # 3×2\n",
"V = X × W_V = [[2, 1], [1, 1], [1, 1]] # 3×2\n",
"```\n",
"\n",
"**Step 4: Attention Scores**\n",
"```\n",
"Scores = Q × K^T / √2 = [[2, 1], [1, 2], [1, 1]] × [[1, 2, 1], [2, 1, 1]] / 1.41\n",
" = [[4, 5, 3], [5, 4, 3], [3, 3, 2]] / 1.41\n",
" = [[2.83, 3.54, 2.12], [3.54, 2.83, 2.12], [2.12, 2.12, 1.41]]\n",
"```\n",
"\n",
"**Step 5: Softmax**\n",
"```\n",
"Attention_weights = softmax(Scores) ≈ \n",
"[[0.27, 0.49, 0.24], [0.49, 0.27, 0.24], [0.33, 0.33, 0.33]]\n",
"```\n",
"\n",
"**Step 6: Final Output**\n",
"```\n",
"Output = Attention_weights × V = \n",
"[[0.27×2 + 0.49×1 + 0.24×1, 0.27×1 + 0.49×1 + 0.24×1],\n",
" [0.49×2 + 0.27×1 + 0.24×1, 0.49×1 + 0.27×1 + 0.24×1],\n",
" [0.33×2 + 0.33×1 + 0.33×1, 0.33×1 + 0.33×1 + 0.33×1]]\n",
"= [[1.27, 1.00], [1.51, 1.00], [1.33, 1.00]]\n",
"```\n",
"\n",
"## 5. Real-World AI Use Case\n",
"\n",
"**Machine Translation (Google Translate)**\n",
"Transformers revolutionized translation by allowing the model to simultaneously consider all words in a sentence when translating each word. For example, when translating \"The bank of the river is steep\" from English to French, the attention mechanism helps the model understand that \"bank\" refers to a riverbank (not a financial institution) by paying attention to \"river\" and \"steep\" simultaneously. This contextual understanding leads to more accurate translations: \"La rive de la rivière est escarpée\" rather than incorrectly using the financial term for bank.\n",
"\n",
"## 6. Tips for Mastering Transformers\n",
"\n",
"**Practice Sources:**\n",
"- Implement attention mechanism from scratch using NumPy\n",
"- Work through the \"Annotated Transformer\" tutorial\n",
"- Practice with Hugging Face Transformers library\n",
"- Build simple sequence-to-sequence tasks\n",
"\n",
"**Essential Resources:**\n",
"- \"Attention Is All You Need\" paper (original Transformer paper)\n",
"- Jay Alammar's \"Illustrated Transformer\" blog post\n",
"- Harvard's \"Annotated Transformer\" \n",
"- Stanford CS224N lectures on Transformers\n",
"- 3Blue1Brown's attention mechanism visualization\n",
"\n",
"**Recommended Problems:**\n",
"- Implement scaled dot-product attention\n",
"- Build a simple sentiment classifier using pre-trained BERT\n",
"- Create a text summarization model\n",
"- Experiment with different positional encodings\n",
"- Compare Transformer performance with RNN/LSTM on same task\n",
"\n",
"**Key Focus Areas:**\n",
"- Understand why attention works better than recurrence\n",
"- Master matrix dimensions in multi-head attention\n",
"- Practice debugging attention weight visualizations\n",
"- Learn to fine-tune pre-trained models\n",
"- Understand the trade-offs between model size and performance\n",
"\n",
"Ready to move to Phase 2? Just say \"Understood\" and I'll provide the complete Python implementation with logging!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "f3688215-4c70-4334-bcf8-41d0e9e22dbc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: torch in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (2.7.1)\n",
"Requirement already satisfied: torchvision in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (0.22.1)\n",
"Requirement already satisfied: numpy in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (2.3.1)\n",
"Requirement already satisfied: pandas in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (2.3.1)\n",
"Requirement already satisfied: matplotlib in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (3.10.3)\n",
"Requirement already satisfied: scikit-learn in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (1.7.0)\n",
"Collecting transformers\n",
" Downloading transformers-4.53.2-py3-none-any.whl.metadata (40 kB)\n",
"Collecting datasets\n",
" Downloading datasets-4.0.0-py3-none-any.whl.metadata (19 kB)\n",
"Collecting accelerate\n",
" Downloading accelerate-1.8.1-py3-none-any.whl.metadata (19 kB)\n",
"Requirement already satisfied: filelock in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (3.18.0)\n",
"Requirement already satisfied: typing-extensions>=4.10.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (4.14.1)\n",
"Requirement already satisfied: setuptools in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (80.9.0)\n",
"Requirement already satisfied: sympy>=1.13.3 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (1.14.0)\n",
"Requirement already satisfied: networkx in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (3.5)\n",
"Requirement already satisfied: jinja2 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (3.1.6)\n",
"Requirement already satisfied: fsspec in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torch) (2025.5.1)\n",
"Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from torchvision) (11.3.0)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from pandas) (2.9.0.post0)\n",
"Requirement already satisfied: pytz>=2020.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from pandas) (2025.2)\n",
"Requirement already satisfied: tzdata>=2022.7 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from pandas) (2025.2)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (1.3.2)\n",
"Requirement already satisfied: cycler>=0.10 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (0.12.1)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (4.58.5)\n",
"Requirement already satisfied: kiwisolver>=1.3.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (1.4.8)\n",
"Requirement already satisfied: packaging>=20.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (25.0)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from matplotlib) (3.2.3)\n",
"Requirement already satisfied: scipy>=1.8.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from scikit-learn) (1.16.0)\n",
"Requirement already satisfied: joblib>=1.2.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from scikit-learn) (1.5.1)\n",
"Requirement already satisfied: threadpoolctl>=3.1.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from scikit-learn) (3.6.0)\n",
"Collecting huggingface-hub<1.0,>=0.30.0 (from transformers)\n",
" Downloading huggingface_hub-0.33.4-py3-none-any.whl.metadata (14 kB)\n",
"Requirement already satisfied: pyyaml>=5.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from transformers) (6.0.2)\n",
"Collecting regex!=2019.12.17 (from transformers)\n",
" Downloading regex-2024.11.6-cp313-cp313-macosx_11_0_arm64.whl.metadata (40 kB)\n",
"Requirement already satisfied: requests in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from transformers) (2.32.4)\n",
"Collecting tokenizers<0.22,>=0.21 (from transformers)\n",
" Downloading tokenizers-0.21.2-cp39-abi3-macosx_11_0_arm64.whl.metadata (6.8 kB)\n",
"Collecting safetensors>=0.4.3 (from transformers)\n",
" Downloading safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl.metadata (3.8 kB)\n",
"Requirement already satisfied: tqdm>=4.27 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from transformers) (4.67.1)\n",
"Collecting hf-xet<2.0.0,>=1.1.2 (from huggingface-hub<1.0,>=0.30.0->transformers)\n",
" Downloading hf_xet-1.1.5-cp37-abi3-macosx_11_0_arm64.whl.metadata (879 bytes)\n",
"Collecting pyarrow>=15.0.0 (from datasets)\n",
" Downloading pyarrow-20.0.0-cp313-cp313-macosx_12_0_arm64.whl.metadata (3.3 kB)\n",
"Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
" Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n",
"Collecting xxhash (from datasets)\n",
" Downloading xxhash-3.5.0-cp313-cp313-macosx_11_0_arm64.whl.metadata (12 kB)\n",
"Collecting multiprocess<0.70.17 (from datasets)\n",
" Downloading multiprocess-0.70.16-py312-none-any.whl.metadata (7.2 kB)\n",
"Collecting fsspec (from torch)\n",
" Downloading fsspec-2025.3.0-py3-none-any.whl.metadata (11 kB)\n",
"Collecting aiohttp!=4.0.0a0,!=4.0.0a1 (from fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
" Downloading aiohttp-3.12.14-cp313-cp313-macosx_11_0_arm64.whl.metadata (7.6 kB)\n",
"Requirement already satisfied: psutil in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from accelerate) (7.0.0)\n",
"Collecting aiohappyeyeballs>=2.5.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
" Downloading aiohappyeyeballs-2.6.1-py3-none-any.whl.metadata (5.9 kB)\n",
"Collecting aiosignal>=1.4.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
" Downloading aiosignal-1.4.0-py3-none-any.whl.metadata (3.7 kB)\n",
"Requirement already satisfied: attrs>=17.3.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets) (25.3.0)\n",
"Collecting frozenlist>=1.1.1 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
" Downloading frozenlist-1.7.0-cp313-cp313-macosx_11_0_arm64.whl.metadata (18 kB)\n",
"Collecting multidict<7.0,>=4.5 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
" Downloading multidict-6.6.3-cp313-cp313-macosx_11_0_arm64.whl.metadata (5.3 kB)\n",
"Collecting propcache>=0.2.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
" Downloading propcache-0.3.2-cp313-cp313-macosx_11_0_arm64.whl.metadata (12 kB)\n",
"Collecting yarl<2.0,>=1.17.0 (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets)\n",
" Downloading yarl-1.20.1-cp313-cp313-macosx_11_0_arm64.whl.metadata (73 kB)\n",
"Requirement already satisfied: idna>=2.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from yarl<2.0,>=1.17.0->aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]<=2025.3.0,>=2023.1.0->datasets) (3.10)\n",
"Requirement already satisfied: six>=1.5 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n",
"Requirement already satisfied: charset_normalizer<4,>=2 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from requests->transformers) (3.4.2)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from requests->transformers) (2.5.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from requests->transformers) (2025.7.9)\n",
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from sympy>=1.13.3->torch) (1.3.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /Users/karthik/Desktop/importants/venv/lib/python3.13/site-packages (from jinja2->torch) (3.0.2)\n",
"Downloading transformers-4.53.2-py3-none-any.whl (10.8 MB)\n",
"\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.8/10.8 MB\u001b[0m \u001b[31m18.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mMB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m:01\u001b[0m\n",
"\u001b[?25hDownloading huggingface_hub-0.33.4-py3-none-any.whl (515 kB)\n",
"Downloading hf_xet-1.1.5-cp37-abi3-macosx_11_0_arm64.whl (2.6 MB)\n",
"\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.6/2.6 MB\u001b[0m \u001b[31m17.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading tokenizers-0.21.2-cp39-abi3-macosx_11_0_arm64.whl (2.7 MB)\n",
"\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hDownloading datasets-4.0.0-py3-none-any.whl (494 kB)\n",
"Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
"Downloading fsspec-2025.3.0-py3-none-any.whl (193 kB)\n",
"Downloading multiprocess-0.70.16-py312-none-any.whl (146 kB)\n",
"Downloading accelerate-1.8.1-py3-none-any.whl (365 kB)\n",
"Downloading aiohttp-3.12.14-cp313-cp313-macosx_11_0_arm64.whl (465 kB)\n",
"Downloading multidict-6.6.3-cp313-cp313-macosx_11_0_arm64.whl (43 kB)\n",
"Downloading yarl-1.20.1-cp313-cp313-macosx_11_0_arm64.whl (88 kB)\n",
"Downloading aiohappyeyeballs-2.6.1-py3-none-any.whl (15 kB)\n",
"Downloading aiosignal-1.4.0-py3-none-any.whl (7.5 kB)\n",
"Downloading frozenlist-1.7.0-cp313-cp313-macosx_11_0_arm64.whl (45 kB)\n",
"Downloading propcache-0.3.2-cp313-cp313-macosx_11_0_arm64.whl (41 kB)\n",
"Downloading pyarrow-20.0.0-cp313-cp313-macosx_12_0_arm64.whl (30.8 MB)\n",
"\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m30.8/30.8 MB\u001b[0m \u001b[31m21.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m0:01\u001b[0m02\u001b[0m\n",
"\u001b[?25hDownloading regex-2024.11.6-cp313-cp313-macosx_11_0_arm64.whl (284 kB)\n",
"Downloading safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl (418 kB)\n",
"Downloading xxhash-3.5.0-cp313-cp313-macosx_11_0_arm64.whl (30 kB)\n",
"Installing collected packages: xxhash, safetensors, regex, pyarrow, propcache, multidict, hf-xet, fsspec, frozenlist, dill, aiohappyeyeballs, yarl, multiprocess, huggingface-hub, aiosignal, tokenizers, aiohttp, accelerate, transformers, datasets\n",
"\u001b[2K Attempting uninstall: fsspecm\u001b[38;5;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
"\u001b[2K Found existing installation: fsspec 2025.5.15;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
"\u001b[2K Uninstalling fsspec-2025.5.1:;237m╺\u001b[0m\u001b[38;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
"\u001b[2K Successfully uninstalled fsspec-2025.5.18;5;237m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m 3/20\u001b[0m [pyarrow]\n",
"\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m20/20\u001b[0m [datasets]\u001b[0m \u001b[32m19/20\u001b[0m [datasets]ers]\n",
"\u001b[1A\u001b[2KSuccessfully installed accelerate-1.8.1 aiohappyeyeballs-2.6.1 aiohttp-3.12.14 aiosignal-1.4.0 datasets-4.0.0 dill-0.3.8 frozenlist-1.7.0 fsspec-2025.3.0 hf-xet-1.1.5 huggingface-hub-0.33.4 multidict-6.6.3 multiprocess-0.70.16 propcache-0.3.2 pyarrow-20.0.0 regex-2024.11.6 safetensors-0.5.3 tokenizers-0.21.2 transformers-4.53.2 xxhash-3.5.0 yarl-1.20.1\n"
]
}
],
"source": [
"!pip install torch torchvision numpy pandas matplotlib scikit-learn transformers datasets accelerate"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aca99530-0cea-4026-a9bb-cdfc9998e34f",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torch.optim as optim\n",
"from torch.utils.data import DataLoader, Dataset\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import accuracy_score, classification_report\n",
"import math\n",
"import time\n",
"\n",
"# Custom Dataset class to handle text data and convert to tokens\n",
"class TextDataset(Dataset):\n",
" def __init__(self, texts, labels, vocab_to_idx, max_length=128):\n",
" \"\"\"\n",
" Initialize the dataset with texts, labels, vocabulary mapping, and max sequence length\n",
" \"\"\"\n",
" self.texts = texts # List of text strings\n",
" self.labels = labels # List of corresponding labels (0 or 1 for binary classification)\n",
" self.vocab_to_idx = vocab_to_idx # Dictionary mapping words to indices\n",
" self.max_length = max_length # Maximum sequence length for padding/truncation\n",
" \n",
" def __len__(self):\n",
" \"\"\"Return the total number of samples in the dataset\"\"\"\n",
" return len(self.texts)\n",
" \n",
" def __getitem__(self, idx):\n",
" \"\"\"\n",
" Get a single sample from the dataset\n",
" Returns tokenized and padded text along with its label\n",
" \"\"\"\n",
" text = self.texts[idx]\n",
" label = self.labels[idx]\n",
" \n",
" # Tokenize text by splitting on whitespace and converting to lowercase\n",
" tokens = text.lower().split()\n",
" \n",
" # Convert tokens to indices using vocabulary, use <UNK> for unknown words\n",
" token_ids = [self.vocab_to_idx.get(token, self.vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" # Truncate if sequence is longer than max_length\n",
" if len(token_ids) > self.max_length:\n",
" token_ids = token_ids[:self.max_length]\n",
" else:\n",
" # Pad with <PAD> tokens if sequence is shorter than max_length\n",
" token_ids.extend([self.vocab_to_idx['<PAD>']] * (self.max_length - len(token_ids)))\n",
" \n",
" # Convert to PyTorch tensors\n",
" return torch.tensor(token_ids, dtype=torch.long), torch.tensor(label, dtype=torch.long)\n",
"\n",
"# Positional Encoding module to add position information to embeddings\n",
"class PositionalEncoding(nn.Module):\n",
" def __init__(self, d_model, max_length=5000):\n",
" \"\"\"\n",
" Initialize positional encoding with sinusoidal patterns\n",
" d_model: dimension of the model embeddings\n",
" max_length: maximum sequence length to support\n",
" \"\"\"\n",
" super().__init__()\n",
" \n",
" # Create a matrix to hold positional encodings\n",
" pe = torch.zeros(max_length, d_model)\n",
" \n",
" # Create position indices (0, 1, 2, ..., max_length-1)\n",
" position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)\n",
" \n",
" # Create the divisor term for the sinusoidal pattern\n",
" # This creates different frequencies for different dimensions\n",
" div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))\n",
" \n",
" # Apply sine to even indices (0, 2, 4, ...)\n",
" pe[:, 0::2] = torch.sin(position * div_term)\n",
" \n",
" # Apply cosine to odd indices (1, 3, 5, ...)\n",
" pe[:, 1::2] = torch.cos(position * div_term)\n",
" \n",
" # Reshape to (max_length, 1, d_model) for broadcasting\n",
" pe = pe.unsqueeze(0).transpose(0, 1)\n",
" \n",
" # Register as buffer so it's saved with the model but not trained\n",
" self.register_buffer('pe', pe)\n",
" \n",
" def forward(self, x):\n",
" \"\"\"\n",
" Add positional encoding to input embeddings\n",
" x: input embeddings of shape (seq_len, batch_size, d_model)\n",
" \"\"\"\n",
" # Add positional encoding to input, only for the sequence length of x\n",
" return x + self.pe[:x.size(0), :]\n",
"\n",
"# Multi-Head Attention mechanism - the core of the Transformer\n",
"class MultiHeadAttention(nn.Module):\n",
" def __init__(self, d_model, num_heads):\n",
" \"\"\"\n",
" Initialize multi-head attention\n",
" d_model: dimension of the model\n",
" num_heads: number of attention heads\n",
" \"\"\"\n",
" super().__init__()\n",
" self.d_model = d_model\n",
" self.num_heads = num_heads\n",
" \n",
" # Each head processes d_k dimensions\n",
" self.d_k = d_model // num_heads\n",
" \n",
" # Linear transformations for Query, Key, Value, and Output\n",
" self.W_q = nn.Linear(d_model, d_model) # Query projection\n",
" self.W_k = nn.Linear(d_model, d_model) # Key projection\n",
" self.W_v = nn.Linear(d_model, d_model) # Value projection\n",
" self.W_o = nn.Linear(d_model, d_model) # Output projection\n",
" \n",
" def scaled_dot_product_attention(self, Q, K, V, mask=None):\n",
" \"\"\"\n",
" Compute scaled dot-product attention\n",
" Q, K, V: Query, Key, Value matrices\n",
" mask: optional mask to prevent attention to certain positions\n",
" \"\"\"\n",
" # Compute attention scores: Q * K^T / sqrt(d_k)\n",
" scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)\n",
" \n",
" # Apply mask if provided (set masked positions to large negative value)\n",
" if mask is not None:\n",
" scores = scores.masked_fill(mask == 0, -1e9)\n",
" \n",
" # Apply softmax to get attention weights\n",
" attention_weights = F.softmax(scores, dim=-1)\n",
" \n",
" # Apply attention weights to values\n",
" output = torch.matmul(attention_weights, V)\n",
" \n",
" return output, attention_weights\n",
" \n",
" def forward(self, query, key, value, mask=None):\n",
" \"\"\"\n",
" Forward pass of multi-head attention\n",
" query, key, value: input tensors (can be the same for self-attention)\n",
" mask: optional attention mask\n",
" \"\"\"\n",
" batch_size = query.size(0)\n",
" \n",
" # Apply linear transformations and reshape for multi-head processing\n",
" # Shape: (batch_size, seq_len, d_model) -> (batch_size, num_heads, seq_len, d_k)\n",
" Q = self.W_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
" K = self.W_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
" V = self.W_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
" \n",
" # Apply scaled dot-product attention\n",
" attention_output, attention_weights = self.scaled_dot_product_attention(Q, K, V, mask)\n",
" \n",
" # Concatenate heads and reshape back to original dimensions\n",
" # Shape: (batch_size, num_heads, seq_len, d_k) -> (batch_size, seq_len, d_model)\n",
" attention_output = attention_output.transpose(1, 2).contiguous().view(\n",
" batch_size, -1, self.d_model)\n",
" \n",
" # Apply final linear transformation\n",
" output = self.W_o(attention_output)\n",
" return output\n",
"\n",
"# Single Transformer block containing attention and feed-forward layers\n",
"class TransformerBlock(nn.Module):\n",
" def __init__(self, d_model, num_heads, d_ff, dropout=0.1):\n",
" \"\"\"\n",
" Initialize a Transformer block\n",
" d_model: model dimension\n",
" num_heads: number of attention heads\n",
" d_ff: dimension of feed-forward network\n",
" dropout: dropout probability\n",
" \"\"\"\n",
" super().__init__()\n",
" \n",
" # Multi-head attention layer\n",
" self.attention = MultiHeadAttention(d_model, num_heads)\n",
" \n",
" # Layer normalization layers\n",
" self.norm1 = nn.LayerNorm(d_model)\n",
" self.norm2 = nn.LayerNorm(d_model)\n",
" \n",
" # Feed-forward network: two linear layers with ReLU activation\n",
" self.feed_forward = nn.Sequential(\n",
" nn.Linear(d_model, d_ff),\n",
" nn.ReLU(),\n",
" nn.Linear(d_ff, d_model)\n",
" )\n",
" \n",
" # Dropout layer for regularization\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" def forward(self, x, mask=None):\n",
" \"\"\"\n",
" Forward pass through the Transformer block\n",
" x: input tensor\n",
" mask: optional attention mask\n",
" \"\"\"\n",
" # Self-attention with residual connection and layer normalization\n",
" attention_output = self.attention(x, x, x, mask)\n",
" x = self.norm1(x + self.dropout(attention_output))\n",
" \n",
" # Feed-forward with residual connection and layer normalization\n",
" ff_output = self.feed_forward(x)\n",
" x = self.norm2(x + self.dropout(ff_output))\n",
" \n",
" return x\n",
"\n",
"# Complete Transformer model for text classification\n",
"class TransformerClassifier(nn.Module):\n",
" def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff, max_length, num_classes, dropout=0.1):\n",
" \"\"\"\n",
" Initialize the Transformer classifier\n",
" vocab_size: size of vocabulary\n",
" d_model: model dimension\n",
" num_heads: number of attention heads\n",
" num_layers: number of Transformer blocks\n",
" d_ff: feed-forward dimension\n",
" max_length: maximum sequence length\n",
" num_classes: number of output classes\n",
" dropout: dropout probability\n",
" \"\"\"\n",
" super().__init__()\n",
" self.d_model = d_model\n",
" \n",
" # Embedding layer to convert token indices to dense vectors\n",
" self.embedding = nn.Embedding(vocab_size, d_model)\n",
" \n",
" # Positional encoding to add position information\n",
" self.positional_encoding = PositionalEncoding(d_model, max_length)\n",
" \n",
" # Stack of Transformer blocks\n",
" self.transformer_blocks = nn.ModuleList([\n",
" TransformerBlock(d_model, num_heads, d_ff, dropout)\n",
" for _ in range(num_layers)\n",
" ])\n",
" \n",
" # Final layer normalization\n",
" self.norm = nn.LayerNorm(d_model)\n",
" \n",
" # Classification head\n",
" self.classifier = nn.Linear(d_model, num_classes)\n",
" \n",
" # Dropout for regularization\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" def forward(self, x, mask=None):\n",
" \"\"\"\n",
" Forward pass through the entire model\n",
" x: input token indices\n",
" mask: optional attention mask\n",
" \"\"\"\n",
" # Convert token indices to embeddings and scale by sqrt(d_model)\n",
" x = self.embedding(x) * math.sqrt(self.d_model)\n",
" \n",
" # Add positional encoding\n",
" x = self.positional_encoding(x)\n",
" \n",
" # Apply dropout\n",
" x = self.dropout(x)\n",
" \n",
" # Pass through each Transformer block\n",
" for transformer in self.transformer_blocks:\n",
" x = transformer(x, mask)\n",
" \n",
" # Apply final layer normalization\n",
" x = self.norm(x)\n",
" \n",
" # Global average pooling to get sequence representation\n",
" x = torch.mean(x, dim=1)\n",
" \n",
" # Apply classification head\n",
" x = self.classifier(x)\n",
" \n",
" return x\n",
"\n",
"def create_sample_dataset():\n",
" \"\"\"\n",
" Create a sample dataset of movie reviews for sentiment analysis\n",
" Returns lists of texts and corresponding labels (1=positive, 0=negative)\n",
" \"\"\"\n",
" # Positive movie reviews\n",
" positive_reviews = [\n",
" \"this movie is absolutely fantastic and amazing\",\n",
" \"i loved every minute of this incredible film\",\n",
" \"outstanding performance by all actors brilliant\",\n",
" \"best movie i have seen in years\",\n",
" \"wonderful story and excellent cinematography\",\n",
" \"this film exceeded all my expectations\",\n",
" \"amazing plot and great character development\",\n",
" \"absolutely loved the soundtrack and visuals\",\n",
" \"this is a masterpiece of modern cinema\",\n",
" \"fantastic acting and brilliant direction\"\n",
" ]\n",
" \n",
" # Negative movie reviews\n",
" negative_reviews = [\n",
" \"this movie was terrible and boring\",\n",
" \"worst film i have ever watched\",\n",
" \"awful acting and poor storyline\",\n",
" \"complete waste of time and money\",\n",
" \"terrible plot and bad character development\",\n",
" \"boring and uninteresting throughout\",\n",
" \"poor directing and weak performances\",\n",
" \"disappointing and predictable story\",\n",
" \"bad cinematography and awful soundtrack\",\n",
" \"terrible movie with no redeeming qualities\"\n",
" ]\n",
" \n",
" # Combine texts and create labels\n",
" texts = positive_reviews + negative_reviews\n",
" labels = [1] * len(positive_reviews) + [0] * len(negative_reviews)\n",
" \n",
" return texts, labels\n",
"\n",
"def build_vocabulary(texts, min_freq=1):\n",
" \"\"\"\n",
" Build vocabulary from a list of texts\n",
" texts: list of text strings\n",
" min_freq: minimum frequency for a word to be included in vocabulary\n",
" Returns: dictionary mapping words to indices\n",
" \"\"\"\n",
" # Count word frequencies\n",
" word_counts = {}\n",
" for text in texts:\n",
" words = text.lower().split()\n",
" for word in words:\n",
" word_counts[word] = word_counts.get(word, 0) + 1\n",
" \n",
" # Initialize vocabulary with special tokens\n",
" vocab_to_idx = {'<PAD>': 0, '<UNK>': 1}\n",
" idx = 2\n",
" \n",
" # Add words that meet minimum frequency requirement\n",
" for word, count in word_counts.items():\n",
" if count >= min_freq:\n",
" vocab_to_idx[word] = idx\n",
" idx += 1\n",
" \n",
" return vocab_to_idx\n",
"\n",
"def create_padding_mask(x, pad_idx=0):\n",
" \"\"\"\n",
" Create a mask to prevent attention to padding tokens\n",
" x: input tensor with token indices\n",
" pad_idx: index of padding token\n",
" Returns: mask tensor\n",
" \"\"\"\n",
" return (x != pad_idx).unsqueeze(1).unsqueeze(2)\n",
"\n",
"def train_model(model, train_loader, val_loader, num_epochs, device):\n",
" \"\"\"\n",
" Train the Transformer model\n",
" model: the model to train\n",
" train_loader: DataLoader for training data\n",
" val_loader: DataLoader for validation data\n",
" num_epochs: number of training epochs\n",
" device: device to train on (CPU/GPU/MPS)\n",
" \"\"\"\n",
" # Define loss function and optimizer\n",
" criterion = nn.CrossEntropyLoss()\n",
" optimizer = optim.Adam(model.parameters(), lr=0.001)\n",
" \n",
" # Lists to store training progress\n",
" train_losses = []\n",
" val_accuracies = []\n",
" \n",
" # Training loop\n",
" for epoch in range(num_epochs):\n",
" # Training phase\n",
" model.train()\n",
" total_loss = 0\n",
" num_batches = 0\n",
" \n",
" # Iterate through training batches\n",
" for batch_idx, (data, target) in enumerate(train_loader):\n",
" # Move data to device\n",
" data, target = data.to(device), target.to(device)\n",
" \n",
" # Create padding mask\n",
" mask = create_padding_mask(data).to(device)\n",
" \n",
" # Zero gradients\n",
" optimizer.zero_grad()\n",
" \n",
" # Forward pass\n",
" output = model(data, mask)\n",
" \n",
" # Calculate loss\n",
" loss = criterion(output, target)\n",
" \n",
" # Backward pass\n",
" loss.backward()\n",
" \n",
" # Update weights\n",
" optimizer.step()\n",
" \n",
" # Accumulate loss\n",
" total_loss += loss.item()\n",
" num_batches += 1\n",
" \n",
" # Calculate average training loss\n",
" avg_loss = total_loss / num_batches\n",
" train_losses.append(avg_loss)\n",
" \n",
" # Validation phase\n",
" model.eval()\n",
" correct = 0\n",
" total = 0\n",
" \n",
" # Evaluate on validation set\n",
" with torch.no_grad():\n",
" for data, target in val_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" mask = create_padding_mask(data).to(device)\n",
" \n",
" # Forward pass\n",
" output = model(data, mask)\n",
" \n",
" # Get predictions\n",
" _, predicted = torch.max(output.data, 1)\n",
" total += target.size(0)\n",
" correct += (predicted == target).sum().item()\n",
" \n",
" # Calculate validation accuracy\n",
" val_accuracy = 100 * correct / total\n",
" val_accuracies.append(val_accuracy)\n",
" \n",
" return train_losses, val_accuracies\n",
"\n",
"def evaluate_model(model, test_loader, device):\n",
" \"\"\"\n",
" Evaluate the trained model on test data\n",
" model: trained model\n",
" test_loader: DataLoader for test data\n",
" device: device to run evaluation on\n",
" \"\"\"\n",
" # Set model to evaluation mode\n",
" model.eval()\n",
" all_predictions = []\n",
" all_targets = []\n",
" \n",
" # Evaluate without gradient computation\n",
" with torch.no_grad():\n",
" for data, target in test_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" mask = create_padding_mask(data).to(device)\n",
" \n",
" # Forward pass\n",
" output = model(data, mask)\n",
" \n",
" # Get predictions\n",
" _, predicted = torch.max(output, 1)\n",
" \n",
" # Store predictions and targets\n",
" all_predictions.extend(predicted.cpu().numpy())\n",
" all_targets.extend(target.cpu().numpy())\n",
" \n",
" # Calculate metrics\n",
" accuracy = accuracy_score(all_targets, all_predictions)\n",
" report = classification_report(all_targets, all_predictions, target_names=['Negative', 'Positive'])\n",
" \n",
" return accuracy, all_predictions, all_targets\n",
"\n",
"def main():\n",
" \"\"\"\n",
" Main function to orchestrate the entire training and evaluation process\n",
" \"\"\"\n",
" # Determine the best available device\n",
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
" if device.type == 'cuda':\n",
" print(f\"Using GPU: {torch.cuda.get_device_name(0)}\")\n",
" elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():\n",
" device = torch.device('mps')\n",
" print(\"Using Apple Silicon MPS acceleration\")\n",
" else:\n",
" print(\"Using CPU\")\n",
" \n",
" # Create sample dataset\n",
" texts, labels = create_sample_dataset()\n",
" \n",
" # Build vocabulary from the texts\n",
" vocab_to_idx = build_vocabulary(texts)\n",
" \n",
" # Split data into train, validation, and test sets\n",
" X_train, X_temp, y_train, y_temp = train_test_split(texts, labels, test_size=0.4, random_state=42)\n",
" X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)\n",
" \n",
" # Create datasets and data loaders\n",
" max_length = 32\n",
" train_dataset = TextDataset(X_train, y_train, vocab_to_idx, max_length)\n",
" val_dataset = TextDataset(X_val, y_val, vocab_to_idx, max_length)\n",
" test_dataset = TextDataset(X_test, y_test, vocab_to_idx, max_length)\n",
" \n",
" train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)\n",
" val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False)\n",
" test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)\n",
" \n",
" # Define model configuration\n",
" model_config = {\n",
" 'vocab_size': len(vocab_to_idx),\n",
" 'd_model': 64,\n",
" 'num_heads': 4,\n",
" 'num_layers': 2,\n",
" 'd_ff': 128,\n",
" 'max_length': max_length,\n",
" 'num_classes': 2,\n",
" 'dropout': 0.1\n",
" }\n",
" \n",
" # Create and move model to device\n",
" model = TransformerClassifier(**model_config).to(device)\n",
" \n",
" # Count model parameters\n",
" total_params = sum(p.numel() for p in model.parameters())\n",
" trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
" \n",
" # Train the model\n",
" train_losses, val_accuracies = train_model(model, train_loader, val_loader, num_epochs=10, device=device)\n",
" \n",
" # Evaluate on test set\n",
" test_accuracy, predictions, targets = evaluate_model(model, test_loader, device)\n",
" \n",
" # Create visualization of training progress\n",
" plt.figure(figsize=(12, 4))\n",
" \n",
" # Plot training loss\n",
" plt.subplot(1, 2, 1)\n",
" plt.plot(train_losses)\n",
" plt.title('Training Loss')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Loss')\n",
" \n",
" # Plot validation accuracy\n",
" plt.subplot(1, 2, 2)\n",
" plt.plot(val_accuracies)\n",
" plt.title('Validation Accuracy')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Accuracy (%)')\n",
" \n",
" plt.tight_layout()\n",
" plt.savefig('transformer_training_progress.png')\n",
" plt.show()\n",
" \n",
" # Function to make predictions on new text\n",
" def predict_sentiment(text, model, vocab_to_idx, device, max_length=32):\n",
" \"\"\"\n",
" Predict sentiment for a given text\n",
" text: input text string\n",
" model: trained model\n",
" vocab_to_idx: vocabulary mapping\n",
" device: device to run prediction on\n",
" max_length: maximum sequence length\n",
" \"\"\"\n",
" model.eval()\n",
" \n",
" # Tokenize and convert to indices\n",
" tokens = text.lower().split()\n",
" token_ids = [vocab_to_idx.get(token, vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" # Pad or truncate to max_length\n",
" if len(token_ids) > max_length:\n",
" token_ids = token_ids[:max_length]\n",
" else:\n",
" token_ids.extend([vocab_to_idx['<PAD>']] * (max_length - len(token_ids)))\n",
" \n",
" # Convert to tensor and add batch dimension\n",
" input_tensor = torch.tensor([token_ids], dtype=torch.long).to(device)\n",
" mask = create_padding_mask(input_tensor).to(device)\n",
" \n",
" # Make prediction\n",
" with torch.no_grad():\n",
" output = model(input_tensor, mask)\n",
" probabilities = F.softmax(output, dim=1)\n",
" _, predicted = torch.max(output, 1)\n",
" \n",
" # Convert prediction to sentiment label\n",
" sentiment = \"Positive\" if predicted.item() == 1 else \"Negative\"\n",
" confidence = probabilities[0][predicted.item()].item()\n",
" \n",
" return sentiment, confidence\n",
" \n",
" # Test the model with sample sentences\n",
" test_sentences = [\n",
" \"this movie is absolutely amazing\",\n",
" \"terrible film with bad acting\",\n",
" \"good story but poor execution\"\n",
" ]\n",
" \n",
" print(\"\\nSample predictions:\")\n",
" for sentence in test_sentences:\n",
" sentiment, confidence = predict_sentiment(sentence, model, vocab_to_idx, device)\n",
" print(f\"Text: '{sentence}' -> Sentiment: {sentiment} (Confidence: {confidence:.3f})\")\n",
"\n",
"# Run the main function if this script is executed directly\n",
"if __name__ == \"__main__\":\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "be43abe2-06cf-4d29-8590-f72d3cbecc7b",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-07-14 13:11:54,911 - INFO - Starting M4-optimized Transformer implementation\n",
"2025-07-14 13:11:54,912 - INFO - Using Apple Silicon M4 MPS acceleration\n",
"2025-07-14 13:11:54,912 - INFO - Creating extensive movie review dataset for M4 chip\n",
"2025-07-14 13:11:54,912 - INFO - Created dataset with 200 samples\n",
"2025-07-14 13:11:54,912 - INFO - Positive: 100, Negative: 100\n",
"2025-07-14 13:11:54,913 - INFO - Building vocabulary from text data\n",
"2025-07-14 13:11:54,913 - INFO - Vocabulary size: 106\n",
"2025-07-14 13:11:54,915 - INFO - Dataset splits - Train: 140, Val: 30, Test: 30\n",
"2025-07-14 13:11:54,934 - INFO - Total parameters: 544,002\n",
"2025-07-14 13:11:54,935 - INFO - Starting model training\n",
"2025-07-14 13:11:54,935 - INFO - Epoch 1/30\n",
"2025-07-14 13:11:54,937 - INFO - Input data shape: torch.Size([16, 24])\n",
"2025-07-14 13:11:54,937 - INFO - Target shape: torch.Size([16])\n",
"2025-07-14 13:11:55,233 - INFO - Model output shape: torch.Size([16, 2])\n",
"2025-07-14 13:11:55,535 - INFO - Batch 0/9, Loss: 0.8154\n",
"2025-07-14 13:11:56,072 - INFO - Epoch 1 - Loss: 0.6878, Val Acc: 80.00%\n",
"2025-07-14 13:11:56,073 - INFO - Epoch 2/30\n",
"2025-07-14 13:11:56,095 - INFO - Batch 0/9, Loss: 0.6519\n",
"2025-07-14 13:11:56,305 - INFO - Epoch 2 - Loss: 0.5778, Val Acc: 100.00%\n",
"2025-07-14 13:11:56,305 - INFO - Epoch 3/30\n",
"2025-07-14 13:11:56,329 - INFO - Batch 0/9, Loss: 0.5265\n",
"2025-07-14 13:11:56,517 - INFO - Epoch 3 - Loss: 0.4763, Val Acc: 96.67%\n",
"2025-07-14 13:11:56,517 - INFO - Epoch 4/30\n",
"2025-07-14 13:11:56,541 - INFO - Batch 0/9, Loss: 0.3375\n",
"2025-07-14 13:11:56,731 - INFO - Epoch 4 - Loss: 0.3694, Val Acc: 96.67%\n",
"2025-07-14 13:11:56,732 - INFO - Epoch 5/30\n",
"2025-07-14 13:11:56,755 - INFO - Batch 0/9, Loss: 0.4018\n",
"2025-07-14 13:11:56,938 - INFO - Epoch 5 - Loss: 0.2218, Val Acc: 100.00%\n",
"2025-07-14 13:11:56,938 - INFO - Epoch 6/30\n",
"2025-07-14 13:11:56,960 - INFO - Batch 0/9, Loss: 0.1139\n",
"2025-07-14 13:11:57,145 - INFO - Epoch 6 - Loss: 0.0939, Val Acc: 96.67%\n",
"2025-07-14 13:11:57,145 - INFO - Epoch 7/30\n",
"2025-07-14 13:11:57,172 - INFO - Batch 0/9, Loss: 0.0501\n",
"2025-07-14 13:11:57,344 - INFO - Epoch 7 - Loss: 0.0513, Val Acc: 96.67%\n",
"2025-07-14 13:11:57,345 - INFO - Early stopping at epoch 7\n",
"2025-07-14 13:11:57,362 - INFO - Best validation accuracy: 100.00%\n",
"2025-07-14 13:11:57,362 - INFO - Evaluating model on test set\n",
"2025-07-14 13:11:57,371 - INFO - Test Accuracy: 0.8667\n",
"2025-07-14 13:11:57,373 - INFO - Classification Report:\n",
" precision recall f1-score support\n",
"\n",
" Negative 0.87 0.87 0.87 15\n",
" Positive 0.87 0.87 0.87 15\n",
"\n",
" accuracy 0.87 30\n",
" macro avg 0.87 0.87 0.87 30\n",
"weighted avg 0.87 0.87 0.87 30\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAHqCAYAAADrpwd3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1eBJREFUeJzs3Qd4FFXXwPGTHhJ6C71D6B0C2EAQREVA6ShFmiigYsUCdhQVlfJJ711F7CCCikgJvZPQe+gQkpC+33MubN4EEuomk938f88zJrM7O3uywdyZM2fOdbPZbDYBAAAAAAAAAADXcb/+IQAAAAAAAAAAoEiiAwAAAAAAAACQBpLoAAAAAAAAAACkgSQ6AAAAAAAAAABpIIkOAAAAAAAAAEAaSKIDAAAAAAAAAJAGkugAAAAAAAAAAKSBJDoAAAAAAAAAAGkgiQ4AAAAAAAAAQBpIogMuoEePHlKqVKk7eu27774rbm5uDo8JAABnc/DgQTMmTps27Y7GSd1Ot3ekxo0bmwUAANw+PU/W82W7v//+24zX+tVR0mP8z4y5g7v97PX4Sj+r9evXZ8j7cwwFRyOJDqQjHSBuZXHkAO5MdEDNnj271WEAAJzQ448/Ln5+fnLp0qU0t+natat4e3vL2bNnJTPbuXOnOfnWJH5m9Ntvv5njlSJFikhiYqLV4QAAnIQ9aWpffH19pUKFCjJgwAA5efKkOBMdCzNbotx+od++6HFRiRIlpFWrVjJ16lSJiYlx+eOUzBwbXI+n1QEArmzmzJkp1mfMmCFLly697vFKlSrd1ftMnDjxjk9q3377bXnjjTfu6v0BAMhomiD/+eef5YcffpBu3bpd93xUVJT8+OOP8vDDD0u+fPnu+H0yYpzUE8D33nvPVEtdWx32xx9/iNVmz55t4tIT1OXLl0uzZs2sDgkA4ETef/99KV26tERHR8vKlSvlm2++MUnp7du3m8RvRrr//vvl8uXL5iL77dB4x44dm2oiXffn6Wldek0/Ty1O06T5sWPHZMmSJfLMM8/IV199Jb/88osUL178rnIHNzpOuZGQkBBxd3fP0sdQcC0k0YF09NRTT6VYX7NmjUmiX/t4aif+t3Mw4eXldccx6mBv5YAPAMCdVqLnyJFD5syZk2oSXRPokZGRJtl+N6weJ2/3JN/R9DPUz3L48OGmqk0T6pk1ia6x+vv7Wx0GAOAaLVu2lLp165rve/fubS5ujxw50owvnTt3ztC/6ZrU1Yp4R3L0/m5Xu3btJH/+/EnrQ4cONeO1Hh+1b9/e5CEckTu4FTabzVwsyZYtm/j4+IiVrD6GguuhnQtgMb1iWrVqVdmwYYO5Kq7J8zfffNM8pwcVjz76qLl9WgegsmXLygcffCAJCQk37Gtm7+n6+eefy4QJE8zr9PX16tWTdevWpXhtar1edV1vsVu0aJGJTV9bpUoVWbx48XXxaysaPSDSAwd9n/Hjxzu8z/q3334rderUMQOxHhzoRQi9wp5cWFiY9OzZU4oVK2biLVy4sLRu3TrFbV3ae61FixZmH7ovrYbQK/QAAOejf8efeOIJWbZsmZw6deq65zW5rkl2TbafO3dOXnnlFalWrZqp1MqZM6c5od+yZctN3ye1MU0rvV566SUpUKBA0nscPXr0utceOnRInnvuOQkMDDTxatJAT2aTj016q7s+ppo0aXJdq7fU+nnqz9urVy8JCAgw42+NGjVk+vTpKba5nWOBG9FKf62w0xg7deokCxcuNCfH19LH9LPS2/Q1Jh2H9fezb9++pG208u3rr782vwfdRj8/vVPA3hs1tZ70afWbtf9etAKtS5cukidPHrn33nvNc1u3bjXHRmXKlDHvU6hQITPep9bWR48n9LO0H2vpsUH//v0lNjZW9u/fb97jyy+/vO51q1atMs/NnTv3lj9LAMAVDz74oPl64MCBFG0+dcx45JFHzNhqvwiuY4dWVOv5qP5N17GvX79+cv78+euStx9++KE5H9Rzah1Td+zYcd17p9UTfe3atea9dTzR5H316tXNmGWPT6vQVfL2KTfqib5p0yZzrKHHHPqzNW3aNEUyO3m7m//++08GDx5sxkV977Zt28rp06fv6jPWz08vWOjPpYV8N+qJPm/ePHO+rZ+7xqvjtP1nv9lxiu7rscceM9XvmhfQ4x3NCaTWEz150aD+DvW4SN9Pk/3X/j7T6jOffJ+Z/RgKrofyUyAT0JM6HWD15FQTxPoH3T4o6ICrA6p+1Vuo9apyeHi4fPbZZzfdryYQtFesDlA6CIwYMcKc0OpJ4c2uQOttdnqirCf/OpiOGjVKnnzySTl8+HDSbfF6YKAnv3qirLdQaXJfb9XTwd9R9DPQ5LgOWFoFp73zdEDXAw19/9y5c5vtNDY9SBo4cKAZWHVw1IMFjde+3rx5cxOb3pavr9PBUX9GAIBz0hNEPfFZsGCBufhrp0lzPZnT6jY9mdPxQS8M64mWJkl1LNETvAceeMAkYTWBejv0pHTWrFkmeduoUSMzPutF72vpiZYmW3V815N6HXf0lms9odP31ZN8vYA+aNAgM87qRXR7i7e0Wr1pQltfv3fvXvMz68+jF5v1hPLChQvywgsvOOxYQGklm56YaiJafw4dQ7WNjv2kVen4ryfQekFDt9EY9D11HNZb9fXkU+lJq47resyjn2F8fLz8+++/Jqlgr1C8XRpH+fLl5eOPPzYJFKXvqz+fHj9o3Pr715Ng/arvZU98HD9+XOrXr28+t759+0rFihVNUv27774zJ/iahL/nnnvMZ6AXTa79XPT4SC/YAwBuj/0Ca/J2azomaMGTXhDV5KX9zmwdv+znhDpeauJ9zJgx5lxQzwntY5meJ2sSXRPhumzcuNGc/+lF0ZvRcUPHMT2v1TFMx45du3aZVii6rjHomJFaa9bU6Hhz3333mQTxa6+9ZmLU4w4dv//55x8JCgpKsb2ew2ryftiwYeZYQS8a6Bg/f/58uRtPP/20Gf+0rclDDz2U5s+ux0ua5P/000/NY/qz62erP/utHKdo2xbdh35Offr0McUDN6I/m56Pa5JcX6vHRlp4YL/Acasy+zEUXJANQIZ5/vnn9ewuxWMPPPCAeWzcuHHXbR8VFXXdY/369bP5+fnZoqOjkx7r3r27rWTJkknrBw4cMPvMly+f7dy5c0mP//jjj+bxn3/+OemxYcOGXReTrnt7e9v27t2b9NiWLVvM46NHj056rFWrViaWY8eOJT22Z88em6en53X7TI3G7e/vn+bzsbGxtoIFC9qqVq1qu3z5ctLjv/zyi9n/0KFDzfr58+fN+meffZbmvn744Qezzbp1624aFwDAOcTHx9sKFy5sa9iwYYrHdUzVv/lLliwx6zpmJiQkpNhGx0ofHx/b+++/n+Ixfd3UqVPTHCc3b95s1p977rkU++vSpYt5XLe/0Ti+evVqs92MGTOSHvv222/NY3/99dd12+txgi52X331ldl21qxZKcZL/QyyZ89uCw8Pv+1jgbScPHnSjOkTJ05MeqxRo0a21q1bp9huypQpZp8jR468bh+JiYnm6/Lly802gwYNSnOb1D5/u2s/W/vvpXPnztdtm9rnPnfuXLP9ihUrkh7r1q2bzd3dPdVjA3tM48ePN6/btWtXis87f/785jgGAJA2/Xuuf0P//PNP2+nTp21HjhyxzZs3z4xN2bJlsx09etRsp39Pdbs33ngjxev//fdf8/js2bNTPL548eIUj586dcqcvz766KNJf7/Vm2++abZL/vdax9rkY64eS5QuXdqcT+t5ZXLJ95XauXxaY1SbNm1MPPv27Ut67Pjx47YcOXLY7r///us+n2bNmqV4r5deesnm4eFhu3Dhwg0/X/tYqJ9tauznyW3btk0zd/DCCy/YcubMaT6HtNzoOEX3pc/p7yS155J/9vaft06dOmYstRsxYoR5XI9R0vpM09pnZj2GgmuinQuQCeitQXpl/VpaPWenV0DPnDljrmhrddTu3btvut+OHTuaK9p2+lqlV05vRvud2ivHlN7OplfS7a/VqrM///xT2rRpk6KCr1y5cqbCzBH09m6tINdq+OR95rTaT6vFfv3116TPSfud6ZXra28Ds7NXrGs1QVxcnEPiAwBYy8PDw1Q+r169OkWLFK0c0ru6tKrKPs7aJ7bS8UvvANM7vLRSSivVbndiMaWVT8m9+OKLNxzHdezR99VxUsek233f5O+vFXLJe8hqNZTGExERYSrcHHUsoLd36+emd3vZ6fv+/vvvKcbb77//3rRK00q6a9krynQb/V6r7NLa5k48++yzN/zctc2MHj81aNDArNs/d20PoHcntGrVKtUqeHtMHTp0MMcgWnlup3c56D5vNscNAOB/55Z6R7BOcKnjto7B2i6saNGiKbbTdlrJaZVwrly5TBW1/t21L9p6RPfx119/me30vFQrznUcSj6mpDY2X0sr2rW6Xbe1nzPezfikxxla+a3nyXpHk51WuesdbHrHt95ZnpzeDZX8vXSs1v1odfbd0M/InktIi/7M2n8+ecuX26UV3XoXwa3Snzd5Jbf+3nX+GfsxVnrJyGMouCaS6EAmoAcPqU16obeBaT80PXDQBLYeeNhP2C5evHjT/ZYoUSLFun0ASCvRfKPX2l9vf60mt/V2KE0GXCu1x+6E/aAhtdvBNIluf16TI3rrmZ7Ua9JEb+vSW620T7qd3rKvSQBtO6Mn+nr7tU6Qpn1tAQDOy94zVRPnSnuTa4sQPUnXJLs9Yap9rbXth44ZOg7omKq9s29lPE1Oxx5NLCe/0JzWWKXjpN5erkmD5O+rtwzf7vsmf3/9OewXBezsty5fe8J9N8cC2rJG251o8l9vfdalVq1aJlGhiY3kt+Xrz3+jCVh1G73onjdvXnEkPXG/lrbz0Vuy9ZhAE+r6mdu3s3/u2mtWkxg698uNaHJBE+32f19KE+p67Gbv6QsAuDHtJ65JWk16azszTUJem3TVMURbnyW3Z88e83e7YMGC5m958kWTnvY5Uexjn46Pyel2yZOgN2otc7Px4Fbp+KJFb6kdF+hYrcckR44ccdhYfSP6GSltP5YWLVjT+Uy0EE4/f51DJLW50G53LL6Ra39PmuzXiwzJCyLSQ0YeQ8E10RMdyASSV0zZ6Qm2Jn41ea59xvVkXSuhtILq9ddfN4PvzdiTB9ey9wxNr9daQSsH9CRXq8q0Quydd94xPdS1T62e8OuVfe1xqr1QtZerbqMHCF988YV5zH6VHgDgXLQaTS+s6gSP2g9Tv+pYZU+uK+2XreOC/t3XCbo1kasnUDp23Mp4eqe0Ik4v2Or7NGzY0FwU1/FIE/zp+b6OGM81cWGfPOvak117IlkryRwprYq/aydUv9kxlFaPay/6V199VWrWrGnGeP28dR6XO/ncdcIzvWig+9TJ1n766SeTdLj2JBwAkDq9IHuzuS+S3zVmp3+zNYGe/G6g5Bw5F5eV0uvcW+cluVmRm36+mzdvNufHWpSmix676Nh37YSbtzMWp5cbHRM4mrPlRJD+SKIDmZS2JtHKL534Uiur7ewzmFtNB1tN6mtV2rVSe+xOlCxZ0nzVyUaurfbSx+zP2+mFhpdfftksevKvJ86aJNdKOju9nVuXjz76yFSVaZJFb1fXCc4AAM5J/5Zrklwry/VvuyZ9dUJqO72IqpNjTp48+boL1lodfjt07NGTenv1dfJx6Vr6vt27dzdjUfL2Ivq+d3q7uL6//pwaQ/Jkg73N27Vj453ShIXe4qwTqF17Eqm3ouskXjp5t1Zp6fi7du1a07ImrYm2dBs9Qdcq8bSq0e0VXtd+PrdzO7tWh+kEp3rnmd4FYKfHBdcmXrRQwZ5guBFNvuv2+pnoZHBaYaiTtQEA0peOHdqqRSd5vlGi1j726d/65C1UtCr8ZlXD9jvLdDzQtjNpudWxWscLnRQ1teMCHat17NY71DKCfRLUm7Va0bvitSBNFz2+0AvFOhGqHltpAv5u2q6lRn9PelyWvGL+xIkTZkLY5McE1x4P6J1wul1mP4aC66J8Asik7Cesya9y6qDxf//3f5JZ4tODDK381pnKkyfQ9eq1I2i1gibrx40bl6Ltiu5fZwzX3uhKT2Y1KXHtwZDetmZ/nR48XXvFWJPsipYuAODc7FXnmjTVaqrkVej2MevaMUAri48dO3bb72Wf90OTyMl99dVX122b2vuOHj36uioqf39/8/Xak8XU6AmmtiubP39+0mPx8fFmv1pxrXexOYImjLX3p/YDbdeuXYpFK7yVVv0rbZemPWrHjBlz3X7sP79uo99rcjutbTSprRc1VqxYkeL52zn2Se34KbXfj548a79avTtN52BJKyZ7iwHtn7pgwQKZNm2aqUbXuWIAAOlL7yzSMVPvIruWjn32cVPPS/Uiro6Fyf9+pzY2X6t27dqmHYlue+04nHxftzpW6zjUvHlz+fHHH1O0Jzl58qS50H/vvfea8S696XtNmjTJ3AlnnyMmNVq4d+34aB/j7OfJt3OccismTJiQYp6yb775xvw+k8+tpufz1x4P6Ouc4RgKrotKdCCTatSokbn6qhVsOtGFXmHVK8mZ6dahd99910yaopUBOhmIDmh6Aq395DSJcSt08Pzwww+ve1yr1PQKuPY610lXdUDTE1g9+Pj666+lVKlS8tJLL5ltQ0NDzYGBHmRVrlzZnOzqRDW6rd4yr/RWND0J1x7zOiDr5CoTJ040BzDJr3gDAJyPnvzquKknrOraJPpjjz1mWqPpeKLbbdu2zSSJk1er3Sq9AKvjkY4p2qdV96eVz6ndhaXvq2O3tnHR8UknQNWKunz58l23Tz3p1jFP96m3tOsdWHoh+VraQkWrw3r06CEbNmww46FWvP/3338mAXCjvqe3SqvK9ecZMGBAqs9rP3BNOuhnqC3m9JbvGTNmyODBgyU4ONgk33WSMv1ZdSzXeUi04kyrt/Xig1ag2VuraP96fc7+Xnpn2CeffGK+6sV0PYHWcf5W6bhunxtFjzE0Vj1WSe1OPm3zo8/pMYZ+rtoTVSvc9AKLVtsnn2BOf0aNXfv56u8JAJD+9O9zv379TJtOPb/U5LQmy3Uc0b/Vel6oF3e1+vuVV14x2+nYq+d3OmGoFl/d7I4zTRprElersHU81mMF7c+t1ck6R5neRWVvH6f03Fwru+2Tm6dGz2+1B7wmzHUc1PNTHbs1Ka3jk6PpcYAmgbXoTgsENGY9LqhRo0aKOUxSo+Ot3iWmxx3aE13v/tKksn4W9l7ht3Occis0Tvv5u1bs6zGVflaPP/54irh08nC9CK8Ty27ZssX8XNf+PjPbMRRcnA1Ahnn++ec1A57isQceeMBWpUqVVLf/77//bA0aNLBly5bNVqRIEdtrr71mW7JkidnHX3/9lbRd9+7dbSVLlkxaP3DggNnms88+u26f+viwYcOS1vX7a2PSdY31Wvoe+l7JLVu2zFarVi2bt7e3rWzZsrZJkybZXn75ZZuvr+9NPw/dl75Xaovuy27+/PnmPXx8fGx58+a1de3a1Xb06NGk58+cOWPirVixos3f39+WK1cuW1BQkG3BggVJ22zcuNHWuXNnW4kSJcx+ChYsaHvsscds69evv2mcAIDMb+zYsWb8qF+//nXPRUdHm7GpcOHCZky95557bKtXrzZjsC7Xjp9Tp0694Th5+fJl26BBg2z58uUz406rVq1sR44cuW6MPX/+vK1nz562/Pnz27Jnz25r0aKFbffu3amOpxMnTrSVKVPG5uHhkWKcvzZGdfLkyaT96vhbrVq1FDHf7rHAtQYOHGi22bdvX5rbvPvuu2abLVu2mPWoqCjbW2+9ZStdurTNy8vLVqhQIVu7du1S7CM+Pt7Eo+O1xl2gQAFby5YtbRs2bEjaRvfTq1cvM5bnyJHD1qFDB9upU6fSPH45ffr0dbHpMULbtm1tuXPnNvtp37697fjx46n+3IcOHbJ169bNxKLHB/o70GOKmJiY6/arx2vu7u4pjkEAAGnTsUn/9q5bt+6G2+mYqONpWiZMmGCrU6eOGcN1bNBxT8+N9W+7XUJCgu29995LGusbN25s2759+3Vjro6v155Pq5UrV9oeeughs3+NpXr16rbRo0enGMN0fNTxws3NLcWxQWrji55/6riv47+fn5+tSZMmtlWrVt3S55NWjNeyj4X2Rc/BixUrZs5zp0yZYo5/Uvusk+cOvvvuO1vz5s3N+bGOzXq+3K9fP9uJEydu6ThF9/Xoo4+mGt+1n7395/3nn39sffv2teXJk8d8Pnp+f/bs2RSv1d/n66+/bo519PPTz3Lv3r2Z/hgKrs1N/2N1Ih+Aa9Hbo/Wq/bX9RwEAAJyVTlSud8rpnQcAAADIWuiJDuCuXL58OcW6Js5/++03ady4sWUxAQAAOJL2TddWAtrWBQAAAFkPlegA7or2i9OeYtpXVvunaT857fWmPejKly9vdXgAAAB3bPv27aZv6hdffGEmT92/f7/4+vpaHRYAAAAyGBOLArgrOjHY3LlzzSzXOomHzv6tE3WRQAcAAM5OJxzTSWkDAwPN8Q4JdAAAgKyJSnQAAAAAAAAAANJAT3QAAAAAAAAAANJAEh0AAAAAAAAAgDRkuZ7oiYmJcvz4ccmRI4e4ublZHQ4AIAvRDmqXLl2SIkWKiLs717HvFmM6AMAqjOmOxZgOAMjsY3qWS6LrwFy8eHGrwwAAZGFHjhyRYsWKWR2G02NMBwBYjTHdMRjTAQCZfUzPckl0vbJt/2By5sxpdTgAgCwkPDzcnCDaxyLcHcZ0AIBVGNMdizEdAJDZx/Qsl0S33xqmAzODMwDACtym7BiM6QAAqzGmOwZjOgAgs4/pNG8DAAAAAAAAACANJNEBAAAAAAAAAEgDSXQAAAAAAAAAANKQ5XqiA8DdSkhIkLi4OKvDQCbl7e0t7u5cowYAAACAzIxz+6zBy8tLPDw8XCOJPnbsWPnss88kLCxMatSoIaNHj5b69eunum3jxo3ln3/+ue7xRx55RH799dcMiBZAVmWz2czfqQsXLlgdCjIxTaCXLl3aJNMBAAAAAJkL5/ZZT+7cuaVQoUJ3NSG45Un0+fPny+DBg2XcuHESFBQkX331lbRo0UJCQkKkYMGC122/cOFCiY2NTVo/e/asSby3b98+gyMHkNXYB1n92+Tn53dXf3zhmhITE+X48eNy4sQJKVGiBP9GAAAAACCT4dw+a10wiYqKklOnTpn1woULO28SfeTIkdKnTx/p2bOnWddkulaUT5kyRd54443rts+bN2+K9Xnz5pl/8CTRAaT3bV72QTZfvnxWh4NMrECBAiaRHh8fb24bAwAAAABkDpzbZz3ZsmUzXzWRrr/3O23tYmnTVq0o37BhgzRr1ux/Abm7m/XVq1ff0j4mT54snTp1En9//3SMFEBWZ++TphftgBuxt3HRgzMAAAAAQObBuX3W5Hf19303PfAtrUQ/c+aMSTIEBASkeFzXd+/efdPXBwcHy/bt200iPS0xMTFmsQsPD7/LqAFkZdzmhZvh3wgAAAAAZG6ct2Utjvh9W1qJfrc0eV6tWrU0JyFVw4cPl1y5ciUtxYsXz9AYAQAAAAAAAADOy9Ikev78+U0fmpMnT6Z4XNd1xtQbiYyMNP3Qe/XqdcPthgwZIhcvXkxajhw54pDYASCrKlWqlJkE+lb9/fff5qovM58DAAAAAJC59ejRQ9q0aZO03rhxY3nxxRfvap+O2IfVPK3uG1unTh1ZtmxZ0i8nMTHRrA8YMOCGr/32229Nm5annnrqhtv5+PiYBQCympvdrjRs2DB59913b3u/69atu615KBo1aiQnTpwwdwOlJ03WN2nSRM6fPy+5c+dO1/dyJStWrJDPPvvMzFGiv6cffvghxQGTzmau/1YmTpxoLoTcc8898s0330j58uWTtjl37pwMHDhQfv75ZzO3yZNPPilff/21ZM+ePc33jY6OlpdfftlcENfxvEWLFvJ///d/17V4AwAAAID01mvaugx9v8k96t1Rcnv69Onmey8vLylRooR069ZN3nzzTfH0TL8U78KFC8373c15+e3sI7OyvJ3L4MGDzYm5/iPYtWuX9O/f31SZ9+zZ0zyv/xi0mjy1Vi56ks9MugCQOk2I2hetHM+ZM2eKx1555ZUUidL4+Phb2m+BAgVuaxIWvWCqdxfRcy5z0jG3Ro0aMnbs2FSfHzFihIwaNUrGjRsna9euNRdQNOGtSXC7rl27yo4dO2Tp0qXyyy+/mMR83759b/i+L730kkm660Xxf/75R44fPy5PPPGEw38+AAAAAHAVDz/8sDmf37NnjylK0sI4LYq6VmxsrMPeM2/evJIjRw7L9yFZPYnesWNH+fzzz2Xo0KFSs2ZN2bx5syxevDipEu3w4cPmH0dyISEhsnLlypu2cgGArEwT1/ZFq8A1iW1f18mbdQD7/fffzR1BeseO/l3dt2+ftG7d2vwN1irievXqyZ9//nnDdi6630mTJknbtm1Ncl0rlH/66ac027lMmzbNXJFesmSJVKpUybyP/UDAThP6gwYNMtvpxdLXX39dunfvnqJC+nbplXC9MJsnTx4TZ8uWLc2Bh92hQ4ekVatW5nlNFFepUkV+++23pNdqolgvIGTLls38jFOnThVXoJ/Dhx9+aH5/19KLK/q7fvvtt82/i+rVq8uMGTNMwnvRokVmG70AruO2/hsICgqSe++9V0aPHm0qzHW71Gh7Nb0YPnLkSHnwwQfNv0H9PFetWiVr1qxJ958ZAAAAAJyRnrvrOX3JkiVNIXKzZs3M+be9BctHH30kRYoUkcDAQLO9trXu0KGDObfWRLae1x08eDBpfwkJCabA2X7u/dprr5nzwBu1YomJiTHn6DrvpMZTrlw5c36n+9UqdKXn1ZoH0LhS28fNzs9vJW+guQadJ1PP33VbvWtaz+tdNomutHWL/pD6S9AqNz0JT/6B6AeXnP5D0F/oQw89JFY6eCZSJq88YGkMAKyhf4OiYuMtWa4d0O7GG2+8IZ988olJhGqCNCIiQh555BHTVmvTpk1mkNLEsl7QvJH33nvPDMxbt241r9eEs7b4SEtUVJS5gDpz5kxTtaz7T14Z/+mnn8rs2bNNYvW///6T8PDwpKTtndLBe/369eYAY/Xq1eZz1Fjj4uLM888//7wZhzSebdu2mRjs7Ujeeecd2blzp7nooJ+VtjPReT1c3YEDByQsLMwcmNnpBRkdp/UzVPpVD1jq1q2btI1ur21ddExPjbaO0c89+X4rVqxobke07xcZ50JUrGw5csGhf1uAzG7n8XA5GxFjdRgAAAB3RYu87FXneh6vhcf2O4T1nEvvItYCun///decW9uT0fbXfPHFFybvOmXKFFNYp+fx2uLzRrp16yZz5841dyzr+fH48ePNfjWp/v3335ttNA5NeGubzzs5P79Z3kAL7/SiwQMPPGDyELoPvRs6Pe+At7QnujMLj46TThPWSFh4tETGxMugpv/rDQvA9V2OS5DKQ5dY8t47328hft6O+fP9/vvvp7ggqVemtbWH3QcffGAGUB3YbjRXhQ6AnTt3Nt9//PHHZjANDg42g3NqdGDU9iBly5Y167pvjcVOK5m1lZe9OnrMmDFJVeF3Qq9o68+gBw3ao11pkl4HeU3Ot2/f3gzI2su7WrVq5vkyZcokvV6fq1WrVlKiWKvxswJNoKtr+5Truv05/VqwYMEUz2s/Pv23ZN8mtf1qm59re9cn329q9CKHLnZ6cQV376X5m+WvkNPy7ANl5fWHA2m9BJc3ccV++ei3XZLX31tm9qovVYqk75wdAAAAjqZJZ02aa6W2zk91+vRpU5GtdwjruZaaNWuWmXtSH7Mf42uhmp6HadFy8+bNzZ3Heu5tb62p5+m6z7SEhobKggULTKLeXhSV/NxZzwOVniOmNVfZrZyf3yxvoOeCeofzY489lvS8Vqynp0xRie6Mcvp6Sc97riRRRi4NldHL/nfLAQA4i+TVw0or0fXKrg4+OuDp1WS9snyzSnStYrfTgVv7r586dSrN7fV2LftApwoXLpy0vQ6EJ0+eNLdl2Xl4eJiWH3dKfwZN7Ca/00lvVdM7m/Q5pe1jtK2J3gKmE2nq1Ww7vU1O25No2zG9vU3bjiDjDR8+3FTC2xc9yMLdH3yvP3TefD/un33y/i87qUiHSxuzfI9JoKtzkbHSZeJacycGAACAM9AKcz1P9/X1NS1QtE229kVXWhBmT6CrLVu2yN69e00lur5GF01y6/xW2spVz721Wjz5ebKeN1+bJ0hu8+bN5vxcK8DT8/z8ZnkD/Tm0mE8r7fXuea14v7YduKNRiX4X+j1QVvQ085Pfd8sXS0NFL+oMeJCKdCAryOblYSrCrXpvR9GEd3KaQNcrynrLlPY101vD2rVrd9NJSa6dZVuvcusV79vZ3urEXe/evc0A/Ouvv8off/xhErZ6a5te1deDE207ptXw+vk0bdrUtH/Rz8mVaa89pRc19IDFTtf1goJ9m2svmOitdXoboP31qe1X/01pn/zk1Qm637Reo7RCQvv12Wn1AYn0u6N31F2KjjfHMPq/4NT/DkpsfKJ80LqquLtTkQ7XoWOMKXxZvtesD3ywnKzad1Y2HDovT01aK9OeqSd1Sl6pnALg/DZ/as1xOoDMz+ZXQNzr9ZbLp0QSk51bJ8REZmgcUSdCb/s18ZfD5f5GQfL1J++Kt5eXFC5U0CSjJfyYec7Xw5ZivxdOHZVa1avIlDHXn7fmz5dXosKuHBdFnz2S4nUJ0RFXWthefSwx9rLERZ436+6Xr7Rt1e+vPa+378s8H7ZXvC/nTHo8+T5izh1L2ocm5JO2iYuRuEtnrmxzIUy8PD1SxBV7/kSKuLSqXovhdI6u+fPnm7m89Hy9QYMGkh6oRL9Leuvzaw9fadb/+R+hMvavK/8AAbg2TfpqSxUrlvRstaC3U+nVXG2jolexNaGZfNKRjKAVxtrWY926dSkmO9m4ceMd71Mr6zWxm7xH99mzZ02ftsqVKyc9pgnZZ599VhYuXGhmOp84cWLSczqpqE5uqrfE6S1vEyZMEFdXunRp829AbxNMnrjWz7Fhw4ZmXb9qMlz7nNstX77cXERJXlmQnN5VoAdcyfervwu948G+39TopDV6l0PyBXcnJOyS+VquQHYZ0a66SabPXntYXv9+qyQkUpEO16AnW1r0Yk+gv/lIRXm5eaBMf6a+BJXOK5di4uXpycGyZv9Zq0MFAAC4IX+/bFK2dEkpXqzIlQT6DdSsVkX2HTgkBfLnM69JvuTKmcMshQIKyLqNW5Jeo+fNm7buSHOfVSpVMOd6/67+3/l6cprct5/DpyWwfFnzPsnf9+y587Jn3wGpWKGc3A5tu6rFVnq3eNWqVWXOnDmSXkiiO8BzjcvJqy2uJNI/WxIi//c3iXQAzql8+fImgay3aOmtX126dLlhRXl60epvrQT/8ccfTXL1hRdeMLN338oFBJ0UVOO3L/pz6M+ls5D36dPHTJaijz311FNStGhR87jSmcK195tOpqkJ+7/++iupp9rQoUNNLHor3I4dO8wtdOndby2jaAsf+2el9OfX7zWhrZ+3fi7a5kZ71ulnq5PI6GzvOomL0s9Be9/rZ6t98PVCjPaq69Spk9lOHTt2zEwcqs/bL5T06tXLVJXr56wJ+J49e5oEenpVDSB1oSevJNErFMohHeoWl6861hQPdzf5dsNRGbxgs8QnZPz//4CjE+jv/bxTxq/Yb9bfe7yK9L3/ym3B2X08ZVrP+nJf+fwSFZsgPaYGy797TlscMQAAgGN0bNtK8uXNIx179pf/1q6Xg4ePyIpVa+WVtz+UY8evzEX1XK9uMnLsRPn59z8lZM8+eXHIe3LxBnNPlSxeTLq2byv9B79pXmPf5/c/XZnDrESxouY88vc//5bTZ89JROT1Ff7lypSSx1o0lQGvviOr1q6XrTt2S6+Br0qRwgHm8Vuh76vJc51QVO8a17vJtdd6ep6n087FQZ5vUi4piT5icYi4iZv0b/y/vj0A4AxGjhwpzzzzjJncI3/+/PL6669bMnmjvq9OMKkJW729S2fZ1lYryW/1Ssv999+fYl1fo1e59VYvTcbrxCPaSkS30/YsXsmulGuLlqNHj5oKZ00Mf/nll+Y57SunA7RW5WuLm/vuu8/0SHcFOiN6kyZNktbt7VK06l5nadce8JGRkeZ3oBXn9957r7ldTnvw2ekkMJo41zY37u7uZoJWnVzWTieE0YshOru6nX629m11slD9/f7f//1fhv3cuCIkLMJ8DQzIYb62rllUvDzcZdDcTfLj5uOmtcvXnWqJtyd1F3A+iYk2eWvRdpkbrBcFRT5qU026BJVIsU02bw+Z2K2u9J+1wUyw22v6ehn3VG15sGLKCZUBAACcjZ9fNlmycJa889Hn0qXXALkUGSlFCgVI43sbSo4c2c02Lzz7jISdOi19X3zdnJ893elJadXyIQkPv1Jsk5qvP3lXhn0yUl588105d/6CFC9aRF4Z2M88p4nwt18ZKEM//kKefWmIdGnfRiZ89cl1+xj35XB5dehH0q77sxIbGyf3NKgrC2dOSLVFTGr0vHz37t0yffp0c5e5th/V8/l+/a7EkR7cbFY3oc1gmgzSCjhtnp8et4HrBKPaH10NaVnR9E0H4Px04g2t0NX2FsmTh8gYWg2vV5Q7dOggH3zwgTjrv5X0HoOyGj7Pu9dq9ErZduyijHuqjjxc9X/96P/ceVKem71RYhMSpVmlgjK2a23x8XTcfAxAetN2RK99t1W+33hUtL3/iHY1pF2dYmlurxeMBs7dKEt2nBQvDzcZ3bl2iv8ngGsxBmXuz5Oe6ABu1hO9RJEA8XHgfGPIeH6FK2ToeTplRQ42sGl5GfzQlV/i8N93y4QV+6wOCQCcjt6Opf3IQ0NDTQuR/v37mwFP28sAcFyScc+pKxUmgYWuVKLbNascIBO61REfT3f5c9cp6TNjg0THpd3XEMhM4hIS5cX5m00CXdsTfdWp1g0T6ErvthjTpbY8Vr2wxCXY5Pk5G+XnLcczLGYAAABkbiTR08GgpuXlpWZXEukf/7ZbJl7twQgAuDV6G5m2EqlXr57cc889JpH+559/ukwfciAzOHIuSqLjEk2ivERev+uebxxYUKb2qCfZvDxkRehp6Tl1nUTFxlsSK3CrTEX5nE0mAa4V5WO71JbHa1yZn+FmtJWRti96onZRc5HphXmb5PsNR9M9ZgAAAGR+JNHTyQvNyssLTcub7z/6bZdM+pdEOgDcquLFi5sJKvV2Kr21SmfavrbXOYC7E3J1UtHyAdlNtW5qGpXLLzN61TcTMK7ef1a6TwmWS9FxGRwpcGv0bolnZ22QxTvCTGX5+KdTtim6Ffr/wuftakinesUl0SbyyndbTE91AAAAZG0k0dPRSw9VMFXp6sNfd8nklQesDgkAAMAIDbuSRK9wdVLRtNQrlVdm9qovOXw9Zd3B8/LU5GC5GEUiHZnL5dgE6TNjvSzffUp8vdxlUre6dzw5qLu7m3zctpp0b1hSdPaoIQu3yfRVBx0eMwAAAJwHSfR09lKz8jLwwXLm+w9+2SlTSKQDAIBMVIkeeJMkuqpVIo/M7dNAcvt5yZYjF6TLpDVyPjI2A6IEbi4yJl56TguWf/ecET9vD5nao77cX6HAXe1TE+nvPl5F+txX2qwP+2kHLRoBAACyMJLo6czNzc1MNDqgyZVE+vu/7JSp/5FIB5xVYmKi1SEgk7Np2SLgBEKvJtErXDOpaFqqFs0l8/o2kHz+3rLjeLh0nrhGTl+KSecogRsLj46TblOCZc3+c5LDx9PcNdGwbD6HHce/+UilpON4bdE4Zvkeh+wbAAAAzsXT6gCyAj0Af7l5BbGJTcb+tU/e+3mnuLu5SfdGpawODcAt8vb2NpNdHj9+XAoUKGDW9f9t4NoE+unTp82/DS8vL6vDAW44+eL+05G3XIluV7FQTpnfr4F0mbhWdoddkk4TVsucPg0kIKdvOkYLpE7bCnWbsla2HL0oOX01gR4kNYrnduh76N/zV1oEmgl4v1gaKp//ESox8YmmSIbjAAAAgKyDJHoGMQfgzQPNBEXf/L3P3BKqx93dGpJIB5yBJtBLly4tJ06cMIl04EZ/74sVKyYeHh5WhwKk6cCZSIlPtJnK3cK5bi8BXq5gDlnQr6F0mbhG9p2OlA7jryTSi+bOlm7xAtc6FxkrT01aKztPhEsePy+Z1TtIqhTJlW7vN7BpeTNZ6fDfd8vo5XvNhag3WlYkkQ4AAJBFkETPQHqQ/VqLQDNB0bh/9snQH3eIHnY/TSIdcApafV6iRAmJj4+XhIQEq8NBJqUV6CTQ4Sz90LWVy50kAUvl95f5mkiftEYOnY2SjuNXm57pxfP6pUO0QEraRqjrpDUSejJC8mf3kdm9gyTwFtsS3Y1+D5Q1Fenv/rxTxq/YbyrSh7WqTCIdAAAgCyCJnsH0IPv1hwNNa5fx/+yXd37coQ/K0w1KWh0agFtgb9NBqw4Aziw07GoS/TZauVxLE+bz+zaUrpPWmsp2rUjXZGaZAtkdGCmQUtjFaHPxRtsRBeT0MXdBlM3Af3M97ikt3p4e8taibTJt1UGTSP+oTVUzESkAAABcF0l0i5Jwbzxc0VSkT1ixX95ZtF30uLtrEIl0AACQcZXogQF3l3wskjubzO/bQLpMWit7T0VIxwlrZE7vICl/F8l5IC1Hz0eZfvyHz0WZ9kFz+gRJyXz+GR5Hl6ASprXLa99tkbnBh01rlxHtqosHiXQAAJyWz+8vZej7xbT88pa39S8SeMPn3xw8QN56ZaBYwb9IoMybPFZatWwmro4kuoWJ9CEtNZFuk4n/HpC3ftgubuJmDsoBAADSU2iydi53q2BOX5nXt4HpT62TjWoifVavIKlcJKcDIgWuOHQ20iTQj124LCXy+pkEerE81rUPalenmHh5uMngBVvk+41HJTYhUUZ2qCFeHu6WxQQAAFzTvs0rk77//qff5MPPRsmmfxcnPZbd//aOiWJjY027WtwejvIsTqS/+Ugl6XVvabP+5g/bTDULAABAeomKjTeVvCrQQRXj2pdae6JXK5rLTPjYeeIa2Xr0gkP2Dew7HSEdx68xCfQy+f3NxLZWJtDtWtcsKmO71DLJ9J+3HJeBczaZqnQAAABHKlSwQNKSM8eVOY3s61FRl+WZ51+RUtUbScFyteS+lk/K8hWrUry+Uv0H5ZMvx0rvQa9JoQq1ZcBrQ83jU2cvkAp1HpD8ZWpIp2eel1Hjp0qRinVTvPaXxX9Ko+ZtJW/palKlQVP5+IsxZp44+35Vp17Pm4p0+/rWHbulZbunJaB8LfN+97R4QjZu2SbOjiS6xfQf/tuPVpJn7rmSSB+ycJvMI5EOAADSibZd0ZZy+bN7S77sPg7bbx5/b5nVO0hqlcgtFy/HSdeJa2XDofMO2z+yphC9u2H8GgkLj5YKAdllXr8GUiiXr2QWD1ctLOOeqiPeHu6yeEeYPDtrg0THMfk4AADIGBGRUdKi6QPy64JpsuqPH+ShJvdJ+x7PypGjx1Ns9/W4KVKtckVZ9ccieePF52R18AYZ9Powea53N1m9dJE8eH8j+WzUuBSv+W/teunzwutmmw1//yajPn1fZi1YKCO+vrLdit+/M1/HfTncVMvb158Z8IoUKVxIVvz2naxcvFBeHtBHPD2df145kuiZJJH+zmOVpOc9pcz6Gwu3yYJ1R6wOCwAAuGhS8m4nFU1LrmxeMrNXkNQvlVcuxcRLt8lrZe3+sw5/H2QN249dlE4TVsuZiBipXDinzOvbUArmyDwJdLumlQJkUve64uPpLst3n5I+M9bL5VgS6QAAIP1Vr1JRej3dSapUrCDlypSSoa+9KKVLlpBf/1ieYrsH7mkgLzz7jJQpVcIs46bMkuYP3i8v9u8l5cuWlr49upoEfHJadT54QF95qkNbKV2yuDR94B5557UXZPKseeb5Avnymq+5c+Y0VfH29aPHjkuT+xpJYPmyJqYnWrU0cTo7kuiZKJE+9LHK0qPRlUT66wu3yoL1JNIBAEA69UNPp8k/s/t4yrRn6sk95fJJZGyCdJ8aLCv3nEmX94Lr2nLkgnSZuEbOR8VJjWK5TA/0vP6Zt3fn/RUKyLSe9cXP20P+3XNGek4LlsiYK7c6AwAApJeIyEgZ8t6nUvv+lqYVi7Z0CdmzT44cS1mJXrtG1RTrofsOSN2a1VI8Vrdm9RTr23fuNm1gdJ8Fry4DXn1Hwk6eNm1k0jKwb095/pW35dEOPeTz0RNk/0HX6LhBEj2TJdKHtbqSSNfbrF//fqt8SyIdAAA4UMjJCPM10AGTiqbFz9tTJnevJ40DC0h0XKI8M32d/LX7VLq9H1zL+oPnpOuktRIeHS91SuaRmb2DJLdf5k2g2zUsm09mPFPfXEhas/+cdJsSLOHRcVaHBdy1FStWSKtWraRIkSLmnHXRokVpbvvss8+abb766qsMjREAsqo33/9Ufl68VN4dMlj++GG2ac2iVemxcSmPQfz8st32viOiouStlweafa6+ugQv+1m2/veH+Pqm3RbyrVcGyvq/fpGHmzWWf/5bI3UaPyI//b5UnB1J9EyaSO/WsKRJpL/2/Vb5bsNRq8MCAAAuIjQd27kk5+vlIeOfriMPVQ4wky32nble/tgRlq7vCee3et9Zk3yOiImXBmXymqR0Tl/n6aFZt1ReMzdATl9PMyfA05PWysUoEulwbpGRkVKjRg0ZO3bsDbf74YcfZM2aNSbZDgDIGKvXbTLtVh5v+ZBUrRQoAQXzy+Gjx276ugplS8uGzdtTPLbhmsk/a1atLHv2HZCypUtet7i7X0kpe3l5SULi9W3stEXMwL495Od5U+Txls1l5rzvxdmRRM+kifT3Hq8iTze4kkh/9bst8j2JdAAAcJc0macTNCqdpDG9+Xh6yP91rS2PVisscQk2eW72Rvlla8pbSwG7FaGnpcfUYImKTZD7yueXqT3qi7+PpzibmsVzy5w+DSSPn5dsOXpROk9cI+ciY60OC7hjLVu2lA8//FDatm2b5jbHjh2TgQMHyuzZs01CBQCQMcqVLik//rZUtmzfJVt37Jaez70siYmJN33ds888JUuW/yOjxk+VvfsPyuSZ82Tp8hUmJ2n3xuDnZc53P5re6DtD9sjuPfvk20W/ynuffpm0TcniReXvlasl7NRpOX/holy+HC2D33xfVqxaa5L5OoHpxi3bTH90Z0cSPZPSf7Tvt64iTzUoYRLpr3y3RX7YRCIdAADcudBTV6rQi+bOJjkyqLrXy8Ndvu5UU9rWKirxiTYZNHcTxzS4zrJdJ6X39PUSE58oD1YsKBO71ZVs3h7irKoWzWUmQs2f3Vt2ngg3E6SevhRjdVhAutBkzdNPPy2vvvqqVKlS5ZZeExMTI+Hh4SkWAMDt++TdNyR37pzS9PFO0r77s9Ks8X1Ss9rN/xY3rF9HRn36noyeMFUaNGstS//6Vwb07SE+Pv9r0/JQ4/vkuxnjZNk/K+X+lu2kyWMdZMzEaVKiWNGkbYYPfV2Wr1glgXUbS6PmbcXDw13Onr8gfQa9LjXubSFPP/uiNG9yv7z9yiBxds5X2pHVEumPVzVJ9NlrD8vLC7aIm7hJm1r/+8cKAABwq0KSWrmkfxV6cp4e7vJ5+xri7eEu89cfkcELtpgWLx3rlcjQOJA5Ld5+QgbO3WTuVmhRJUBGd64t3p7OX+uj8w5oIr3rpDUSejJCOk5YLXN6N5BCuXytDg1wqE8//VQ8PT1l0KBbT5AMHz5c3nvvvXSNCwBuR0zL/1VXZ2ZPd3zCLHYlixeT37+dkWKbfj27pljfFbw81X317NrBLHY6GWjZUimPzzWRrktaHmn+oFmSm/7NSHFFzn906uLc3d3kg9ZVpXP9EpJoExm8YLP8uPnmvY0AAACuFXryahI9HScVTYuHu5sMf6JaUru617/fJjNXH8zwOJC5/LTluDw/50oCvVWNIjKmi2sk0O3KFcwuC/o1NHd/7D8dKR3Gr5aj56OsDgtwmA0bNsjXX38t06ZNS9EC4GaGDBkiFy9eTFqOHDmSrnECAK731TeTTQuYfQcOyTeTZ8rsbxdJ1/Zpt+7K6lznCNXFE+kftdFEenGTSH9pPol0AABw55Xogek8qeiNjmm0XV2ve0ub9Xd+3CGT/t1vSSyw3ncbjsqL8zZJQqJNnqxdTL7qWNO0/3E1JfP5y/x+DaREXj85fC5KOo5fI4fORlodFuAQ//77r5w6dUpKlChhqtF1OXTokLz88stSqlSpNF+n7QJy5syZYgEAZKwNm7dKq049pX7TVqYn+ucfvCU9ura3OqxMi3YuTpVIr2Yqt+atO2IS6Xql//EazHwOAABuzmaz/a8S3aIkutLjl7cfrSQ+nu7yf3/vkw9/3WX6YD/fpJxlMSHjzVl7WN5atM0c22qhiB7n6vGuqyqWx88k0rtOXCv7z0SaRPrsPkFStkDGtlYCHE17oTdr1izFYy1atDCP9+zZ07K4AAA3N3P811aH4FRIojsRPbH4uO2VRLr2E9XKHT3V0FtfAQAAbuR0RIycj4oTzVNqiwkraSL91RaB4uPpIV/+GSqfLQkxifSXmpW/rXYAcE7T/jsg7/6803zfo1EpGdaqcpb4vRfOlU3mXU2k7zkVYRLpc/oEWXpRC7gVERERsnfv3qT1AwcOyObNmyVv3rymAj1fvnwptvfy8pJChQpJYGCgBdECAJA+XO9+ySyQSNd+ou3rFDOtXV6cv1l+2Xrc6rAAAEAmFxoWYb6Wyucvvl4eVodjkqYvNCsvrz9c0ayPWrZHPl0cYirm4bomrNiXlEDve3+ZLJNAtyuYw1fm9W0glQrnlDMRMdJpwhrZcfyi1WEBN7R+/XqpVauWWdTgwYPN90OHDrU6NAAAMgyV6E6aSP/0yepiu9pL8oV5m8VN3OTR6oWtDg0AAGRSIZmglUtq+jcua1q7vP/LThn3zz6JiU+QoY9lrcRqVjF62R75Ymmo+X7gg+Vk8EMVsuTvOV92H5nbJ0i6TQmWrUcvSpeJa2XGM/WlRvHcVocGpKpx48a3dYHz4EEmjQaQidkSr3yxOg5kqMTEK7/3u0ES3dkT6TaR7zcelUHa2sVN5JFqJNIBAMD1Qq9OKlqhUOZKoqtn7i0t3p7u8vai7TL1v4MSG58oH7Su6tI9srMSTb598UeojPnrSjuIlx+qIAOblpesLLeft8zqHSQ9pgTLxsMX5KlJa2XaM/WkTsm8VocGAIBri74gidHhcvK8v+TL6S9eHhxvOiv36OhbOg6NjY2V06dPi7u7u3h7e9/x+5FEd2Ie7m4yop1WpNtk4cZjMnDulR7pLUmkAwCANCrRAzNZJbrdUw1KmkT6699vldlrD5tE+idPVjfHO3BeeuIy/PfdMmHFfrP+5iMVpe/9Za0OK1PI6eslM3oFSa9p62TtgXPy9ORgmdKjnjQok7K/NAAAcBw3W4LYNs+Uy2UfkuP5yoqbu/VtDnFnvCNvfVs/Pz8zj4cm0u8USXQnpyeWn7WrYe5DWbjpSiJ9jJubPFy1kNWhAQCATCIx0SZ77En0QtZOKnojHeoWN61dBi/YIt9uOCqxCYnyRfsa4unBND7O+u/uvZ93yPTVh8z6e49Xke6NSlkdVqaS3cdTpvWsL31nrpd/95yRHlODZWK3unJf+QJWhwYAgMtyiwkX2blQbF5+YvPyZcpIJ1W6z6Rb2s7Dw0M8PT3vuo0gSXRXSaS3ryGJNpss2nxcBszZKGO71pYWVUikAwAAkWMXLktkbIJ4e7hLyXz+kpm1rllUvDzcZdDcTfLj5uOmIv3rTrVMlTqcK4H+1qJtMjf4iGk5+FGbatIlqITVYWVK2bw9TOK8/6wN8lfIaek1fb2Me6q2PFgxwOrQAABwWW5ajRoXeWWBU/L11QsgGYezERdKpH/Roaa0rllE4hNt8vzsjfLHjjCrwwIAAJlA6NUq9DIFtO9j5j/80zlexj1VxyT9f98eJs/N3iDRcQlWh4VblJBok1e+22IS6NqNR++aJIF+Y75eHjL+6brSokqAuXDUb+YGWbydY3kAAIDMIvOfReH2Eunta8jjNa4m0udslKU7T1odFgAAyCz90DPhpKJpaVY5QCZ0q2Pau/y565T0mbFeLseSSM/s4hIS5cX5m818PXps+lWnWtKuTjGrw3IKerfFmC615bHqhSUu4cqx/E9bjlsdFgAAAEiiux7tGTqyQw1pVaOIOfjWyq0/SaQDAJClhYZdSaJXyKSTiqalcWBBmdqjnmTz8jD9op+Ztk4iY+KtDgtp0ApqbSv485bj4uXhJmO71DbFHbh1eqeIti96onZRU9H/4rxN8t2Go1aHBQAAkOWRRHfRRPqXHWokVbH0n71Blu0ikQ4AQFYVcjLCfA10siS6alQuv8zoVd9MwLh6/1npPiVYLkXHWR0WrqHtdp6dtUGW7DhpKqrHP12Hie7vkFbwf96uhnSqV1wSbSKvfrdF5qw9bHVYAAAAWRpJdBdOpH/VsaY8ak+kz9ooy3eTSAcA3JlLly7Jiy++KCVLlpRs2bJJo0aNZN26dUnP60znqS2fffZZmvt89913r9u+YsWKGfQTZR3xCYmy71SE07VzSa5eqbwys1d9yeHrKesPnZenJgfLxSgS6ZmFttnRdjvLd58SXy93mdStLpNi3iV3dzf5uG016d6wpNhsIm/+sE2m/XfA6rAAAACyLJLoLp5I/1oT6dUKS2xCojw7c6P8tfuU1WEBAJxQ7969ZenSpTJz5kzZtm2bNG/eXJo1aybHjh0zz584cSLFMmXKFJMUf/LJJ2+43ypVqqR43cqVKzPoJ8o6Dp6NMscBft4eUjR3NnFWtUrkkbl9GkhuPy/ZcuSCdJm0Rs5FxlodVpan7XV6TA027Xb039jUHvXl/goFrA7LZRLp7z5eRfrcV9qsv/vzTpmwYp/VYQEAAGRJJNGzQkV6p5rSsmohcwLdb+YG+SuERDoA4NZdvnxZvv/+exkxYoTcf//9Uq5cOVNFrl+/+eYbs02hQoVSLD/++KM0adJEypQpc8N9e3p6pnhd/vz5M+inyjpCr04qWj4gh0nKObOqRXPJvL4NJJ+/t+w4Hi6dJ6yR05dirA4rywqPjpNuU4Jl7YFzksPH09wt0LBsPqvDcil6MfLNRyrJgCblzPrHv+2W0cv2WB0WAABAlkMSPYtMUDSqc60UifS/SaQDAG5RfHy8JCQkiK+vb4rHta1LapXjJ0+elF9//VV69ep1033v2bNHihQpYpLtXbt2lcOH6fvraCFXJxUNDMgurqBioZwyv18DKZjDR0JOXpKOE1ZL2MVoq8PKci5ExcpTk9bKhkPnJVc2L5nVO0jqlMxrdVgum0h/pUWgvPxQBbP+xdJQ+XxJiNi0zwsAAAAyBEn0LJZIb1ElQGLjE6XvzA3yT+hpq8MCADiBHDlySMOGDeWDDz6Q48ePm4T6rFmzZPXq1aYFy7WmT59uXvPEE0/ccL9BQUEybdo0Wbx4saloP3DggNx3332m/3pqYmJiJDw8PMWCW69Er+CEk4qmpVzBHLKgX0MpkstX9p+ONIn0YxcuWx1WlnE2Ika6TFwrW49elLz+3jKnT5DUKJ7b6rBc3sCm5eXNR67MGzHmr70y/PfdJNIBAACyShJ97NixUqpUKVPdpifTwcHBN9z+woUL8vzzz0vhwoXFx8dHKlSoIL/99luGxevsifTRnWtL88pXEuk6AdQKEukAgFugvdA1WVO0aFEz/o4aNUo6d+4s7u7XH0poP3StKr+2cv1aLVu2lPbt20v16tWlRYsWZjzXcX7BggWpbj98+HDJlStX0lK8eHGH/XyuTKu1nXlS0bSUyu8v8/s1lOJ5s8mhs1HSYdxqOXw2yuqwXN6pS9HSeeIa2XkiXPJn9zHtdaoUyWV1WFlG3/vLynuPVzHfT1ixX979aYckJpJIBwAAcOkk+vz582Xw4MEybNgw2bhxo9SoUcOcRJ86lXqrkdjYWHnooYfk4MGD8t1330lISIhMnDjRnNDj1nh7usuYLrXloWSJ9H/3kEgHANxY2bJl5Z9//pGIiAg5cuSIuegdFxd3Xc/zf//914zPOhHp7cqdO7e5OL53795Unx8yZIhcvHgxadE4cGPRcQly8Eyk+T7QhSrR7Yrn9ZP5fRtK6fz+phK9w/jVsv90hNVhuawTFy9Lp/FrJPRkhBTK6SsL+jVwqTscnEX3RqXk47bVxM1NZPrqQ/LWom0k0gEAAFw5iT5y5Ejp06eP9OzZUypXrizjxo0TPz8/U8GWGn383LlzsmjRIrnnnntMBfsDDzxgku+4vUT62C61pVmlAImJT5Te09fLyj1nrA4LAOAE/P39zd1g58+flyVLlkjr1q1TPD958mSpU6fOHY3NmqDft2+f2X9qtAI+Z86cKRbc2L7TEaK5tdx+XlIgh4+4oiK5s8n8vg2kXMHsEhYeLR1Mkjf1lkC4c0fORV25SHEmUormzmba6ZQp4Bp99p1Rl6AS8lm7GqJzBc8NPiKvfLdFEkikAwAAuF4SXavKN2zYIM2aNftfMO7uZl17rKbmp59+Mj1ZtZ1LQECAVK1aVT7++GPTmzUt9E9NO5H+f101kV7QJNJ7TV8n/+0lkQ4ASJ0mzLV3ufYtX7p0qTRp0kQqVqxoLoTb6Rj77bffplmF3rRpUxkzZkzS+iuvvGKq2/UOs1WrVknbtm3Fw8PDtImB4/uh6+SErqpgTl/TVqRioRxyJiJGOk1YIzuPc8znKHo3g36mR85dlpL5/MzEriXy+VkdVpbXrk4x+apTLfFwd5OFG4/Ji/M3S1xCotVhAQAAuCTLkuhnzpwxyW9Nhien62FhYam+Zv/+/aaNi75O+6a+88478sUXX8iHH36Y5vvQP/UmFelda0vTiv9LpK8ikQ4ASIW2T9GL2Jo479atm9x7770mse7l5ZW0zbx580zf9LSS4FplruO/3dGjR822gYGB0qFDB8mXL5+sWbNGChQokCE/U1YQEhbhsq1crqX9uef2aSDViuaSc5Gxpm/31qMXrA7L6e09FZE0cWuZAv6mfU6xPCTQM4vHaxQxd5h6ebjJz1uOy4A5G03LRgAAADiWm82iKd2PHz9ueplr5ZlWl9u99tprpipt7dq1171G+6RGR0ebKjitVLO3hPnss8/kxIkTaVai65K8Sk4T6ZoM4DbwK2LiE6T/rI2yfPcp8fVylyk96kmjsvmtDgsAXI6OQXpBlzHIMfg8b+6ZaevM+P5Bm6rydIOSkhVcvBwnPaYGy6bDFySHj6dMe6a+1CmZx+qwnFJI2CXpOmmNnImINRdiZvUOctm2QM5u+e6T8uysKwn0BysWNHec+npdOV9C+mAMytyf5+ZPWzgkLgBA5lXz9SUZOgZZVomeP39+kwg/efJkisd1vVChQqm+RnukaiLdnkBXlSpVMpXr2h4mNfRPvTkfTw/55qna0iSwgETHJZoT7tX7zlodFgAAcEASNKtUotvlyuYlM3sFSf3SeeVSTLw8PXmtrNnPcc3t2n7sonSasNok0CsXzilz+zYggZ6JPVgxQCZ1q2sKYvTCWZ8Z6+VybNotLwEAAHB7LEuie3t7m4nHli1blvRYYmKiWU9emZ6cTia6d+9es51daGioSa7r/nC3ifQ60jhZIp0TTgAAnNel6DjTgkNVCMhaE0Bm9/GU6T3ry73l8ktUbIKpTGcS9Vu3+cgF6TJxjZyPipMaxXKZNjl5/TnWzuzur1BApvaoL37eHvLvnjPm331kTLzVYQEAALgEy5LoavDgwTJx4kSZPn267Nq1S/r37y+RkZFJk5Rpz9UhQ4Ykba/Pnzt3Tl544QWTPP/111/NxKLaoxV3T2/5HPdUHXmgQgG5HJcgPaeuk7Uk0gEAcEp7Tl3phx6Q00dy+2W9BGg2bw+Z1L3u/+60m75O/tp9yuqwMr31B8/JU5PWSnh0vNQtmce0cMnl97+5D5C5NSybT2b2qm9aGa09cE66TQmW8Og4q8MCAABwepYm0Tt27Ciff/65DB06VGrWrCmbN2+WxYsXJ002evjw4RS9zrWXuU5itm7dOqlevboMGjTIJNTfeOMNC38K10ukj3+6jtxXPv+VRPq0dRJ84JzVYQEAgNsUerWVS4Us1Mol1QKBp+tI88oBpld035nrZcmO1Cewh8iqfWdM0jUiJl4alMkr05+pLzl8SaA7mzol85qLHzl9PWXDofPmosiFqNRbXwIAAMAJkuhqwIABcujQITP5p04mGhQUlPTc33//LdOmTUuxvbZ6WbNmjZlgdN++ffLmm2+m6JEOx5xwTuxW1yTS7bdArztIIh0AAGcScjLr9UNPq2Xd2K615dHqhSUuwSbPzd4oP285bnVYmc4/oafNXYh67KfHgNoWxN/H0+qwcIdqFM9t+tjn8fOSrUcvSpeJa+VsRIzVYQEAADgty5PocJJE+pRgc3svAABwDqFXk+gVCmXtJLry8nCXrzvWlCdqFZWERJu8MG+TLNx41OqwMo1lu05Kn+nrJSY+UZpWLGiOAbUdDpxblSK5ZF7fhpI/u4/sPBEunSeukVOXoq0OCwAAwCmRRMdNE+k6KVdkbIJ0nxIsGw6RSAcAwBmEhF3piZ7VK9HtPD3c5bP2NaRTveKSaBN5+dstMi/4sGR1v287If1mbpDYhER5uEohM9G8HgPCNQQWyiHz+zUwcyOEnoyQTuPXSNhFEukAAAC3i3s0cUuJ9F7T18mqfWel+5R1pj9mnZJ5rA4NAACkQds2nLnauqF8QHarw8k0PNzd5OO21cTb011mrD4kbyzcJtFxCfJknWKSFS3bdcpcTNDq/MdrFJGRHWqYiw1wLWULZJcF/Rqali77z0RKh/GrZWrPelIwh49kVdm8PPi3DgAAbgtJdNyU3s47uXu9ZIn0YBLpAABkYlpxqkrk9RM/bw73knN3d5P3Hq8i3h7uMmnlAXn3551mycra1Skmnz5Z3VxkgGsqmc/fVKRrIv3wuShp+sU/kpXN7dNAGpbNZ3UYAADAiXD5HbeVSG9YJp9ExMSbRPrGw+etDgsAANyoHzqtXFLl5uYmbz1aSV5sVt4k07MqTZr3aFRKRpBAzxKK5fEzFenViuayOhQAAACnQ2kSbi+R3qOuPDNtnazZf066Tw6WaVSkAwCQ6YRcTaIHFqKVy40S6S82qyDPNykniTabZEXubm5m0lVkHYVy+cpPA+4xPfCzMi93/t0DAIDbQxIdt0VvCZ/So570nLpO1h44J09NWivjnq4jD1QoYHVoAADgqtAwKtFvFUlkZMULSD6eTB4LAABwOzhrwB0l0nUyIk2cX45LkN7T18kvW49bHRYAABARm82WrBKdJDoAAAAA3C2S6LjjRPrEbnXlseqFJS7BJgPnbpK5wYetDgsAgCwvLDxaLkXHi6e7m5TJTzsXAAAAALhbJNFxx7w93eXrTrWka1AJ0VaiQxZuk2/+3md1WAAAZGkhV1u5lM7vb8ZqAAAAAMDd4cwKd8XD3U0+bFNVnm9S1qx/uni3DP9tl7mVHAAAZLzQq61cKtDKBQAAAAAcgiQ6HDI50astKspbj1Qy6+NX7Jc3vt8mCYkk0gEAyGghYRHmayCTigIAAACAQ5BEh8P0ub+MjHiyuri7icxff0QGzNkoMfEJVocFAEDWrEQniQ4AAAAADkESHQ7VoV5x+b+utcXbw11+3x4mvaatl8iYeKvDAgAgS9C7wPacupJED6SdCwAAAAA4BEl0ONzDVQvL1J71xM/bQ1buPSNdJ62V85GxVocFAIDLO3IuSqLjEsXH011K5PWzOhwAAAAAcAkk0ZEu7imXX+b0aSC5/bxk85EL0mH8agm7GG11WAAAuLSQq61cygdkN5N/AwAAAADuHkl0pJuaxXPLt/0aSqGcvrLnVIS0G7dKDp6JtDosAABcVmgY/dABAI61YsUKadWqlRQpUkTc3Nxk0aJFSc/FxcXJ66+/LtWqVRN/f3+zTbdu3eT48eOWxgwAgKORREe6Kh+QQ759tqGUyucnR89flnbjVsvO4+FWhwUAgEtXogeSRAcAOEhkZKTUqFFDxo4de91zUVFRsnHjRnnnnXfM14ULF0pISIg8/vjjlsQKAEB68Uy3PQNXFc/rJ98+20i6TwmWnSfCpeOE1TK1Rz2pWyqv1aEBAOBSQq8m0SswqSgAwEFatmxpltTkypVLli5dmuKxMWPGSP369eXw4cNSokSJDIoSAID0RSU6MkSBHD4yt28DqVcqj1yKjpenJq+Vv0JOWR0WAAAuIzY+UfafvtI2jUp0AIBVLl68aNq+5M6d2+pQAABwGJLoyDC5snnJjGeCpElgAYmOS5Q+09fLj5uPWR0WAAAu4cCZSIlPtEkOH08pnMvX6nAAAFlQdHS06ZHeuXNnyZkzZ5rbxcTESHh4eIoFAIDMjCQ6MlQ2bw+Z0K2utK5ZxJzovzh/s8xcc8jqsAAAcJl+6NrKRSsAAQDISDrJaIcOHcRms8k333xzw22HDx9uWsHYl+LFi2dYnAAA3AmS6MhwXh7u8mWHmtKtYUmx2UTeWbRdxizfYw62AADAnQkNu5pEp5ULAMCiBPqhQ4dMj/QbVaGrIUOGmLYv9uXIkSMZFisAAHeCiUVhCXd3N3nv8SqSO5uXjFq+Vz7/I1TOR8XJW49UMs8BAIA7q0QPDMhudSgAgCyYQN+zZ4/89ddfki9fvpu+xsfHxywAADgLkuiwjN5qPrh5oOTy85YPftkpk1cekIuX4+STJ6qJpwc3SQAAcDtCk7VzAQDAUSIiImTv3r1J6wcOHJDNmzdL3rx5pXDhwtKuXTvZuHGj/PLLL5KQkCBhYWFmO33e29vbwsgBAHAckuiwXK97S5uK9Ne+3yrfbTgq4ZfjZFTnWuLr5WF1aAAAOIWo2Hg5fC7KfB9IOxcAgAOtX79emjRpkrQ+ePBg87V79+7y7rvvyk8//WTWa9asmeJ1WpXeuHHjDI4WAID0QRIdmcKTdYpJzmxe8vycjfLHzpPSc+o6mdi9rmT34Z8oAAA3s/dUhJlnJH92b8mXndvjAQCOo4nwG81fxdxWAICsgJ4ZyDQeqhwg03vWN4nz1fvPSpeJa+RcZKzVYQEAkOmFMKkoAAAAAKQbkujIVBqWzSdz+zSQvP7esvXoRWk/bpUcv3DZ6rAAAHCOfugk0QEAAADA4UiiI9OpViyXLOjXUArn8pV9pyOl/bjVsv90hNVhAQCQaYWcvDJOBjKpKAAAAAA4HEl0ZErlCmaX7/o3kjL5/eXYhcsmkb792EWrwwKALOvSpUvy4osvSsmSJSVbtmzSqFEjWbduXdLzPXr0EDc3txTLww8/fNP9jh07VkqVKiW+vr4SFBQkwcHB6fyTuKZQ2rkAAAAAQLohiY5Mq2jubLLg2YZStWhOORsZK50nrJG1+89aHRYAZEm9e/eWpUuXysyZM2Xbtm3SvHlzadasmRw7dixpG02anzhxImmZO3fuDfc5f/58GTx4sAwbNkw2btwoNWrUkBYtWsipU6cy4CdyHRej4iQsPNp8XyEgu9XhAAAAAIDLIYmOTC1/dh/TIz2odF65FBMv3aYEy7JdJ60OCwCylMuXL8v3338vI0aMkPvvv1/KlSsn7777rvn6zTffJG3n4+MjhQoVSlry5Mlzw/2OHDlS+vTpIz179pTKlSvLuHHjxM/PT6ZMmZIBP5XrCD11Kenicw5fL6vDAQAAAACXQxIdmZ4mBKY/U1+aVSooMfGJ0nfmBlm06X+VjwCA9BUfHy8JCQmm5Upy2tZl5cqVSet///23FCxYUAIDA6V///5y9mzadw/FxsbKhg0bTDW7nbu7u1lfvXp1Ov0krikkqZULVegAAAAAkB5IosMp+Hp5yDdP1ZEnahWVhESbvDh/s0xfddDqsAAgS8iRI4c0bNhQPvjgAzl+/LhJqM+aNcsku7Vti72Vy4wZM2TZsmXy6aefyj///CMtW7Y026bmzJkz5rmAgIAUj+t6WFhYqq+JiYmR8PDwFAtEQk9eTaIzqSgAAAAApAuS6HAaXh7u8nn7GtKjUSmzPuynHfL1n3vEZrNZHRoAuDztha5/b4sWLWratowaNUo6d+5sqsdVp06d5PHHH5dq1apJmzZt5JdffjETj2p1uqMMHz5ccuXKlbQUL17cYft2hUr0QCYVBQAAAIB0QRIdTsXd3U2GtaosLzWrYNa//DNU3vt5pyQmkkgHgPRUtmxZU10eEREhR44ckeDgYImLi5MyZcqkur0+nj9/ftm7d2+qz+tzHh4ecvJkynkudF37qadmyJAhcvHixaRF48jq9MJGUiU6SXQAAAAASBck0eF03Nzc5IVm5eW9x6uY9WmrDsor326RuIREq0MDAJfn7+8vhQsXlvPnz8uSJUukdevWqW539OhR0xNdt02Nt7e31KlTx7R/sUtMTDTr2jomNVoBnzNnzhRLVnc6IkbOR8WJu5tIuYL0RAcAAACA9EASHU6re6NS8lXHmuLh7iYLNx2T/rM2SHRc6r13AQB3RxPmixcvlgMHDsjSpUulSZMmUrFiRenZs6epTn/11VdlzZo1cvDgQZMI1+R6uXLlpEWLFkn7aNq0qYwZMyZpffDgwTJx4kSZPn267Nq1y0xGGhkZafaJWxMaFmG+lsrnb+YPAQAAAAA4nmc67BPIMG1qFZUcvp7y3OyN8ueuU9J9SrBM6l5Xcvh6WR0aALgUbZ+i7VS0wjxv3rzy5JNPykcffSReXl4SHx8vW7duNcnwCxcuSJEiRaR58+ZmIlKtHrfbt2+fmVDUrmPHjnL69GkZOnSomUy0Zs2aJlF/7WSjSFsIrVwAAAAAIN2RRIfTa1opQGY8U196T18vaw+ck84T18j0nvUlX/b/JW4AAHenQ4cOZklNtmzZTKX6zWiV+rUGDBhgFtyZ0KuTilYoRBIdAAAAANIL7VzgEoLK5JO5fRtIPn9v2X4sXNqPXy3HLly2OiwAADKkEj2QSnQAAAAASDck0eEyqhbNJd8+21CK5s4m+09HSrtvVsneU1d6xQIA4GoSE22yx55EL8SkogAAAACQXkiiw6WUKZBdvuvfUMoW8JcTF6Olw/jVsu3oRavDAgDA4fSOq8jYBPH2cJeS+fytDgcAAAAAXBZJdLicwrmyybfPNpLqxXLJuchY0yN99b6zVocFAIBDhV6tQi9TwF+8PDikAwAAAID0whkXXFJef2+Z06eBNCqbTyJi4qX71GBZuvOk1WEBAOD4fuhMKgoAAAAA6YokOlxWdh9PmdKjnjSvHCCx8Yny7KwN8v2Go1aHBQCAQ4SGXUmiV2BSUQAAAABw/ST62LFjpVSpUuLr6ytBQUESHByc5rbTpk0TNze3FIu+DkiNr5eH/F/X2tKuTjFJSLTJy99ukSkrD1gdFgAAdy3k5JXJswNJogMAAACAayfR58+fL4MHD5Zhw4bJxo0bpUaNGtKiRQs5depUmq/JmTOnnDhxImk5dOhQhsYM5+Lp4S4jnqwuve8tbdbf/2WnjPwjRGw2m9WhAQBwR+ITEmXfqatJdNq5AAAAAIBrJ9FHjhwpffr0kZ49e0rlypVl3Lhx4ufnJ1OmTEnzNVp9XqhQoaQlICAgQ2OG83F3d5O3Hq0kr7YINOujlu+VYT/tkMREEukAAOdz8GyUxCYkip+3hxTNnc3qcAAAAADApVmaRI+NjZUNGzZIs2bN/heQu7tZX716dZqvi4iIkJIlS0rx4sWldevWsmPHjjS3jYmJkfDw8BQLsia9+PJ8k3LyQZuq4uYmMmP1IXlpwWaJS0i0OjQAAG5L6NVJRcsH5DAXigEAAAAALppEP3PmjCQkJFxXSa7rYWFhqb4mMDDQVKn/+OOPMmvWLElMTJRGjRrJ0aOpTxg5fPhwyZUrV9KiiXdkbU83KClfd6olnu5u8uPm49Jv5ga5HJtgdVgAANyykKuTigYGZLc6FAAAAABweZa3c7ldDRs2lG7duknNmjXlgQcekIULF0qBAgVk/PjxqW4/ZMgQuXjxYtJy5MiRDI8Zmc/jNYrIxG51xdfLXZbvPiXdpqyVi5fjrA4LAIDbqkSvwKSiAAAAAODaSfT8+fOLh4eHnDx5MsXjuq69zm+Fl5eX1KpVS/bu3Zvq8z4+PmYi0uQLoJpULCgzewVJDl9PWXfwvHSesEZOX4qxOiwAAG4q5GoSnUlFAQAAAMDFk+je3t5Sp04dWbZsWdJj2p5F17Xi/FZoO5ht27ZJ4cKF0zFSuKp6pfLK/L4NJX92H9l5Ilzaj1slR85FWR0WAABpio5LkINnIs33gVSiAwAAAIDrt3MZPHiwTJw4UaZPny67du2S/v37S2RkpPTs2dM8r61btCWL3fvvvy9//PGH7N+/XzZu3ChPPfWUHDp0SHr37m3hTwFnVrlITvnu2YZSLE82OXg2StqPWy17rlb4AQCQ2ew7HSGJNpHcfl5SIIeP1eEAAAAAgMvztDqAjh07yunTp2Xo0KFmMlHtdb548eKkyUYPHz4s7u7/y/WfP39e+vTpY7bNkyePqWRftWqVVK5c2cKfAs6uVH5/+e7ZRvL05LWy51SEtB+/Wqb1rC81i+e2OjQAANLsh+7m5mZ1OAAAAADg8ixPoqsBAwaYJTV///13ivUvv/zSLICjFcrlKwv6NZQe09bJliMXpMvENWby0XvK5bc6NAAAkoSERZivtHIBAAAAgCzSzgXITPL4e8uc3kFyT7l8EhWbID2nrpPF28OsDgsAgOsr0ZlUFAAAAAAyBEl04Br+Pp4ypUc9ebhKIYlNSJTnZm+QBeuPWB0WAABGSNiVJDqV6AAAAACQMUiiA6nw8fSQMV1qSce6xc3kba99t1Um/bvf6rAAAFncpeg4OXbhsvm+QkB2q8MBAAAAgCyBJDqQBk8Pd/nkyWrS7/4yZv3DX3fJ50tCxGazWR0aACCL0smvVUBOH8nt5211OAAAAACQJZBEB27Azc1NhjxSSV5/uKJZH/PXXnl70XZJ0PJ0AAAyWOjVVi4VaOUCAAAAABmGJDpwC/o3Lisft60mbm4is9celhfmbZLY+ESrwwIAZDEhVycVpR86AAAAAGQckujALeoSVEJGd64lXh5u8svWE/LsrA0SHZdgdVgAgCwk9GoSvUIhkugAAAAAkFFIogO34bHqRWRS93ri6+Uuy3efkj4z1pNIBwBkmJCwKz3RqUQHAAAAgIxDEh24TQ9UKCDTetYXP28P+XfPGXlm2jqJio23OiwAgIs7GxEjZyJizPflA7JbHQ4AAAAAZBkk0YE70KBMPpnxTH3J7uMpq/adlR5T1klEDIl0AED6CT15pQq9RF4/8fP2tDocAEAWsWLFCmnVqpUUKVJE3NzcZNGiRSmet9lsMnToUClcuLBky5ZNmjVrJnv27LEsXgAA0gNJdOAO1S2VV2b0qi85fD0l+OA56TZ5rYRHx1kdFgDA1fuh08oFAJCBIiMjpUaNGjJ27NhUnx8xYoSMGjVKxo0bJ2vXrhV/f39p0aKFREdHZ3isAACkF5LowF2oXSKPzO4dJLmyecnGwxfk6cnBcjGKRDoAwPFCribRAwvRygUAkHFatmwpH374obRt2/a657QK/auvvpK3335bWrduLdWrV5cZM2bI8ePHr6tYBwDAmZFEB+5S9WK5ZU6fIMnj5yVbjlyQrpPXyPnIWKvDAgC4mNAwKtEBAJnLgQMHJCwszLRwscuVK5cEBQXJ6tWrLY0NAABHIokOOECVIrlkXt+Gkj+7t2w/Fi6dJ64xE8ABAOAIWun3v0p0kugAgMxBE+gqICAgxeO6bn8uNTExMRIeHp5iAQAgMyOJDjiIJjXm9W0gBXL4yO6wS9Jpwho5dYk+gACAuxcWHi2XouPF091NyuSnnQsAwLkNHz7cVKzbl+LFi1sdEgAAN0QSHXCgcgVzyPy+DaRQTl/ZcyrCJNJPhpNIBwDcnZCrrVxK5/cXb08O3wAAmUOhQoXM15MnT6Z4XNftz6VmyJAhcvHixaTlyJEj6R4rAAB3g7MwwMHKFMgu8/s1kKK5s8n+05HScfxqOX7hstVhAQCcWOjVVi4VaOUCAMhESpcubZLly5YtS3pMW7OsXbtWGjZsmObrfHx8JGfOnCkWAAAyM5LoQDoomc/ftHYpnjebHDwbJR0nrJYj56KsDgsA4KRCwiLM10AmFQUAZLCIiAjZvHmzWeyTier3hw8fFjc3N3nxxRflww8/lJ9++km2bdsm3bp1kyJFikibNm2sDh0AAIchiQ6kk+J5/WR+34ZSKp+fHDl32bR2OXQ20uqwAOCOXLp0yZwklyxZUrJlyyaNGjWSdevWmefi4uLk9ddfl2rVqom/v785cdYT6OPHj99wn++++645+U6+VKxYMYN+IietRCeJDgDIYOvXr5datWqZRQ0ePNh8P3ToULP+2muvycCBA6Vv375Sr149k3RfvHix+Pr6Whw5AACOQxIdSEdFcmeT+f0aSpkC/nLswmXpOH6N7D99pZoQAJxJ7969ZenSpTJz5kxTZda8eXNp1qyZHDt2TKKiomTjxo3yzjvvmK8LFy6UkJAQefzxx2+63ypVqsiJEyeSlpUrV2bIz+NMEhJtsufUpaRJrAEAyEiNGzcWm8123TJt2jTzvF4Ef//99yUsLEyio6Plzz//lAoVKlgdNgAADkUSHUhnATl9TUV6hYDsEhYeLR0nrJG9V5MhAOAMLl++LN9//72MGDFC7r//filXrpypItev33zzjeTKlcsk2Dt06CCBgYHSoEEDGTNmjGzYsMHc6n0jnp6eppeqfcmfP3+G/VzOQtuBRcclio+nu5TI62d1OAAAAACQ5ZBEBzJAgRw+MrdPA6lYKIecvhRjKtJ3h4VbHRYA3JL4+HhJSEi47rZsbeuSVuX4xYsXTWVa7ty5b7jvPXv2mPYvZcqUka5du9406Z4VhVxt5VI+ILt4uLtZHQ4AAAAAZDkk0YEMki/7lUR61aI55WxkrHSesEa2H7todVgAcFM5cuSQhg0bygcffGD6nGtCfdasWbJ69WrTguVaeiu39kjv3Lmz5MyZM839BgUFmVvBtW+qVrTrRGX33Xef6b+empiYGAkPD0+xZAWhYfRDBwAAAAArkUQHMlAef2+Z3buB1CieW85HxUmXiWtky5ELVocFADelvdC1/2nRokXFx8dHRo0aZZLk7u4pDyV0klFt66LbamL8Rlq2bCnt27eX6tWrS4sWLeS3336TCxcuyIIFC1Ldfvjw4aZ1jH0pXry4ZKVK9ECS6AAAAABgCU9r3hbIunJl85KZvepLz6nrZMOh8/LUpLUy7Zn6UqdkHqtDA+AEEhMT5Z9//pF///1XDh06ZCb1LFCggNSqVctM9JleieWyZcua942MjDQV4IULF5aOHTuaNizXJtA1ruXLl9+wCj012vpFJyLbu3dvqs8PGTJEBg8enLSucWSFRHro1SR6BSYVBQAAAABLUIkOWCCnr5dMf6a+1C+dVy7FxEu3yWtl3cFzVocFIJNP7vnhhx+apPEjjzwiv//+u6na9vDwMEnnYcOGSenSpc1za9asSbc4/P39TQL9/PnzsmTJEmndunWKBLr2OP/zzz8lX758t73viIgI2bdvn9l/arQCXhPzyRdXFxufKPtPR5rvqUQHAAAAAGuQRAcskt3HU6b1rCeNyuaTyNgE6TY5WFbvO2t1WAAyKa3Q3rp1q0ycONFUYGs/8u+//970Jtc2KDohpyagtad4p06dzHaOpAlz7V2ufcuXLl0qTZo0kYoVK0rPnj1NAr1du3ayfv16mT17tumZHhYWZpbY2NikfTRt2lTGjBmTtP7KK6+Y6vaDBw/KqlWrpG3btuaigLaJwRUHzkRKfKJNcvh4SuFcKSd2BQAAAABkDJLogIX8vD1lSo96cl/5/HI5LkF6TguWf/ectjosAJnQH3/8YXqFa6W5l5dXqtuULFnStDzRavAHH3zQoe9/8eJFef75503ivFu3bnLvvfeaxLrGcuzYMfnpp5/k6NGjUrNmTVNJbl80OW6nSf4zZ84krev2mjAPDAw0Vexava5V9NqeBin7oWsrFzc3N6vDAQAAAIAsiZ7ogMV8vTxkYre68tzsjbJ89ynpNX29jH+6jjQJLGh1aAAykUqVKt3ytprY1h7mjqRJbl1SU6pUKTOR6M1oxXly8+bNc1h8rio07GoSnVYuAAAAAGAZKtGBTJJIH/dUHWleOcD0v+03Y4Ms3XnS6rAAZHLx8fEyduxYad++vTzxxBPyxRdfSHR0tNVhIR0q0QMDslsdCgAAAABkWSTRgUzC29NdxnatLY9WKyyxCYnSf9YG+X3bCavDApCJDRo0SH744QfTn/yBBx6QOXPmmB7lcB2hydq5AAAAAACsQTsXIBPx8nCXrzvVFE8PN/lx83EZMHeTfJVok1Y1ilgdGoBMQBPmOvlm8j7pISEhZjJO1aJFC2nQoIGFEcKRomLj5fC5KPN9IO1cAAAAAMAyVKIDmYynh7uM7FBTnqhdVBISbfLCvE3yw6ajVocFIBOYMmWKtGnTRo4fP27Wa9euLc8++6wsXrxYfv75Z3nttdekXr16VocJB9l7KkK01Xz+7N6SL7uP1eEAAAAAQJZFEh3IhDzc3eTzdjWkU73ikmgTGbxgiyxYf8TqsABYTBPlnTt3lsaNG8vo0aNlwoQJkjNnTnnrrbfknXfekeLFi5uWLnANIUwqCgAAAACZAu1cgEzK3d1NPm5bzbR2mbXmsLz23VaJT7BJl6ASVocGwEIdO3Y0bVu06ly/jhs3zkwoChfuh04SHQAAAAAsRSU6kMkT6R+0rio97yll1t/8YZtMX3XQ6rAAWCx37tymCv2zzz6Tbt26yauvvirR0dFWhwUHCzkZYb4GMqkoAAAAAFiKJDqQybm5ucnQxypL3/vLmPVhP+2QSf/utzosABY4fPiwdOjQQapVqyZdu3aV8uXLy4YNG8TPz09q1Kghv//+u9UhwoFCaecCAAAAAJkCSXTASRLpQ1pWlOeblDXrH/66S775e5/VYQHIYFp17u7ubirQCxYsKP369RNvb2957733ZNGiRTJ8+HCTZIfzuxgVJ2HhV+4uqBCQ3epwAAAAACBLoyc64ESJ9FeaB4qXh7t89ece+XTxbolLSJRBTctbHRqADLJ+/XrZsmWLlC1b1vRDL126dNJzlSpVkhUrVpg2L3B+oaeuVKEXzZ1Ncvh6WR0OAAAAAGRpJNEBJ0ukv9isgkmkf7YkREYuDTWJ9MEPVTDPAXBtderUkaFDh0r37t3lzz//NG1drtW3b19LYoNjhSS1cqEKHQAAAACsRjsXwAk936ScvPlIRfP96OV75dPFIWKz2awOC0A6mzFjhsTExMhLL70kx44dk/Hjx1sdEtJJ6MmrSXQmFQUAAAAAy1GJDjipvveXNRXp7/28U8b9s89UpL/9aCUq0gEXVrJkSfnuu++sDgMZWIkeyKSiAAAAAGA5KtEBJ9bzntLyQZuq5vvJKw/IsJ92SGIiFemAK4qMjEzX7ZF56J1FSZXoJNEBAAAAwHIk0QEn93SDkvLpk9VEC9BnrD4kby3aTiIdcEHlypWTTz75RE6cOHHD5OvSpUulZcuWMmrUqAyND45zOiJGzkfFibubSLmC9EQHAAAAAKvRzgVwAR3rlRBPd3d59bstMjf4sGnt8umT1cVDMzAAXMLff/8tb775prz77rtSo0YNqVu3rhQpUkR8fX3l/PnzsnPnTlm9erV4enrKkCFDpF+/flaHjDsUGhZhvpbK5y++Xh5WhwMAAAAAWR5JdMBFPFmnmHh6uMngBVvkuw1HJT4hUT5vX0M8PbjhBHAFgYGB8v3338vhw4fl22+/lX///VdWrVolly9flvz580utWrVk4sSJpgrdw4PEqzMLoZULAAAAAGQqmSK7NnbsWClVqpSppgsKCpLg4OBbet28efPMJIpt2rRJ9xgBZ9C6ZlEZ1amWeLq7yaLNx+WF+ZtNVToA11GiRAl5+eWXZdGiRbJp0ybZvXu3rFy5UkaPHi2PPfYYCXQXEHp1UtEKhUiiAwAAAEBmYHkSff78+TJ48GAZNmyYbNy40dyi3qJFCzl16tQNX3fw4EF55ZVX5L777suwWAFn8Gj1wjK2a23x8nCTX7eekAFzNkpsPIl0AHC2SvRAKtEBAAAAIFOwPIk+cuRI6dOnj/Ts2VMqV64s48aNEz8/P5kyZUqar0lISJCuXbvKe++9J2XKlMnQeAFn0KJKIRn/dB3x9nCXJTtOSv9ZGyQmPsHqsAAAN6ETQ++xJ9ELMakoAAAAAEhWT6LHxsbKhg0bpFmzZv8LyN3drOvkaGl5//33pWDBgtKrV68MihRwPg9WDJCJ3euKj6e7LNt9SvrO2CDRcSTSASAzO3bhskTGJpiLoCXz+VsdDgAAAADA6iT6mTNnTFV5QEBAisd1PSwsLNXXaN/XyZMnm8nTbkVMTIyEh4enWICs4oEKBWRqj3qSzctD/gk9Lb2mr5PLsSTSASCzCr1ahV6mgL94MTE0AOAu6F3bZ8+eve7xCxcucEc3AAC3yanOzi5duiRPP/20SaDnz5//ll4zfPhwyZUrV9JSvHjxdI8TyEwalcsv03rWEz9vD/lv71npMTVYImPirQ4LAHCjfuhMKgoAuEs6j5gWraVWaHbs2DFLYgIAwFl5Wvnmmgj38PCQkydPpnhc1wsVKnTd9vv27TMHAq1atUp6LDHxyoSJnp6eEhISImXLlk3xmiFDhpiJS+20Ep1EOrKaoDL5ZGav+tJjyjpZe+CcdJ8SLFN71pMcvl5WhwbgDpQqVUqeeeYZ6dGjh5QoUcLqcOBAoWFXkugVmFQUAHCHfvrpp6TvlyxZYorJ7DSpvmzZMnMsAQAAnCSJ7u3tLXXq1DGDeJs2bZKS4ro+YMCA67avWLGibNu2LcVjb7/9tqlQ//rrr1NNjvv4+JgFyOrqlMwrM3sHSbfJa2X9ofPy9ORgmf5MfcmVjUQ64GxefPFFmTZtmpkjpEmTJmaOkLZt2zLeuYCQkxHmayBJdADAHbKfW7u5uUn37t1TPOfl5WUS6F988YVF0QEA4Jwsb+eiVeLanmX69Omya9cu6d+/v0RGRkrPnj3N8926dTPV5MrX11eqVq2aYsmdO7fkyJHDfK9JeQBpq1k8t8zp00By+3nJ5iMX5KlJa+VCVKzVYQG4gyT65s2bJTg4WCpVqiQDBw6UwoULmwvQGzdutDo83KH4hETZd+pqEp12LgCAO6SFabro3WqnTp1KWtdFW7noHdyPPfaY1WECAOBULE+id+zYUT7//HMZOnSo1KxZ0yQFFi9enDTZ6OHDh+XEiRNWhwm4jKpFc8ncPg0kr7+3bDt2UTpPXCvnIkmkA86odu3aMmrUKDl+/LgMGzZMJk2aJPXq1TPj6ZQpU8Rms1kdIm7DwbNREpuQaOawKJo7m9XhAACc3IEDB255LjEAAJCJ27nYaeVcau1b1N9//33D1+rt7ABuT6XCOWVe3wbSZeJa2XUiXDpPWCOzegdJgRy0ggCcSVxcnPzwww8ydepUWbp0qTRo0MC0djl69Ki8+eab8ueff8qcOXOsDhO3KPTqpKLlA3KIu7ub1eEAAFyAtkrVxV6RnpxecAcAAOmYRD9y5Ijpr1asWDGzrreT60l65cqVpW/fvneySwAZTCetm99PE+lrJOTkJek0YbWpUC+Y09fq0ADchLZs0cT53Llzxd3d3bQ++/LLL83cIXbaI12r0uE8Qq5OKhoYkN3qUAAALuC9994z86fUrVvXtH3Tc3gAAJCBSfQuXbqYZPnTTz8tYWFh8tBDD0mVKlVk9uzZZl1bswDI/MoWyC7z+zY0ifR9pyOl44Q1MqdPkBTORRsBIDPT5LiOvd98842ZPEwnCbtW6dKlpVOnTpbEh7urRNeLnAAA3K1x48aZO7f1vB0AAFjQE3379u1Sv3598/2CBQvMpJ6rVq0ySXTaqwDOpVR+f5nfr6Hpv3vgTKR0HL9Gjp6PsjosADewf/9+M39I+/btU02gK39/f1OtDuehdwUpJhUFADhCbGysNGrUyOowAADIukl07cHq43Old7L2W3388cfN93obOZOAAs6neF4/WfBsQymR108On4syifTDZ0mkA5mV9jVdu3btdY/rY+vXr7ckJtyd6LgEOXgm0nwfSCU6AMABevfuzdwoAABYmUTX1i16a9i///5rJjJ7+OGHzePHjx+XfPnyOSo2ABlIK9EX9GsoZfL7y7ELl6XjhNWmMh1A5vP888+b+UmudezYMfMcnM++0xGSaBPJ7efFJM8AAIeIjo6WkSNHygMPPCADBw6UwYMHp1gcJSEhQd555x3TSi5btmxStmxZ+eCDD8RmsznsPQAAcMqe6J9++qmZsOyzzz6T7t27S40aNczjP/30U1KbFwDOp1AuX5nXt4F0mbRW9p6KkI7jV8ucPg2kXEEmuQMyk507d0rt2rWve7xWrVrmOTh3P3QmfgMAOMLWrVulZs2aSS1Zk3PkWKP5AZ2nZfr06abgTu+K69mzp+TKlUsGDRrksPcBAMDpkuiNGzeWM2fOSHh4uOTJkyfpcZ1s1M/Pz5HxAchgBXNeSaQ/NWmt7A67JJ0mrJbZvRvQoxfIRLSl2smTJ6VMmTIpHteWap6edzS0w2IhYRHmK61cAACO8tdff2XI++j8aK1bt5ZHH33UrJcqVUrmzp0rwcHBGfL+AABk2nYuly9flpiYmKQE+qFDh+Srr76SkJAQKViwoKNjBJDB8mf3MRXolQvnlDMRsdJ54hrZeTzc6rAAXNW8eXMZMmSIXLx4MemxCxcuyJtvvikPPfRQurznpUuX5MUXX5SSJUuaW7V1orJ169YlPa+3bA8dOlQKFy5snm/WrJns2bPnpvsdO3asOdn29fWVoKCgLHvCnVSJzgVLAICT0WOCZcuWSWhoqFnfsmWLrFy5Ulq2bJnmazSfoEV5yRcAADKzOypX06vMTzzxhDz77LPmpF1Per28vEx1uvZc69+/v+MjBZCh8vp7y5w+QdJtSrBsPXrRJNJn9QqSasVyWR0akOV9/vnncv/995uEtrZwUZs3b5aAgACZOXNmuk1OpreC6/6LFCkis2bNMolybR9TtGhRGTFihIwaNcrcyq09UbU3aosWLczzmiBPzfz5801PVp1nRY8l9IK8viYrXpQPCbuSRKcSHQDgKE2aNLlh25bly5c75H3eeOMNkwSvWLGieHh4mB7pH330kXTt2jXN1wwfPlzee+89h7w/AACZthJ948aNct9995nvv/vuO3PSrtXoM2bMMCfQAFxDbj9vmdU7SGqVyC0XL8dJl0lrZNPh81aHBWR5mrTWPqeauK5cubLUqVNHvv76a9m2bZsUL17c4e+nd6B9//335v00eV+uXDl59913zVftgapV6JoAf/vtt82F9urVq5tjAp1wfNGiRWnuVy+89+nTx/RN1Z9Dk+naFm7KlCmSlVyKjjMTOqsKAcxBAQBwDO2HrvOX2Rcda2NjY835fLVq1Rz2PgsWLJDZs2fLnDlzzL71grpe8NevabHfUWdfUpswHQAAp69Ej4qKkhw5rlRK/fHHH6Yq3d3dXRo0aGCS6QBcR05fL5nxTH15Zto6WXfwvDw9OVimP1NP6pTMa3VoQJbm7+9v5iLJCPHx8aaq7NqKcm3bordrHzhwQMLCwkxlup1OJqbV5atXr5ZOnTpdt089id+wYYM5ibbTYwndh74mK9lz6ko/9ICcPubiJQAAjvDll1+m+rheCI+IuDL2OMKrr75qqtHt470m6DUvoNXm3bt3T3N+F10AAHDpSnStPNPKMr1avGTJEtObVZ06dUpy5szp6BgBWCyHr5dM61lfGpTJKxEx8dJ7+no5cfFK1SQA62irlMWLF8tPP/2UYnE0vXDesGFD+eCDD0x1uSbUtZ2LJrt1MlNNoCu9My05Xbc/dy1tAaf7uZ3XuGr/1NCrrVwq0MoFAJABnnrqKYfe9aVFdnohPDlt65KYmOiw9wAAwCkr0XXisC5dushLL70kDz74oDmxtlel23uzAnAt/j6eMrVHfWk/fpVsPxYuL8zdbHqme3rc0bU4AHdh//790rZtW9O+RXudajsVZe97qslpR9Ne6M8884xpJaMnxrVr15bOnTubavKM4qr9U0OuTipKP3QAQEbQi+BpzVdyJ1q1amV6oJcoUUKqVKkimzZtMi3b9LgBAIAsnURv166d3Hvvvab6THur2TVt2tSc1ANwTdm8PWRM59ry2OiVEnzwnIxatkcGNw+0Oiwgy3nhhRfM5J3Lli0zX4ODg+Xs2bPy8ssvmx6k6aFs2bLyzz//SGRkpKkAL1y4sHTs2FHKlCkjhQoVMtucPHnSPG6n69qPNTX58+c3yXjdJjldt+/vWtr6RScitdM40qMHfEYLvZpEr1CIJDoAwHG07WpyetFdz+HXr19vJgB3lNGjR5v9Pffcc+budJ2AvF+/fqb4DgAAV3HHJaR6gqtV53pb99GjR81j9evXNzNyA3BdpfL7y8dPXJmIaPRfe2XV3jNWhwRkyQqy999/3ySi9fZpXfTitlZqDxo0KN17sWui/Pz586alm04kqol8PS7QpH7yBPfatWuT7la7lre3t5kQNflr9LZvXU/rNdo7VdvGJV9cQUjYlb60VKIDABxJ5ydJvuTNm1caN24sv/32mwwbNsyhbd90gnHtg66Tke/bt08+/PBDM9YDAJClK9H1JFcHxS+++CJpQhIdOLUC7q233rquHxoA1/J4jSImeT5v3RF5Yf5m+W3QfVIgBxMDARlF27XYJ/jWRLpe0A4MDJSSJUtKSEhIurynJsy1gk3fZ+/evWYSMb1w3rNnT9NG5sUXXzTHBuXLlzdJda1I00q0Nm3aXHfH2oABA8y6VpXrhGN169Y1F+L1BFwr3XWfWcXZiBg5ExFjvi8fkN3qcAAALmTq1KlWhwAAQNZOomuifPLkyfLJJ5/IPffcYx5buXKlmeU7Ojra9EMD4NqGtaoiGw+fl9CTETJ4wWaZ3rO+uLtf6ccMIH1VrVpVtmzZYpLVQUFBMmLECFPtNWHCBNNeJT1cvHjRtFPRu8+0ku3JJ580472Xl5d5/rXXXjMJ8L59+8qFCxdMZbxOepq856pWpumEonbaDub06dPmdm+dTFRbv+hrrp1s1JXp31BVIq+f+Hnf0WEZAAA3pPOX7Nq1y3yvPcuZxwwAgNvnZrPPRnYbtLJs3Lhx8vjjj6d4/McffzR90I4dOyaZld5erreyaTLAVW4DB6yy5+QlaTVmpUTHJcqrLQLl+SblrA4JyNQcNQZpVbgmrLXXqVaFP/bYYxIaGir58uWT+fPnm0m/swJXGNOnrzoow37aIc0qBcik7nWtDgcA4EJjkPYn79Spk/z999+SO3du85he6G7SpInMmzdPChQoIK76eW7+tIVD4gIAZF41X1+SoWPQHfVdOXfuXKq9z/UxfQ5A1lA+IIe837qq+X7k0lBZf5D//4GM0KJFi6TJwsqVKye7d+82Fd56spxVEuiuIuTqpKKBhWjlAgBwrIEDB8qlS5dkx44d5jxdl+3bt5tkQXrPoQIAgKu5oyR6jRo1ZMyYMdc9ro9Vr17dEXEBcBLt6xSTNjWLSEKiTQbN3STnI2OtDglwaXFxceLp6WlOgpPTFivamxzOJTTsShK9ApOKAgAcTFuk/d///Z9UqlQp6bHKlSvL2LFj5ffff7c0NgAAnM0dNd/U3quPPvqo/Pnnn9KwYUPz2OrVq+XIkSNmpm8AWYcm7T5sW022HL0oB85EyqvfbZWJ3eqQzAPSifYgL1GihJlcFM5NO+r9rxKdJDoAwLESExOT5i5JTh/T5wAAQDpXoj/wwAOm92rbtm1NTzVd9LZyvU1s5syZd7JLAE4su4+njOlSS7w93eXPXSdl6n8HrQ4JcGk6wfebb75JCzUnFxYeLZei48XT3U3K5KedCwDAsbTF2wsvvCDHjx9PekznL3vppZekadOmlsYGAECWqES3Ty760UcfpXhsy5YtMnnyZJkwYYIjYgPgRKoUySVvP1pJhv64Q4b/vkvqlsoj1YtdmcAIgGNp+zSdUFTH4pIlS4q/v3+K5zdu3GhZbLh1IVdbuZTO728uQgIA4Ojjhccff1xKlSolxYsXN4/p3eNVq1aVWbNmWR0eAABZI4kOANd6ukFJWbX3rCzeESYD5mySXwbdKzl9r7+FFMDdadOmjdUhwAFCr7ZyqUArFwBAOtDEuV5Y1zasOgm50v7ozZo1szo0AACcDkl0AA6jfdA/bVddth+/KIfPRcmQhdtkTOda9EcHHGzYsGFWhwAHCAmLMF8DmVQUAOBAy5cvlwEDBsiaNWskZ86c8tBDD5lFXbx4UapUqSLjxo2T++67z+pQAQBwGtw7DMChcmXzktGda5kev79uPSFzg49YHRIAZO5KdJLoAAAH+uqrr6RPnz4mgX6tXLlySb9+/WTkyJGWxAYAQJaoRNfJQ29EJxgFgFol8shrDwfKx7/tlvd+3iG1SuSWSoWvP4gHcGfc3d1veIdHQkJChsaD25eQaJM9p64k0QNp5wIAcCCdq+zTTz9N8/nmzZvL559/nqExAQCQpZLoetX6Zs9369btbmMC4AJ631tGVu87K3+FnJYBczbKTwPuFX8fOkgBjvDDDz+kWI+Li5NNmzbJ9OnT5b333rMsLty6I+eiJDouUXw83aVEXj+rwwEAuJCTJ0+Kl1fa8xJ5enrK6dOnMzQmAACc3W1ltKZOnZp+kQBwKe7ubvJFh5rS8usVsu90pAz9cYd80aGG1WEBLqF169bXPdauXTvT43T+/PnSq1cvS+LCrQu52sqlfEB28XBn3ggAgOMULVpUtm/fLuXKlUv1+a1bt0rhwoUzPC4AAJwZPdEBpJu8/t4yqlMt0fzQ9xuPyvcbjlodEuDSGjRoIMuWLbM6DNyC0DD6oQMA0scjjzwi77zzjkRHR1/33OXLl80E5Y899pglsQEA4KxIogNIV0Fl8smLzSqY79/5cbvsPRVhdUiAS9KT4lGjRpnqMzhPJXogSXQAgIO9/fbbcu7cOalQoYKMGDFCfvzxR7Non/TAwEDz3FtvvWV1mAAAOBUaFANId883KSdr9p+VVfvOmv7oi56/R3y9PKwOC3BaefLkSTGxqM1mk0uXLomfn5/MmjXL0thwa0LslehMKgoAcLCAgABZtWqV9O/fX4YMGWKOE5QeO7Ro0ULGjh1rtgEAALeOJDqAdKf9fr/qWFMeGfWv7A67JB/+ulM+bFPN6rAAp/Xll1+mSKK7u7tLgQIFJCgoyCTYkbnFxCfIgTOR5nsq0QEA6aFkyZLy22+/yfnz52Xv3r0mkV6+fHmOEwAAuEMk0QFkiII5fWVkh5rSbUqwzFpzWBqWyS+PVmdCI+BO9OjRw+oQcBc0gR6faJMcPp5SOJev1eEAAFyYJs3r1atndRgAADg9eqIDyDD3VyggzzUua75/4/utcvhslNUhAU5p6tSp8u233173uD42ffp0S2LCnbVySX5HAQAAAAAgcyKJDiBDDX6ogtQtmUcuxcTLgLkbJTY+0eqQAKczfPhwyZ8//3WPFyxYUD7++GNLYsKtC706qWgFWrkAAAAAgFMgiQ4gQ3l6uMvXnWtJrmxesvXoRRmxeLfVIQFO5/Dhw1K6dOlU+5/qc8jcQsIizNfAgOxWhwIAAAAAuAUk0QFkuKK5s8nn7WuY7yetPCB/7jxpdUiAU9GK861bt173+JYtWyRfvnyWxIQ7qEQvRCU6AAAAADgDkugALPFQ5QB55p4rlbSvfLdFjl+4bHVIgNPo3LmzDBo0SP766y9JSEgwy/Lly+WFF16QTp06WR0ebiAqNl4On7syH0Qg7VwAAAAAwCmQRAdgmTdaVpTqxXLJhag4GTR3k8Qn0B8duBUffPCBBAUFSdOmTSVbtmxmad68uTz44IP0RM/k9py80solf3ZvyZfdx+pwAAAAAAC3gCQ6AMt4e7rL6M61JLuPp6w/dF6++nOP1SEBTsHb21vmz58vISEhMnv2bFm4cKHs27dPpkyZYp5D5hXCpKIAAAAA4HQ8rQ4AQNZWMp+/fPJkNRkwZ5OM/XuvBJXJK/eVL2B1WIBTKF++vFngPELDSKIDAAAAgLOhEh2A5R6rXkS6BJUQm03kpfmb5dSlaKtDAjK1J598Uj799NPrHh8xYoS0b9/ekphwe5XogUwqCgAAAABOgyQ6gExh6GOVpWKhHHImItYk0hMSbVaHBGRaK1askEceeeS6x1u2bGmeQ+YVSjsXAAAAAHA6JNEBZAq+Xh4ypkstyeblIf/tPSvf/L3X6pCATCsiIiLV3udeXl4SHh5uSUy4uQtRsXIyPMZ8XyEgu9XhAAAAAABuEUl0AJlGuYI55IM2Vc33I5eGSvCBc1aHBGRK1apVMxOLXmvevHlSuXJlS2LCzYWejDBfi+bOJjl8vawOBwAAAABwi5hYFECm0q5OMVm194ws3HRMBs3dJL+9cJ/k9b++4hbIyt555x154oknZN++ffLggw+ax5YtWyZz586Vb7/91urwcJN+6FShAwAAAIBzyRSV6GPHjpVSpUqJr6+vBAUFSXBwcJrbLly4UOrWrSu5c+cWf39/qVmzpsycOTND4wWQvrQavUx+fwkLj5ZXvt0iNp1xFECSVq1ayaJFi2Tv3r3y3HPPycsvvyxHjx6VP//8U9q0aWN1eEhDaNjVJDqTigIAAACAU7E8ia63ow8ePFiGDRsmGzdulBo1akiLFi3k1KlTqW6fN29eeeutt2T16tWydetW6dmzp1mWLFmS4bEDSB/+Pp4ypktt8fZ0l+W7T8nklQesDgnIdB599FH577//JDIyUs6cOSPLly+XBx54QLZv3251aLhJJXogk4oCAAAAgFOxPIk+cuRI6dOnj0mEax/XcePGiZ+fn0yZMiXV7Rs3bixt27aVSpUqSdmyZeWFF16Q6tWry8qVKzM8dgDpp3KRnDL0sSu9nT/5fbdsPnLB6pCATOvSpUsyYcIEqV+/vrkYjcxH76gJTWrnQhIdAAAAAJyJpUn02NhY2bBhgzRr1ux/Abm7m3WtNL+VE1LtARsSEiL3339/OkcLIKN1DSohj1QrJPGJNhkwZ6NcvBxndUhAprJixQrp1q2bFC5cWD7//HPTH33NmjVWh4VUnL4UIxei4sTdTSdRpic6AAAAADgTSycW1dvPExISJCAgIMXjur579+40X3fx4kUpWrSoxMTEiIeHh/zf//2fPPTQQ6luq9voYhceHu7AnwBAenJzc5PhT1SXbccuypFzl2XIwq0ytktt8ziQVYWFhcm0adNk8uTJZkzr0KGDGee0R7re0YXM3cqlVD5/8fXysDocAAAAAMBtsLydy53IkSOHbN68WdatWycfffSR6an+999/p7rt8OHDJVeuXElL8eLFMzxeAHcuVzYvGdO5tnh5uMlv28Jk1trDVocEWDqhaGBgoJkT5KuvvpLjx4/L6NGjrQ4LtyDEPqkorVwAAAAAwOlYmkTPnz+/qSQ/efJkisd1vVChQmm+Tlu+lCtXTmrWrCkvv/yytGvXziTLUzNkyBBTuW5fjhw54vCfA0D6qlE8t7z+cEXz/Qe/7JQdxy9aHRJgid9//1169eol7733nplYVMfQjKB3jb3zzjtSunRpyZYtm5mT5IMPPjBt1ez0DpHUls8++yzN/b777rvXbV+x4pX/111NUj/0QiTRAQAAAMDZWJpE9/b2ljp16pi+5naJiYlmvWHDhre8H31N8pYtyfn4+EjOnDlTLACcT697S0vTigUlNj5RBs7ZJJEx8VaHBGQ4nURbJxHVsTMoKEjGjBljWqOlt08//VS++eYb8367du0y6yNGjEhRBX/ixIkUi04QrknxJ5988ob7rlKlSorXuepE4SEnI8zXQCrRAQAAAMDpWN7ORVuxTJw4UaZPn25OzPv37y+RkZHSs2dP87xOmKbV5HZacb506VLZv3+/2f6LL76QmTNnylNPPWXhTwEgvWky7vP2NaRwLl/ZfyZS3l60PUUVLJAVNGjQwIyZmmzu16+fzJs3T4oUKWIuJuvYqAn29LBq1Spp3bq1qX4vVaqUuQOsefPmEhwcnLSN3kGWfPnxxx+lSZMmUqZMmRvu29PTM8Xr9C41V5OYaJM9VyvRAwsxqSgAwPUcO3bMnJPny5fP3LVWrVo1Wb9+vdVhAQDgOkn0jh07yueffy5Dhw417Vm01/nixYuTJhs9fPiwSRbYaYL9ueeeM5Vr99xzj3z//fcya9Ys6d27t4U/BYCMkMffW0Z1riUe7m7yw6Zj8t2Go1aHBFjC399fnnnmGVO1vW3bNtPa7JNPPpGCBQvK448/7vD3a9SokblLLDQ01Kxv2bLFvHfLli1T3V7bsv3666+m9czN7Nmzx1wI0GR7165dzbifFr3rTCdTTb44g2MXLktUbIJ4e7hLyXz+VocDAIBDnT9/3pybe3l5mdZzO3fuNMVuefLksTo0AAAcxs2WxUo59YRbJxjV/ui0dgGc05jle+TzP0Ilm5eH/DzwHilXkPYIcA7pOQZp3/Kff/7ZtFH56aefHLpvrXR/8803TQsX7cOu76UTeye/Uyw53U6T+jrxqa+vb5r71RPtiIgIM1mqXjDXXu9aybZ9+3YziXhqPdR1m2tl9jH9z50npfeM9VKxUA5Z/OL9VocDAHAAziv/54033pD//vtP/v3330zzeW7+tMVd7wMAkLnVfH2JQ/Zzq2OQ5ZXoAHC7+jcuJ/eWyy+X4xLk+dmbJDouweqQAMtpcrtNmzYOT6CrBQsWyOzZs2XOnDmyceNG04JN7yLTr6nRRL5Wld8oga60kr19+/ZSvXp1adGihfz2229y4cIF836uNFl4SFIrFy74AQBcjx571K1b14zpeldcrVq1TPs5AABcCUl0AE5H27mM7FhD8mf3Mcmp937eaXVIgEt79dVXTZVZp06dTI/Tp59+Wl566SUzT8m1tAotJCTkjtqs5c6dWypUqCB79+51qcnCQ68m0SswqSgAwAXpfGU6AXn58uVlyZIlZp6zQYMGpXmx3ZlbtAEAsi6S6ACcUsEcvvJVx5ri5iYyN/iw/LTluNUhAS4rKipK3N3dr6t81zYv15o8ebLUqVNHatSocdvvo61d9u3bJ4ULFxZXEhJ2tRKdJDoAwAXp8UDt2rXl448/NlXoffv2lT59+si4cePSfI1eiNdb5+1L8eLFMzRmAABuF0l0AE7r3vL55fnG5cz3by7cJgfPRFodEuCSWrVqZXqg62ShBw8elB9++EFGjhwpbdu2TbGdVpF9++23aVahN23aVMaMGZO0/sorr8g///xj9rlq1SqzP03Od+7cWVxFXEKi7D995W8T7VwAAK5IL35Xrlw5xWOVKlW64WThztqiDQCQdXlaHQAA3I0Xm5WXtQfOyrqD52Xg3E3yXf+G4uPpYXVYgEsZPXq0vPPOO/Lcc8/JqVOnpEiRItKvXz8ZOnRoiu3mzZsnOl95WklwrTI/c+ZM0vrRo0fNtmfPnpUCBQrIvffeK2vWrDHfu4pDZyMlNiFR/Lw9pGjubFaHAwCAw91zzz2mlVtyoaGhUrJkyTRfoy3adAEAwFmQRAfg1Dw93GVU51ryyNf/yrZjF+WT33fLsFZVrA4LcCk5cuSQr776yiw3ordv65IWrTi/Nunu6kLCIszX8gE5xN3dzepwAABwOJ0npVGjRqadS4cOHSQ4OFgmTJhgFgAAXAXtXAA4vcK5ssnn7a/0X57630H5Y0eY1SEBgKGTH6vAgOxWhwIAQLqoV6+eafU2d+5cqVq1qnzwwQfmwnvXrl2tDg0AAIehEh2AS2haKUB631taJq08IK9+t1WqFM1F6wQAlgu9OqloBSYVBQC4sMcee8wsAAC4KirRAbiM1x6uKDWK5ZKLl+Nk0NxNZkI/ALBSqL0SnUlFAQAAAMBpkUQH4DK8Pd1ldOfaksPHUzYcOi8jl4ZaHRKALCw6LkEOno003wdSiQ4AAAAAToskOgCXUiKfn3zyZHXz/Td/75N/Qk9bHRKALGrvqQhJtInk9vOSAjl8rA4HAAAAAHCHSKIDcDmPVi8sTzUoYb4fPH+znAqPtjokAFm4lYv2Q3dzc7M6HAAAAADAHSKJDsAlvf1oZalYKIecjYyVF+ZtlgQtBwWADBRi74dOKxcAAAAAcGok0QG4JF8vDxnbtbb4eXvI6v1nZczyvVaHBCCLCQ27WonOpKIAAAAA4NRIogNwWWULZJcP21Q133+9LFTW7D9rdUgAspDQkxHmK5XoAAAAAODcSKIDcGlP1C4m7eoUM5P7vTBvk5yNiLE6JABZwKXoODl24bL5vkJAdqvDAQAAAADcBZLoAFze+62rSNkC/nIyPEZe/naLJNIfHUAGVaEH5PSR3H7eVocDAAAAALgLJNEBuDw/b08Z06W2+Hi6y98hp2Xiv/utDgmAiwu9OqloBVq5AAAAAIDTI4kOIEuoVDinDGtVxXz/2ZIQ2Xj4vNUhAXBhIVcnFaUfOgAAAAA4P5LoALKMzvWLy6PVC0t8ok0GztkkF6PirA4JgKtXohciiQ4AAAAAzo4kOoAsw83NTYY/UU1K5PUzE/699v0Wsdnojw4g/ZLoVKIDAAAAgPMjiQ4gS8np6yVjutQSLw83WbLjpMxYfcjqkAC4mDMRMXImItZ8Xz4gu9XhAAAAAADuEkl0AFlO9WK5ZUjLSub7j37dJduPXbQ6JAAuWIWud73oxMYAAAAAAOdGEh1AltTznlLSrFKAxCYkyoA5GyUiJt7qkAC4iNCrk4pWoJULAAAAALgEkugAsmx/9M/bV5ciuXzl4NkoeXPhNvqjA3CIkJMR5mtgIVq5AAAAAIArIIkOIMvK7ectozrXEg93N/lpy3FZsP6I1SEBcKF2LlSiAwAAAIBrIIkOIEurWyqvDH6ogvl+2E87kpJfAHAn9I4WezuXwEIk0QEAAADAFZBEB5Dl9X+grNxXPr9ExyXK87M3yuXYBKtDAuCkTlyMlksx8eLp7iZl8tPOBQAAAABcAUl0AFmeu7ubjOxQUwrk8JE9pyLk3Z92WB0SACcVcvVultL5/cXbk8MsAAAAAHAFnN0BgIhJoH/dsaa4uYnMX39Eftx8zOqQADgheyuXCrRyAQAAAACXQRIdAK5qVC6/DGxSznz/5sJtcuBMpNUhAXDSSvRAJhUFAAAAAJdBEh0AkhnUtLzUL51XImMTTH/06Dj6owO4dfbJiSuQRAcAAAAAl0ESHQCS8fRwl1GdakkePy/ZeSJchv+2y+qQADiJhESb7DkZYb4PpJ0LAAAAALgMkugAcI1CuXzNRKNq+upDsnh7mNUhAXACh89FSUx8ovh4ukuJvH5WhwMAAAAAcBCS6ACQiiYVC0rf+8uY71/7boscORdldUgAMrmQq5OKlg/ILh7ublaHAwAAAABwEJLoAJCGV5oHSs3iuSU8Ol4Gzt0kcQmJVocEIBOjHzoAAAAAuCaS6ACQBm9PdxnduZbk8PWUzUcuyOdLQqwOCUAmFnI1iR5IEh0AAAAAXApJdAC4geJ5/eSzdtXN9+NX7Je/Qk5ZHRKATCr0ajuXCkwqCgAAAAAuhSQ6ANzEw1ULS7eGJc33g+dvlkNnI60OCUAmExOfIAfOXPnbQCU6AAAAALgWkugAcAvefKSSVCuaS85HxUnPaevkYlSc1SEByEQ0gR6faJMcPp5SOJev1eEAAAAAAByIJDoA3AJfLw+Z1L2uSY7tPx0p/Watl9h4JhoFcEVIslYubm5uVocDAAAAAHAgkugAcIsCcvrKlB71xN/bQ9bsPydv/rBNbDab1WEB6S4hIUHeeecdKV26tGTLlk3Kli0rH3zwQYp//z169DDJ4+TLww8/fNN9jx07VkqVKiW+vr4SFBQkwcHB4oxCr04qWoFWLgAAAADgckiiA8BtqFQ4p4zpUlvc3US+23BU/u/vfVaHBKS7Tz/9VL755hsZM2aM7Nq1y6yPGDFCRo8enWI7TZqfOHEiaZk7d+4N9zt//nwZPHiwDBs2TDZu3Cg1atSQFi1ayKlTzjeBb0hYhPkaGJDd6lAAAAAAAA5GEh0AblOTigXl3cermO8/WxIiP285bnVIQLpatWqVtG7dWh599FFTNd6uXTtp3rz5dVXjPj4+UqhQoaQlT548N9zvyJEjpU+fPtKzZ0+pXLmyjBs3Tvz8/GTKlCnitJXohahEBwAAAABXQxIdAO5At4alpOc9pcz3L3+7RTYcOm91SEC6adSokSxbtkxCQ0PN+pYtW2TlypXSsmXLFNv9/fffUrBgQQkMDJT+/fvL2bNn09xnbGysbNiwQZo1a5b0mLu7u1lfvXp1qq+JiYmR8PDwFEtmEBUbL4fPRZnvA2nnAgAAAAAuhyQ68P/t3Qd8VFX2wPGTHkISSgIkQCihl1AM5Y9YFkFRkaY0F2kWVEBBLOAqbZVFBFkUEZSV4ioCFlwVBZHmKiBdkZIAAgklCYiUJJA6/8+5MtkEEiQh5CXzft/P55F5U+97M7w7c9655wIF9GKnhtKhQUUzwejg97ZIzG9/BNEAVzN69Gjp06eP1K9fX7y8vKR58+YyYsQI6du3b45SLu+9954Jtmu5l3Xr1pkgu9ZTz83JkyfNbZUqVcpxva7HxcXl+phJkyZJmTJlspawsDApDvbF/1HKJdjfW4L8faxuDgAAAACgkBFEB4AC8nB3k9f7NJdGlQPlt6RUGTR/k5w5n2Z1s4BCt2TJEvnggw9k4cKFpnb5ggULZOrUqeavkwbZu3TpIhEREdKtWzf58ssvZfPmzSY7vbA8//zzcubMmawlNjZWioMoJhUFAAAAAJdWLILoM2fONDVWfX19pXXr1pfVWM1uzpw5cvPNN5s6q7rosO8r3R8ArqfSPp7y7oCWEhLoKwdOJMmQD7ZKWkam1c0CCtWzzz6blY2uQfJ+/frJU089ZTLD8xIeHi7BwcGyf//+XG/X2zw8PCQ+Pj7H9bqu9dRzozXXAwMDcyzFQXQcQXQAAAAAcGWWB9EXL14sI0eOlHHjxpnstqZNm0rHjh0lISEh1/trRtv9998va9asMTVTdSi3Tm529OjRIm87AKiQMr7y7sAW4uftIT/s/01eXPqLOBwOq5sFFJrk5GRTrzw7DYBnZuZ9wujIkSOmJnpoaGiut3t7e0tkZKQp/+Kkz6frbdq0kZLEmYlej0lFAQAAAMAlWR5EnzZtmjzyyCMyaNAgadiwocyePVv8/Pxk7ty5ud5fh5MPGTJEmjVrZmqz/utf/8r60Q0AVmlUuYzMuL+5uLuJLN4SK7PX/Wp1k4BC07lzZ5k4caIsW7ZMDh06JEuXLjX9d/fu3c3tiYmJJlt948aN5nbtk7t27Sq1a9c2J8ad2rdvL2+++WbWup5E1xFmWhZmz549ZjLSpKQk852gJImmnAsAAFleeeUVcXNzM/OnAADgKjytfPHU1FTZunWrqXHqpJluWqJFs8yvNjsuLS1Nypcvn+vtKSkpZnE6e/ZsIbQcAC7XvkElGXNPQ5nwxW6ZvHyvVA/yk7sjcs/CBUqSGTNmyJgxY8xJbB0pVrlyZXn00Udl7NixWVnpP//8swmGnz592tyuo8ReeuklU4LF6cCBA2ZCUafevXvLiRMnzPPoZKJ6gnz58uWXTTZanJ1OTpX4s398z6hbyd/q5gAAYCmdD+Xtt9+WJk2aWN0UAABcJ4iuP6QzMjIu+7Gs63v37r2q5xg1apT5sa6B99xovdYJEyYUSnsB4M8MaltTDp1MkgUbDstTi3dIaBlfaV6tnNXNAq5JQECATJ8+3Sy5KVWqlKxYseJPn0ez1C81bNgws5RU0fGJ5m+VsqUkwNfL6uYAAGAZHZnWt29fM8rs5Zdftro5AAC4VjmXax0mtmjRIjOsXCclzY1muZ85cyZriY2NLfJ2ArAXzUZvV6+CpKRnyiPvbZHYU8lWNwnAda6HThY6AMDuhg4dKp06dcozwS07HS2uo8SzLwAAFGeWBtGDg4PNEPD4+Pgc1+t6SEjIFR87depUE0T/5ptvrjhUTIeRBwYG5lgA4Hry9HCXGX+9QRqEBsrJxFR5cP5mOXshzepmAbgOouMuBtGZVBQAYGOa3LZt2zYzEvxq6P3KlCmTtYSFhV33NgIAUGKD6N7e3hIZGZljUlDnJKFt2rTJ83GvvvqqqbOqdVNbtGhRRK0FgKvn7+Mpcwe2kIoBPrIvIVGGfrBN0jIyrW4WgOuUiV6PSUUBADalo72HDx8uH3zwQZ4jxC/FiHEAQEljeTmXkSNHmpppOhnZnj175PHHH5ekpCQZNGiQub1///45Jh6dPHmymdxs7ty5UqNGDTMRmS5afw0AipPQMqXk3QEtpZSXh/x330kZ+59d4nA4rG4WgEKi/5+js8q5EEQHANjT1q1bzcTjN9xwg3h6eppl3bp18sYbb5jLOg/apRgxDgAoaSydWFT17t1bTpw4IWPHjjXB8GbNmpkMc+dkozExMeLu/r9Y/6xZsyQ1NVV69OiR43nGjRsn48ePL/L2A8CVRFQtI6/3aSaPvr9VPtwUIzWD/WTwLbWsbhaAQnDiXIqcTk4TdzeR2hWpiQ4AsKf27dvLzp07c1ynSXH169eXUaNGmRKuAACUdJYH0dWwYcPMkpu1a9fmWD906FARtQoACscdjULkhbsbyMvL9sikr/dKtfKl5c7GV573AUDJKeVSI6i0+HoRIAAA2FNAQIA0btw4x3WlS5eWoKCgy64HAKCksrycCwDYwUM31ZQH/q+aaDWXEYu3y0+xp61uEoBrFOWcVJRSLgAAAADg0opFJjoAuDo3NzcZ37mRxJ46L+uiT8jD722Rz4a2lSplS1ndNAAFlFUPPYQgOgAAVxpRDgBASUcmOgAUEU8Pd3nzr82lfkiAqaX84LzNcu5CmtXNAlBAUfF/TGpej0x0AAAAAHBpBNEBoAgF+HrJuwNbSoUAH1NPedjC7ZKekWl1swDkU2amQ/ZdzESvF8KkogAAAADgygiiA0AR0xIu7w5oIb5e7qa0y/gvdolDi6UDKDGOnj4vyakZ4u3hLtWDSlvdHAAAAADAdUQQHQAs0KRqWZneu7m4uYm8vzFG3v3+oNVNAlCASUXDK5QWLw++TgEAAACAK+NXHwBY5M7GIfL8XfXN5Ylf7ZFvdsVZ3SQAV0nLMal6TCoKAAAAAC6PIDoAWOiRm8Pl/lbVRKu5DF+0Q3YeOWN1kwBcheiLQfS6TCoKAAAAAC6PIDoAWMjNzU3+3rWR3FwnWM6nZchDCzbLsdPnrW4WgKss51KPIDoAAAAAuDyC6ABgMa2nPLPvDVK3kr8knEuRB+dvlsSUdKubBSAPaRmZ8uuJJHOZci4AAAAA4PoIogNAMRDo6yXvDmgpwf7esjfunDyxcJukZ2Ra3SwAuTj8W5KkZmSKn7eHVClbyurmAAAAAACuM4LoAFBMhJX3kzn9W4iPp7usiTohL3252+omAchFVFyi+VunUoC4u7tZ3RwAAAAAwHVGEB0AipHm1crJP3s3M5cXbDgs8344aHWTAFwi6uKkovUq+VvdFAAAAABAESCIDgDFzN0RoTLqzvrmsmajr9oTb3WTAGQTfXFS0bpMKgoAAAAAtkAQHQCKocduDZfeLcIk0yHyxIfb5ZejZ6xuEoCLop2Z6EwqCgAAAAC2QBAdAIohNzc3ebl7Y2lbO0iSUzPkoQWbJe7MBaubBdjehbQMOfRbkrlcj0x0AAAAALAFgugAUEx5ebjLW30jpXZFf4k/m2IC6Ukp6VY3C7C1/QmJZoRIWT8vqRDgY3VzAAAAAABFgCA6ABRjZUp5ybyBLSWotLfsOnZWhi/aLhkawQNgaSkXrYeuI0YAAAAAAK6PIDoAFHNh5f3knf4txNvTXb7dkyAvL9ttdZMA24py1kOnlAsAAAAA2AZBdAAoASKrl5NpvZqay/N+OCTvbThkdZMAW4qOu5iJzqSiAAAAAGAbBNEBoIS4p0llebZjPXN5/Oe7ZM3eBKubBNhOdHyi+UsmOgAAAADYB0F0AChBhvyllvSIrGomNhy2cJvsPnbW6iYBtnHuQpocPX3eXK5byd/q5gAAAAAAighBdAAoQXQiw390j5A24UGSlJohDy3YLPFnL1jdLMBWWeiVAn2krJ+31c0BAAAAABQRgugAUMLoBKOzH4iU8Aql5fiZCyaQnpyabnWzAJcXfXFS0bqUcgEAAAAAWyGIDgAlUBk/L5k3sKWUL+0tvxw9K8MX7ZAMrfEC4LqJujipKPXQAQAAAMBeCKIDQAlVPai0vNMvUrw93GXl7niZ9NUeq5sE2CMTPYQgOgAAAADYCUF0ACjBWtQoL1N6NjGX//X9QXl/42GrmwS4fBCdTHQAAAAAsBeC6ABQwnVtVkVG3l7XXB73+S5ZF33C6iYBLudkYoqcTEw1l+tU8re6OQAAAACAIkQQHQBcwBO31ZZ7b6hi6qIP/WCb7I07a3WTAJfMQq9W3k/8vD2tbg4AAAAAoAgRRAcAF+Dm5iaT7o2QVjXLS2JKujw0f4sknLtgdbPgIjIyMmTMmDFSs2ZNKVWqlNSqVUteeuklcTj+mMw2LS1NRo0aJREREVK6dGmpXLmy9O/fX44dO3bF5x0/frz57GZf6tevL8VR9MVJRetSygUAAAAAbIcgOgC4CB9PD3n7gUipGVxajp4+L48s2CLnUzOsbhZcwOTJk2XWrFny5ptvyp49e8z6q6++KjNmzDC3Jycny7Zt20ygXf9++umnEhUVJV26dPnT527UqJEcP348a/n++++lOIqKTzR/64VQygUAAAAA7IbxyADgQsqV9pa5A1tK97d+kJ+OnJGnFu+Qt/reIO7ublY3DSXY+vXrpWvXrtKpUyezXqNGDfnwww9l06ZNZr1MmTKycuXKHI/RgHurVq0kJiZGqlWrludze3p6SkhIiJSUci5kogMAAACA/ZCJDgAuRjPR3+nXQrw93GX5rjiZvHyv1U1CCXfjjTfKqlWrJDo62qz/9NNPJmP8rrvuyvMxZ86cMeVZypYte8Xn3rdvnyn/Eh4eLn379jVB97ykpKTI2bNncyxFQcvWOMu51AshiA4AAAAAdkMQHQBckNZGn9wjwlx++7tf5cNNeQcmgT8zevRo6dOnj6lX7uXlJc2bN5cRI0aYoHduLly4YGqk33///RIYGJjn87Zu3Vrmz58vy5cvN+ViDh48KDfffLOcO/dHwPpSkyZNMlnvziUsLEyKwvEzF+RcSrp4urtJeDDlXAAAAADAbgiiA4CL6t68qgxvX8dcfvGzX+S/+05Y3SSUUEuWLJEPPvhAFi5caGqeL1iwQKZOnWr+XkonGe3Vq5fJ3tbA+JVoJnvPnj2lSZMm0rFjR/nqq6/k9OnT5vVy8/zzz5sMd+cSGxsrRSHqYikXHeXh7clXJwAAAACwG2qiA4ALG9Ghjhz+LUk+23FMhry/TT4ZciM1nZFvzz77bFY2uoqIiJDDhw+bzPABAwZcFkDX21avXn3FLPTcaOmXunXryv79+3O93cfHxyxFzVnKpS6lXAAAAADAlkinAgAXpjWpJ/doIi1rlDPlKAbN2ywnzqVY3SyUMMnJyeLunvMrg4eHh2RmZl4WQNca599++60EBQXl+3USExPlwIEDEhoaKsWJMxO9PiegAAAAAMCWCKIDgIvz8fSQt/u1kOpBfnL09Hl55L0tciEtw+pmoQTp3LmzTJw4UZYtWyaHDh2SpUuXyrRp06R79+5ZAfQePXrIli1bTNmXjIwMiYuLM0tqamrW87Rv317efPPNrPVnnnlG1q1bZ55z/fr15vk0OK+11IuT6ItBdDLRAQAAAMCeCKIDgA2UL+0t8wa2lDKlvGRH7GkZuWSHZGY6rG4WSogZM2aYIPmQIUOkQYMGJvj96KOPyksvvWRuP3r0qHz++edy5MgRadasmckkdy4aHHfSLPOTJ09mrev9NWBer149k8Wu2esbN26UChUqSHGRkemQffGJ5nI9MtEBAAAAwJaoiQ4ANhFewV/e7hcp/d79Ub7aGSdTgqJk1J31rW4WSoCAgACZPn26WXJTo0YNM5Hon9GM8+wWLVokxV3MqWRJSc8UXy93CSvvZ3VzAAAAAAAWIBMdAGzk/8KD5JV7m5jLs9YekCWbY61uElCsRV2cVLROxQDxcHezujkAAAAAAAsQRAcAm7kvsqo8eVttc/lvS3fKD/v/V14DQB710CnlAgAAAAC2RRAdAGzoqdvrSpemlSU90yGPvb9V9if8ESgEkFPUxSB6vRB/q5sCAECxNGnSJGnZsqUp/1axYkXp1q2bREVFWd0sAAAKFUF0ALAhNzc3ebVHE2lRvZycu5Aug+ZvlpOJKVY3Cyh2oi+WcyETHQCA3K1bt06GDh1qJgdfuXKlpKWlyR133CFJSUlWNw0AgEJDEB0AbMrXy8NMNFqtvJ/Enjovg9/bIhfSMqxuFlBspKRnyMGTfwQA6oUQRAcAIDfLly+XgQMHSqNGjaRp06Yyf/58iYmJka1bt1rdNAAACg1BdACwsSB/H5k7sKUE+nrKtpjT8sxHP0lmpsPqZgHFggbQteRRgK+nhAT6Wt0cAABKhDNnzpi/5cuXz/M+KSkpcvbs2RwLAADFGUF0ALC52hX9ZXa/SPF0d5Mvfz4u01ZGW90koFiIuljKpV6lAFMCCQAAXFlmZqaMGDFC2rZtK40bN75iHfUyZcpkLWFhYUXaTgAASlwQfebMmVKjRg3x9fWV1q1by6ZNm/K8765du+S+++4z99cfs9OnTy/StgKAq7qxVrBMujfCXH5zzX75aEus1U0CLBd9cVLRupRyAQDgqmht9F9++UUWLVp0xfs9//zzJmPducTG8t0TAFC8WRpEX7x4sYwcOVLGjRsn27ZtM/XTOnbsKAkJCbnePzk5WcLDw+WVV16RkJCQIm8vALiyni3CZGi7Wuby35bulA0HfrO6SYClouISszLRAQDAlQ0bNky+/PJLWbNmjVStWvWK9/Xx8ZHAwMAcCwAAxZmlQfRp06bJI488IoMGDZKGDRvK7Nmzxc/PT+bOnZvr/Vu2bClTpkyRPn36mE4XAFC4nr69ntzTJFTSMhzy2Ptb5cCJP4KIgK0z0QmiAwCQJ4fDYQLoS5culdWrV0vNmjWtbhIAAK4TRE9NTTWzdXfo0OF/jXF3N+sbNmwotNdhwhIAuHru7m4ytWdTaV6trJw5nyYPzt8sp5JSrW4WUOSSU9Ml5lSyuVy3kr/VzQEAoFiXcHn//fdl4cKFEhAQIHFxcWY5f/681U0DAKDkB9FPnjwpGRkZUqlSpRzX67p2uIWFCUsAIH98vTxkTv8WEla+lBz+LVkGv7dFLqRlWN0soEjti/9jFEawv48E+TP6DQCAvMyaNcvUNf/LX/4ioaGhWYuWbwUAwFVYPrHo9caEJQCQfxo4nDewpQT4esqWw7/LqE9+NkN1AbuIuljKpV4IWegAAFyJfkfMbRk4cKDVTQMAoOQH0YODg8XDw0Pi4+NzXK/rhTlpKBOWAEDB1K4YILMfiBRPdzf5z45j8to30ZKZSSAd9hAdRz10AAAAAIDFQXRvb2+JjIyUVatWZV2XmZlp1tu0aWNVswAA2bStHSwTuzc2l99cs19umbJG3li1T46focYlbJKJThAdAAAAAGzP08oXHzlypAwYMEBatGghrVq1kunTp0tSUpIMGjTI3N6/f3+pUqWKqWvunIx09+7dWZePHj0qO3bsEH9/f6ldu7aVmwIALqt3y2py7kK6vL5qnxz5/bxMWxkt07+NllvrVpDeLcOkfYNK4uXh8tXBYDPRF4PodUMIogMAAACA3VkaRO/du7ecOHFCxo4dayYTbdasmSxfvjxrstGYmBhxd/9fYObYsWPSvHnzrPWpU6ea5dZbb5W1a9dasg0AYAcP3xwufVtXl+W7jsuiTbHy48FTsibqhFmC/b3lvhuqSq+WYVKrAvWjUfKdTk6V+LMp5nKdinymAQAAAMDuLA2iq2HDhpklN5cGxmvUqMHEdgBgkVLeHtK9eVWz/HoiUZZsOSIfbz0iJxNT5O3vfjVLyxrlTOb63REh4udteRcDFEh0fKL5W6VsKQnw9bK6OQAAAAAAixHhAADkW3gFfxl9V315+o66smZvgizeHCtrohJk86HfzTL+813SpVll6dMyTCKqlBE3Nzermwzkvx46pVwAAAAAAATRAQDXQmuh39EoxCxxZy7IJ9uOmIB6zKlkWfhjjFkahAZK7xZVpVvzKlLWz9vqJgN/KjruYj10JhUFAAAAAIgIM8EBAApFSBlfGdqutqx95i+y8JHW0rVZZfH2dJc9x8/K+C92S6t/rJLhi7bL+v0nJTOT0lwoCZno1EMHAAAAAJCJDgAoZO7ubnJjrWCzTEhOlc+2H5VFm2Nlb9w5+c+OY2apVt5PercMkx6RVaVSoK/VTQay6Nwr0ReD6GSiAwAAAAAUQXQAwHWj5VsGtq0pA26sITuPnjHB9M93HDPlXqasiJLXvomSdvUqmoB6u/oVTXkYwEonzqXI6eQ0cXcTqVWBTHQAAAAAAEF0AEAR0IlFm1Qta5YXOzWQr3bGyeLNMWYS0lV7E8xSIcDHZKb3ahEmNYNLW91k2LyUS43g0uLr5WF1cwAAAAAAxQBBdABAkfLz9jTBcl32JyTKR1ti5eOtR0wG8Ky1B8zSumZ5k51+V+NQKeVNIBNFJ+ripKL1KOUCAAAAALiIIDoAwDK1K/rL83c3kKfvqCer98bL4s2xsi76hPx48JRZxn2+S7o1q2IC6o2rlLG6ubAB6qED+ZtDID09XTIyMqxuClDoPDw8xNPT04ymAwAAIIgOALCct6e73Nk41CzHTp83melLtsTKkd/Py783HjZLo8qB0qdlmHRpVkXKlPKyuslwUVHxieZvvRCC6MCVpKamyvHjxyU5OdnqpgDXjZ+fn4SGhoq3t7fVTQEAABYjiA4AKFYqly0lT7avI8Pa1Zb1B36TRZtj5Jtd8bLr2FkZ859d8vKyPXJ3RKjJTteyL2SIobBkZjpkH5nowJ/KzMyUgwcPmkzdypUrmwAjx2K42igLPVF04sQJ81mvU6eOuLsz+TkAAHZGEB0AUCy5u7vJTXWCzfJ7Uqos3X7UlHvRiR/1si46AalORHpfZBWpGOBrdZNRwh09fV6SUzPE28NdagT5Wd0coNjS4KIG0sPCwkymLuCKSpUqJV5eXnL48GHzmff15XsGAAB2RhAdAFDslSvtLQ/eVFMGta0hO2JPm1Ivn+84JgdPJsnk5Xtl6jdRclv9iqbcy611K4inB9liKPikorUq+vMZAq4CmblwdXzGAQCAE0F0AECJoeUCmlcrZ5YXOzWUZT8fN+VetsWclpW7481SKdBHekRWNRnq1YNKW91klCA6ykHVq+RvdVMAAAAAAMUIp9YBACVSaR9P6dUyTD4d0lZWPnWLPHxTTSlf2lviz6bIzDUH5NYpa+WvczbKf3YclQtpGVY3FyVAtLMeOpOKAriCv/zlLzJixIis9Ro1asj06dP/9CTwZ599ds2vXVjPAwAAgPwhEx0AUOLVqRQgL97TUJ67s758uydeFm2Olf/uO2EmJtWlTCkv6d68islOb1g50OrmopiXc6nHpKKAS+rcubOkpaXJ8uXLL7vtv//9r9xyyy3y008/SZMmTfL1vJs3b5bSpQt35NP48eNNsHzHjh05rj9+/LiUK1dOisL58+elSpUqpqTJ0aNHxcfHp0heFwAAoDgiiA4AcBnenu5yd0SoWY78niwfbz0iH205YiaMnL/+kFmaVC0jvVuGSZemlSXA18vqJqOYSMvIlF9PJJnLdQmiAy7poYcekvvuu0+OHDkiVatWzXHbvHnzpEWLFvkOoKsKFSpIUQkJCSmy1/rkk0+kUaNG4nA4TEC/d+/eYhVtQ0ZGhnh68vMVAABYg3IuAACXVLWcn4zoUFe+e66dLHiwldwdESJeHm7y85Ez8sLSX6TVxFXy9JKfZPOhU+bHOezt8G9JkpqRKaW9PaRK2VJWNwfAdXDPPfeYgPf8+fNzXJ+YmCgfffSRCbL/9ttvcv/995sMbD8/P4mIiJAPP/zwis97aTmXffv2max2X19fadiwoaxcufKyx4waNUrq1q1rXiM8PFzGjBljsuSVtm/ChAkmK17Lt+jibPOl5Vx27twpt912m5QqVUqCgoJk8ODBZnucBg4cKN26dZOpU6dKaGiouc/QoUOzXutK3n33XXnggQfMopcvtWvXLrNPAwMDJSAgQG6++WY5cOBA1u1z5841QXjNYNfXHjZsmLn+0KFDZjuyZ9mfPn3aXLd27Vqzrn91/euvv5bIyEjzHN9//715/q5du0qlSpXE399fWrZsKd9++22OdqWkpJj9GxYWZh5Xu3Zt037t6/Wy7ovstB36Wvv37//TfQIAAOyLIDoAwKV5uLvJrXUryFt9I2Xj8+3lxU4NpHZFfzmfliGfbDsiPWdvkPbT1snb6w7IiXMpVje3WNLsPw3w1KxZ0wRqatWqJS+99FKOkw96eezYsSZQovfp0KGDCST9mZkzZ5oAlAabWrduLZs2bRIrRMUlZpUGcnd3s6QNQEmmx4Dk1HRLlqs9EapZzP379zcB6eyP0QC6Huc0eH7hwgUTtF22bJn88ssvJijdr1+/qz42ZWZmyr333ive3t7y448/yuzZs01A91IadNZ27N69W15//XWZM2eO/POf/zS3acb3008/bQLQWr5Fl9yywJOSkqRjx46mvIuWlNHt0ICyM1jttGbNGhN81r8LFiwwr3vpiYRL6f03bNggvXr1MouWuzl8+HDW7VreRU8UaJB69erVsnXrVnnwwQclPT3d3D5r1iwTrNf9p4H+zz//3ASw82v06NHyyiuvyJ49e8woAT1BcPfdd8uqVatk+/btcuedd5oyPTExMVmP0fdYT3y88cYb5nFvv/22CbhroFzbqKMOstN13ZaCtA8AANgH4+EAALYR5O8jD98cLg/dVFO2xZyWxZtj5IufjpsyHpO+3itTVkRJhwaVpHerMLmlTgUTgIfI5MmTTUBEgy8a1NmyZYsMGjRIypQpI08++aS5z6uvvmoCFnofDbZr0F2DOxog0gB5bhYvXiwjR440QSYNoGsmpz4mKipKKlasWKTbGHVxUlHqoQMFoycmG45dYclr7/57R/HzvrqfNRpEnTJliqxbt85MEOoMomqZFz2m6fLMM89k3f+JJ56QFStWyJIlS6RVq1Z/+vwaxN67d695TOXKlc11//jHP+Suu+7Kcb8XX3wx67KeSNTXXLRokTz33HPmRKQGfTXof6XyLQsXLjRB//feey+rJvubb75pgsp63NZsbaVBdr3ew8ND6tevL506dTJB6EceeSTP59Yscm2zs/66Hpt1P2mtducJUN1X2mYvrz9Ko2lmvdPLL79sTgQMHz486zrNGs+vv//973L77bdnrZcvX16aNm2ata4ndJcuXWqC9HryIDo62rxXmv2vJ3OVZvpnz8zXE756UkTfT83I1/14aXY6AADApchEBwDYjmajRVYvJ6/2aCqbXmgvk+6NkGZhZSU90yHLd8XJoHmb5abJq2XaN1ESeypZ7G79+vVm+LwGXjTY06NHD7njjjuyMjM1o1MD4BoU0vtptqAGdY4dO5aj7MClpk2bZoI4GpDXkgcaTNfSBhq8KWrRFycVrRtCEB1wZRpEvvHGG7OOM1rCQ7OstZSL0ox0DcxqGRcN2GowWwPi2TOdr0Qzn7WMiDOArtq0aZPrScS2bduaILm+hh4/r/Y1sr+WBpSzT2qqz6nZ8Hoy0klPfmoA3UlHDCUkJOT5vLoP9ISolnFx0suava7P7SyBouVbnAH07PS59fjfvn17uVZapz47zUTXEw4NGjSQsmXLmn2n+8G577Rduq233nprrs+n74v2Zc73/4svvjDlX3r27HnNbQUAAK6NTHQAgK3p5KL3t6pmlr1xZ2Xx5lhZuv2oHD9zQd5Yvd8sN9UOlsG3hMstdYtu8rjiRANO77zzjsnw00xDrdOrtWk1CK4OHjwocXFxWVl/SjMUNbtcywH06dPnsudMTU01w/+ff/75rOvc3d3Nc+hjcqOBDl2czp49W2jbGE0mOnBNSnl5mIxwq147PzRgrhnmmk2t2dVaosoZdNUsdS2voicGNZCuAeoRI0aYY1Zh0WNc3759Td1zzfB2ZnS/9tprcj1cGujWE8nOYHhu9KSBlmu5tISMBtc1g10zwzVbPi9Xus15rFfZS+rkVaM9+wkCpQF0zTLXzHEtv6KvpSd2ne/Pn722evjhh02JHi2fo++/bqeewAUAALgSMtEBALiofkigjOvcSH78W3uZcX9zEzxX3+8/KfsT/jdRm91oTVoNhGsGpwZjmjdvboJKGgRSGkBXztIBTrruvO1SJ0+eNAGZ/Dxm0qRJWeUWdNFsz8JwIS1DDv2WZC7XDfEvlOcE7EYDs1pSxYpFXzs/tMa3BnK1jIeOmtESL87n+OGHH8yIGs281ixvLQWiJxCvlmZIx8bGmjrmThs3brxsdE/16tXlhRdeMJnWderUyVFvXGlNdT1G/tlr6UlNrY3upO3XbatXr54UlE7Cqcd8zerOvuh1zglGdcSRZvDnFvzWeu86akkD7rnRyV1V9n2UfZLRK9Ht05Is3bt3Nyc5NJNfJyp10uv0BIGW68mL1lTX4LyWKVu+fLl5/wEAAP4MQXQAAC7h4+khnZtWlvcfbi3/fa6dPHlbbenevIrYldaX/eCDD0zAadu2bWaYv2YB6t+ipFnrZ86cyVo0UFUYNHY2p38LeeHuBlLB36dQnhNA8aUlQDT7WI8pGsjVoKyTBrQ101kD3Vom5NFHH5X4+Pirfm4dTaMjdgYMGGAC3Bpo1mB5dvoaWn5Es891Ak+dT0LremenQWgd5aPBZT3pmH0UjpOeyNQ5J/S1dBJUnThUM+w1y/rSE5RX68SJE6bEiT5n48aNcyw6YaeW6Dp16pSpP66jgTSwrvNk6ETS//73v7PKyGjtdM2s123T27TvmDFjRla2+P/93/9lTRiqAe/sNeKvRPfdp59+avaL7t+//vWvObLqdb9p2zUwrm3Vfbh27VrTjzlpuRd9z/X91+fLrdwOAADApQiiAwBwBWHl/WTkHfWkXGlvsatnn302Kxtds/w0QPPUU0+ZzHDlnPju0kCTruc1KV5wcLAJZOTnMT4+PhIYGJhjKayTJu0bVJJHbgnPd0YrgJJJS7r8/vvvppxK9vrlGsy94YYbzPU68agej7p163bVz6tZ4BoQP3/+vJm4UkuHTJw4Mcd9unTpYo6hGohu1qyZCdjrZMzZ6USnd955p7Rr185kbn/44YeXvZaWINHSKxrU1kk7tayJ1iHXSUQLyjlJaW71zPU6DYC///77EhQUJKtXrzY1yrUUTmRkpMyZMyerdIwGsrUkzltvvWVqst9zzz0mmO6kNcnT09PN43Rkk05EejW0jJhOdqplxnQCVX2f9P3KTjPMdV8MGTLEjKDSuTeyZ+s7338tAaNzcgAAAFwNN0f2YnQ2oBkTOgRcM9gK68c3AACu3AdpsEQDHI8//njWdRpA11qyWuZAv0poEEpr1T799NNZ21qxYkUzEV1uNdGV1kzXIJMzO1GzCatVq2YCSxq0d9X9CZR0Fy5cMBm+NWvWNJnQQEmjIwT0pICOaLpS1v6VPuv0QYWrsPfnjsnWzNEAACg6zUatKNI+iIlFAQDAFWm2n2ZSaoBbMwq3b99usgGddWQ1e9uZSahD4zXYoFmVGljPnsGpAQutY6tBcjVy5EiTrag1gTWYrlmLmi1IZiAA4HrQsjhaskbLzfTs2bPAZW8AAID9EEQHAABXpJniGhTXofEJCQkmOK51gseOHZt1n+eee84EwAcPHiynT5+Wm266yUzYlj1zT2v/am1fJ61JrMEMfR6dTFTLGuhjCGoAAK4HLYujpVy0v9HSNQAAAFeLci4AABQR+qDCxf4ErEE5F9gF5VyKDuVcAADFvZwLE4sCAAAAAAAAAJAHgugAAAAAAAAAAOSBIDoAAACAfLNZVUjYEJ9xAADgRBAdAAAAwFXz8vIyf5OTk61uCnBdOT/jzs88AACwL0+rGwAAAACg5PDw8JCyZctKQkKCWffz8xM3NzermwUUaga6BtD1M66fdf3MAwAAeyOIDgAAACBfQkJCzF9nIB1wRRpAd37WAQCAvRFEBwAAAJAvmnkeGhoqFStWlLS0NKubAxQ6LeFCBjoAAHAiiA4AAACgQDTISKARgJo5c6ZMmTJF4uLipGnTpjJjxgxp1aqV1c0CAKBQMLEoAAAAAAAosMWLF8vIkSNl3Lhxsm3bNhNE79ixIyWfAAAugyA6AAAAAAAosGnTpskjjzwigwYNkoYNG8rs2bPNpMNz5861umkAABQKgugAAAAAAKBAUlNTZevWrdKhQ4es69zd3c36hg0bLG0bAACFxXY10R0Oh/l79uxZq5sCALAZZ9/j7ItwbejTAQBWoU//n5MnT0pGRoZUqlQpx/W6vnfv3lwfk5KSYhanM2fOFGqfnnghvVCeBwBQfJ0tpD7javt02wXRz507Z/6GhYVZ3RQAgE1pX1SmTBmrm1Hi0acDAKxGn14wkyZNkgkTJlx2PX06AOCqjS9TpH267YLolStXltjYWAkICBA3N7drPlOhnbw+X2BgoNiJnbfd7tvPtrPtbHvB6Zlt7Zi1L8K1o08vHGy7Pbfd7tvPtrPt9OmFJzg4WDw8PCQ+Pj7H9boeEhKS62Oef/55MxGpU2Zmppw6dUqCgoLo04sY+yt/2F9Xj32VP+yv4t+n2y6IrrXZqlatWqjPqW+WXT/gdt52u28/2862201hbTvZaoWHPr1wse323Ha7bz/bzrZfC/r0P3h7e0tkZKSsWrVKunXrlhUU1/Vhw4bl+hgfHx+zZFe2bNlCbZedP+MFwf7KH/bX1WNf5Q/7q/j26bYLogMAAAAAgMKjWeUDBgyQFi1aSKtWrWT69OmSlJQkgwYNsrppAAAUCoLoAAAAAACgwHr37i0nTpyQsWPHSlxcnDRr1kyWL19+2WSjAACUVATRr4EOPxs3btxlw9DswM7bbvftZ9vZdrux87bbiZ3fZ7bdnttu9+1n29l2FD4t3ZJX+ZaixPucP+yv/GF/XT32Vf6wv4r//nJzaPV0AAAAAAAAAABwGffLrwIAAAAAAAAAAIogOgAAAAAAAAAAeSCIDgAAAAAAAABAHgiiX4OZM2dKjRo1xNfXV1q3bi2bNm0SO/juu++kc+fOUrlyZXFzc5PPPvtM7GDSpEnSsmVLCQgIkIoVK0q3bt0kKipK7GDWrFnSpEkTCQwMNEubNm3k66+/Fjt65ZVXzOd+xIgRYgfjx48325t9qV+/vtjF0aNH5YEHHpCgoCApVaqUREREyJYtW6xuFq4DO/bpdu3PFX06fbqiT6dPp0+3T7/90Ucfmc+73l/f+6+++krsJD/7a86cOXLzzTdLuXLlzNKhQwdbfC+61u+EixYtMsdV/U5hJ/ndX6dPn5ahQ4dKaGiomRCybt26tvr/mN/9NX36dKlXr57pt8LCwuSpp56SCxcuiB18V4DfKmvXrpUbbrjBfLZq164t8+fPL9Q2EUQvoMWLF8vIkSPNTLDbtm2Tpk2bSseOHSUhIUFcXVJSktle/c9vJ+vWrTMH+40bN8rKlSslLS1N7rjjDrM/XF3VqlXND82tW7eaHxu33XabdO3aVXbt2iV2snnzZnn77bdN8MFOGjVqJMePH89avv/+e7GD33//Xdq2bSteXl4mwLR792557bXXzI8JuBa79ul27c8VfTp9On06fTp9un367fXr18v9998vDz30kGzfvt0EOXX55ZdfxA7yu780CKX7a82aNbJhwwYTuNM+Uk9EubqCfic8dOiQPPPMM+bkg53kd3+lpqbK7bffbvbXxx9/bBIY9KRNlSpVxA7yu78WLlwoo0ePNvffs2ePvPvuu+Y5/va3v4kdJOXzt8rBgwelU6dO0q5dO9mxY4dJknj44YdlxYoVhdcoBwqkVatWjqFDh2atZ2RkOCpXruyYNGmSw070I7R06VKHHSUkJJjtX7duncOOypUr5/jXv/7lsItz58456tSp41i5cqXj1ltvdQwfPtxhB+PGjXM0bdrUYUejRo1y3HTTTVY3A0WAPt3e/bmiT6dPtwP6dPp0u/bbvXr1cnTq1CnHda1bt3Y8+uijDju41u856enpjoCAAMeCBQscrq4g+0r3z4033mj60QEDBji6du3qsIv87q9Zs2Y5wsPDHampqQ47yu/+0vvedtttOa4bOXKko23btg67kav4rfLcc885GjVqlOO63r17Ozp27Fho7SATvQD07Jlm7+iwJid3d3ezrmdqYQ9nzpwxf8uXLy92kpGRYYaq6VlBHQJuF5qxqGc1s/+/t4t9+/aZIVTh4eHSt29fiYmJETv4/PPPpUWLFtKzZ09T7qF58+YmUwKuhT4dij6dPt0u6NPp0+3Yb+v1l/5/1+xPO/TzhfE9Jzk52YzYcvU+sqD76u9//7s5ruhIBzspyP7SY7F+39B+uFKlStK4cWP5xz/+Yb6PuLqC7K8bb7zRPMZZ8uXXX381pW/uvvvuImt3SbKhCI71noX2TDZy8uRJ859c/9Nnp+t79+61rF0oOpmZmWZoiA4L1QO/HezcudN0eFp/y9/fX5YuXSoNGzYUO9AAgw630qHfdqN12rSOmNZh02HfEyZMMMMUdfir1hJ2ZfolRWsH65A7HTKn7/+TTz4p3t7eMmDAAKubh0JCnw76dPp0u6BPp0+3a78dFxeX6/31eldXGN9zRo0aZU6+ufqJx4LsKy2JpSU2tHSE3RRkf+mxePXq1eYkrgaD9+/fL0OGDDEnabRkiSsryP7661//ah530003aRURSU9Pl8cee8w25VzyK69j/dmzZ+X8+fOmrvy1IogOFICeOdUfHHapI6n0B5d+OdBsPa1fpj84tKasq//ojo2NleHDh5uauTr5h93cddddWZe1bqz+AK9evbosWbLE5bMtNLCmWWuaHaE0a03/38+ePZsf3IALoU+nT7cL+nT6dCC/dA4NPfmoddLteNy8knPnzkm/fv3MqJbg4GCrm1NijsWatf/OO++Ih4eHREZGmlr7U6ZMcfkgekHo/zvtt9566y3TZ+tJB/0e89JLL8mYMWOsbp4tEUQvAD1A6n/4+Pj4HNfrekhIiGXtQtEYNmyYfPnll2amYJ2cyy40U0dnN1ba2WkGz+uvv24m5XJlOnxKJ/rQGZ6d9Ayyvv9vvvmmpKSkmOOBXZQtW9bMoK4duKvTGeMvDSg1aNBAPvnkE8vahMJHn25v9On06fTp9Olw/X5br7drP38t33OmTp1qgujffvutLSZhzu++OnDggJkgs3PnzjmCxMrT09NMmlmrVi1xVQX5bOmxWCd4zt7X6rFYM4i13Il+P3FVBdlfGijXEzU6OaaKiIgwJfgGDx4sL7zwgikHgz8/1gcGBhZKFrpijxeA/sfWHxyrVq3KcbDUdTvVk7QbHT6jP7Z1yLMOQapZs6bYmX7m9cemq2vfvr0Z9q4Ze85FM5l0CJpettOPbZWYmGi+MOoXIFenpR30y2920dHRJmsProM+3Z7o03OiT6dPd3X06fbut/X67PdXOiLFDv18Qb/nvPrqqybbdfny5eY4aQf53Vf169e/rE/p0qWLtGvXzlwOCwsTV1aQz5Yei/XErfNkg/NYrP2QKwfQC7q/dD6CSwPlzu8qf8y1iSI/1hfaFKU2s2jRIoePj49j/vz5jt27dzsGDx7sKFu2rCMuLs7h6s6dO+fYvn27WfQjNG3aNHP58OHDDlf2+OOPO8qUKeNYu3at4/jx41lLcnKyw9WNHj3asW7dOsfBgwcdP//8s1l3c3NzfPPNNw47uvXWWx3Dhw932MHTTz9tPvP63v/www+ODh06OIKDgx0JCQkOV7dp0yaHp6enY+LEiY59+/Y5PvjgA4efn5/j/ffft7ppKGR27dPt2p8r+nT6dCf6dPp0uF6/3a9fP3Nsc9LPu77/U6dOdezZs8cxbtw4h5eXl2Pnzp0OO8jv/nrllVcc3t7ejo8//jhHH6nfG1xdfvfVpQYMGODo2rWrwy7yu79iYmIcAQEBjmHDhjmioqIcX375paNixYqOl19+2WEH+d1feqzS/fXhhx86fv31V/NdrVatWo5evXo57ODcn/xW0X2l+8xJ95H27c8++6w51s+cOdPh4eHhWL58eaG1iSD6NZgxY4ajWrVqpoNp1aqVY+PGjQ47WLNmjfkAX7poh+HKcttmXebNm+dwdQ8++KCjevXq5rNeoUIFR/v27W37Y9tuP7h79+7tCA0NNe99lSpVzPr+/fsddvHFF184GjdubL7s1K9f3/HOO+9Y3SRcJ3bs0+3anyv6dPp0J/p0+nS4Xr+t/68v7cuWLFniqFu3rrl/o0aNHMuWLXPYSX72l/YRufWRGtCzg/x+tuwcRC/I/lq/fr2jdevW5lgcHh5uTm6mp6c77CI/+ystLc0xfvx4Ezj39fV1hIWFOYYMGeL4/fffHXaw5k9+q+hf3WeXPqZZs2Zm/+rnq7C/27vpP4WX1w4AAAAAAAAAgOugJjoAAAAAAAAAAHkgiA4AAAAAAAAAQB4IogMAAAAAAAAAkAeC6AAAAAAAAAAA5IEgOgAAAAAAAAAAeSCIDgAAAAAAAABAHgiiAwAAAAAAAACQB4LoAAAAAAAAAADkgSA6gCLh5uYmn332mdXNAAAA14g+HQCAokf/C1iLIDpgAwMHDjQd7qXLnXfeaXXTAABAPtCnAwDgmuLi4uSJJ56Q8PBw8fHxkbCwMOncubOsWrXK6qYBEBFPqxsAoGjoj+t58+bluE47ZgAAULLQpwMA4FoOHTokbdu2lbJly8qUKVMkIiJC0tLSZMWKFTJ06FDZu3ev1U0EbI9MdMAm9Md1SEhIjqVcuXLmNs1gmzVrltx1111SqlQpc+b7448/zvH4nTt3ym233WZuDwoKksGDB0tiYmKO+8ydO1caNWpkXis0NFSGDRuW4/aTJ09K9+7dxc/PT+rUqSOff/55EWw5AACuhT4dAADXMmTIENOHb9q0Se677z6pW7eu6YdHjhwpGzduzPUxo0aNMvfTvlj7+zFjxpjAu9NPP/0k7dq1k4CAAAkMDJTIyEjZsmWLue3w4cMmy12/P5QuXdq81ldffVVk2wuURATRARja4WpnrR1t3759pU+fPrJnzx5zW1JSknTs2NF0sJs3b5aPPvpIvv322xw/qPUHu54h1x/i+uNcf0zXrl07x2tMmDBBevXqJT///LPcfffd5nVOnTpV5NsKAIAro08HAKDk0P5z+fLlpu/VgPalNDs9Nxocnz9/vuzevVtef/11mTNnjvzzn//Mul375qpVq5r+fuvWrTJ69Gjx8vIyt+lrpaSkyHfffWf6+smTJ4u/v/913ErABTgAuLwBAwY4PDw8HKVLl86xTJw40dyuh4LHHnssx2Nat27tePzxx83ld955x1GuXDlHYmJi1u3Lli1zuLu7O+Li4sx65cqVHS+88EKebdDXePHFF7PW9bn0uq+//rrQtxcAAFdFnw4AgGv58ccfTT/66aefXvF+ep+lS5fmefuUKVMckZGRWesBAQGO+fPn53rfiIgIx/jx46+h1YD9UBMdsAkdxqWZZdmVL18+63KbNm1y3KbrO3bsMJc1e61p06Y5zoprvbbMzEyJiooyw86OHTsm7du3v2IbmjRpknVZn0uHlCUkJFzztgEAYCf06QAAuI4/4uP5t3jxYnnjjTfkwIEDpixbenq66Y+dtBTMww8/LP/+97+lQ4cO0rNnT6lVq5a57cknn5THH39cvvnmG3ObjmDL3rcDuBzlXACb0B+4OhQ7+5L9B/e10JqqV8M5dMxJf6jrj3YAAHD16NMBAHAdOreI9qP5mTx0w4YNplyLllT78ssvZfv27fLCCy9Iampq1n3Gjx8vu3btkk6dOsnq1aulYcOGsnTpUnObBtd//fVX6devnynn0qJFC5kxY8Z12T7AVRBEB2BcOlmJrjdo0MBc1r9aV1XrqDr98MMP4u7uLvXq1TO12GrUqCGrVq0q8nYDAICc6NMBACg59ES4zlcyc+bMHP2z0+nTpy+7bv369VK9enUTONcAuAbidbLQS+nEo0899ZTJOL/33ntl3rx5WbeFhYXJY489Jp9++qk8/fTTpqY6gLwRRAdsQicNiYuLy7GcPHky63adWGzu3LkSHR0t48aNM7OCOycZ0zPcvr6+MmDAAPnll19kzZo18sQTT5iz1pUqVco6y/3aa6+Z4WT79u2Tbdu2cSYbAIDrgD4dAADXogH0jIwMadWqlXzyySem/9USbNoXX1qmTWnQPCYmRhYtWmTKuej9nFnm6vz586bvX7t2rQmu6wlznWDUeVJ9xIgRsmLFCjl48KDp5/X7gPM2ALmjJjpgEzrbd2hoaI7rNOPMOWRswoQJpgMeMmSIud+HH35ohnspPz8/08EOHz5cWrZsada1Ztq0adOynkt/jF+4cMHMBv7MM89IcHCw9OjRo4i3EgAA10efDgCAawkPDzfB7IkTJ5qs8OPHj0uFChUkMjLysnlQVJcuXUyGuQbK9eS6lmwZM2aMORGuPDw85LfffpP+/ftLfHy86cs1E12/IygN2A8dOlSOHDli6qjfeeedpt8HkDc3nV30CrcDsAGtv6Znrbt162Z1UwAAwDWgTwcAAAAKH+VcAAAAAAAAAADIA0F0AAAAAAAAAADyQDkXAAAAAAAAAADyQCY6AAAAAAAAAAB5IIgOAAAAAAAAAEAeCKIDAAAAAAAAAJAHgugAAAAAAAAAAOSBIDoAAAAAAAAAAHkgiA4AAAAAAAAAQB4IogMAAAAAAAAAkAeC6AAAAAAAAAAA5IEgOgAAAAAAAAAAkrv/B071PXjc/eAvAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1500x500 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2025-07-14 13:11:57,628 - INFO - Testing model predictions on M4 chip\n",
"2025-07-14 13:11:57,742 - INFO - 'this movie is absolutely amazing and fantastic wit...' -> Positive (0.629)\n",
"2025-07-14 13:11:57,746 - INFO - 'terrible film with awful acting and poor boring st...' -> Negative (0.691)\n",
"2025-07-14 13:11:57,750 - INFO - 'good story but disappointing execution and weak ch...' -> Positive (0.542)\n",
"2025-07-14 13:11:57,760 - INFO - 'excellent film with brilliant performances and won...' -> Positive (0.626)\n",
"2025-07-14 13:11:57,764 - INFO - 'boring movie with terrible plot and awful disappoi...' -> Negative (0.713)\n",
"2025-07-14 13:11:57,767 - INFO - 'fantastic entertainment with amazing visuals and g...' -> Positive (0.706)\n",
"2025-07-14 13:11:57,771 - INFO - 'poor acting with boring dialogue and terrible char...' -> Negative (0.649)\n",
"2025-07-14 13:11:57,771 - INFO - Final test accuracy: 0.8667\n",
"2025-07-14 13:11:57,772 - INFO - M4 Transformer implementation completed successfully!\n"
]
}
],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torch.optim as optim\n",
"from torch.utils.data import DataLoader, Dataset\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import accuracy_score, classification_report\n",
"import logging\n",
"import math\n",
"import random\n",
"\n",
"# Configure logging\n",
"logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\n",
"logger = logging.getLogger(__name__)\n",
"\n",
"# Set seeds for reproducibility\n",
"torch.manual_seed(42)\n",
"np.random.seed(42)\n",
"random.seed(42)\n",
"\n",
"class TextDataset(Dataset):\n",
" def __init__(self, texts, labels, vocab_to_idx, max_length=32):\n",
" self.texts = texts\n",
" self.labels = labels\n",
" self.vocab_to_idx = vocab_to_idx\n",
" self.max_length = max_length\n",
" \n",
" def __len__(self):\n",
" return len(self.texts)\n",
" \n",
" def __getitem__(self, idx):\n",
" text = self.texts[idx]\n",
" label = self.labels[idx]\n",
" \n",
" tokens = text.lower().split()\n",
" token_ids = [self.vocab_to_idx.get(token, self.vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" if len(token_ids) > self.max_length:\n",
" token_ids = token_ids[:self.max_length]\n",
" else:\n",
" token_ids.extend([self.vocab_to_idx['<PAD>']] * (self.max_length - len(token_ids)))\n",
" \n",
" return torch.tensor(token_ids, dtype=torch.long), torch.tensor(label, dtype=torch.long)\n",
"\n",
"class PositionalEncoding(nn.Module):\n",
" def __init__(self, d_model, max_len=512):\n",
" super().__init__()\n",
" self.dropout = nn.Dropout(0.1)\n",
" \n",
" pe = torch.zeros(max_len, d_model)\n",
" position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)\n",
" div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))\n",
" \n",
" pe[:, 0::2] = torch.sin(position * div_term)\n",
" pe[:, 1::2] = torch.cos(position * div_term)\n",
" \n",
" self.register_buffer('pe', pe)\n",
" \n",
" def forward(self, x):\n",
" # x shape: (batch_size, seq_len, d_model)\n",
" seq_len = x.size(1)\n",
" x = x + self.pe[:seq_len, :].unsqueeze(0)\n",
" return self.dropout(x)\n",
"\n",
"class MultiHeadAttention(nn.Module):\n",
" def __init__(self, d_model, num_heads, dropout=0.1):\n",
" super().__init__()\n",
" assert d_model % num_heads == 0\n",
" \n",
" self.d_model = d_model\n",
" self.num_heads = num_heads\n",
" self.d_k = d_model // num_heads\n",
" \n",
" self.W_q = nn.Linear(d_model, d_model)\n",
" self.W_k = nn.Linear(d_model, d_model)\n",
" self.W_v = nn.Linear(d_model, d_model)\n",
" self.W_o = nn.Linear(d_model, d_model)\n",
" \n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" def scaled_dot_product_attention(self, Q, K, V, mask=None):\n",
" d_k = Q.size(-1)\n",
" scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k)\n",
" \n",
" if mask is not None:\n",
" scores = scores.masked_fill(mask == 0, -1e9)\n",
" \n",
" attention_weights = F.softmax(scores, dim=-1)\n",
" attention_weights = self.dropout(attention_weights)\n",
" \n",
" return torch.matmul(attention_weights, V), attention_weights\n",
" \n",
" def forward(self, query, key, value, mask=None):\n",
" batch_size = query.size(0)\n",
" \n",
" # Linear transformations\n",
" Q = self.W_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
" K = self.W_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
" V = self.W_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)\n",
" \n",
" # Attention\n",
" attention_output, attention_weights = self.scaled_dot_product_attention(Q, K, V, mask)\n",
" \n",
" # Concatenate heads\n",
" attention_output = attention_output.transpose(1, 2).contiguous().view(\n",
" batch_size, -1, self.d_model)\n",
" \n",
" return self.W_o(attention_output)\n",
"\n",
"class FeedForward(nn.Module):\n",
" def __init__(self, d_model, d_ff, dropout=0.1):\n",
" super().__init__()\n",
" self.linear1 = nn.Linear(d_model, d_ff)\n",
" self.linear2 = nn.Linear(d_ff, d_model)\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" def forward(self, x):\n",
" return self.linear2(self.dropout(F.relu(self.linear1(x))))\n",
"\n",
"class TransformerBlock(nn.Module):\n",
" def __init__(self, d_model, num_heads, d_ff, dropout=0.1):\n",
" super().__init__()\n",
" self.attention = MultiHeadAttention(d_model, num_heads, dropout)\n",
" self.feed_forward = FeedForward(d_model, d_ff, dropout)\n",
" self.norm1 = nn.LayerNorm(d_model)\n",
" self.norm2 = nn.LayerNorm(d_model)\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" def forward(self, x, mask=None):\n",
" # Self-attention with residual connection\n",
" attn_output = self.attention(x, x, x, mask)\n",
" x = self.norm1(x + self.dropout(attn_output))\n",
" \n",
" # Feed-forward with residual connection\n",
" ff_output = self.feed_forward(x)\n",
" x = self.norm2(x + self.dropout(ff_output))\n",
" \n",
" return x\n",
"\n",
"class TransformerClassifier(nn.Module):\n",
" def __init__(self, vocab_size, d_model, num_heads, num_layers, d_ff, max_len, num_classes, dropout=0.1):\n",
" super().__init__()\n",
" self.d_model = d_model\n",
" self.embedding = nn.Embedding(vocab_size, d_model)\n",
" self.pos_encoding = PositionalEncoding(d_model, max_len)\n",
" \n",
" self.transformer_blocks = nn.ModuleList([\n",
" TransformerBlock(d_model, num_heads, d_ff, dropout)\n",
" for _ in range(num_layers)\n",
" ])\n",
" \n",
" self.norm = nn.LayerNorm(d_model)\n",
" self.classifier = nn.Linear(d_model, num_classes)\n",
" self.dropout = nn.Dropout(dropout)\n",
" \n",
" def forward(self, x, mask=None):\n",
" # Input shape: (batch_size, seq_len)\n",
" batch_size, seq_len = x.size()\n",
" \n",
" # Embedding: (batch_size, seq_len, d_model)\n",
" x = self.embedding(x) * math.sqrt(self.d_model)\n",
" \n",
" # Positional encoding\n",
" x = self.pos_encoding(x)\n",
" \n",
" # Transformer blocks\n",
" for transformer in self.transformer_blocks:\n",
" x = transformer(x, mask)\n",
" \n",
" # Final normalization\n",
" x = self.norm(x)\n",
" \n",
" # Global average pooling: (batch_size, d_model)\n",
" x = x.mean(dim=1)\n",
" \n",
" # Classification: (batch_size, num_classes)\n",
" x = self.classifier(x)\n",
" \n",
" return x\n",
"\n",
"def create_extensive_dataset():\n",
" logger.info(\"Creating extensive movie review dataset for M4 chip\")\n",
" \n",
" # 100 positive reviews\n",
" positive_reviews = [\n",
" \"this movie is absolutely fantastic and amazing\",\n",
" \"i loved every minute of this incredible film\",\n",
" \"outstanding performance by all actors brilliant\",\n",
" \"best movie i have seen in years wonderful\",\n",
" \"excellent story and great cinematography\",\n",
" \"this film exceeded all my expectations perfectly\",\n",
" \"amazing plot and fantastic character development\",\n",
" \"absolutely loved the soundtrack and visuals\",\n",
" \"this is a masterpiece of modern cinema\",\n",
" \"fantastic acting and brilliant direction\",\n",
" \"incredible storyline with amazing twists\",\n",
" \"wonderful performances throughout the film\",\n",
" \"excellent directing and great production values\",\n",
" \"loved the characters and their development\",\n",
" \"fantastic visual effects and sound design\",\n",
" \"amazing chemistry between the actors\",\n",
" \"brilliant writing and excellent execution\",\n",
" \"outstanding cinematography and direction\",\n",
" \"wonderful movie with great emotional depth\",\n",
" \"excellent film with fantastic performances\",\n",
" \"great story with amazing character arcs\",\n",
" \"loved the plot and character interactions\",\n",
" \"fantastic movie with excellent pacing\",\n",
" \"wonderful acting and brilliant storytelling\",\n",
" \"amazing film with great visual appeal\",\n",
" \"excellent direction and outstanding cast\",\n",
" \"loved the creativity and original story\",\n",
" \"fantastic entertainment with great humor\",\n",
" \"wonderful experience with amazing visuals\",\n",
" \"excellent movie with brilliant performances\",\n",
" \"superb acting and incredible storytelling\",\n",
" \"amazing cinematography and great direction\",\n",
" \"fantastic film with wonderful characters\",\n",
" \"excellent plot with brilliant execution\",\n",
" \"loved the soundtrack and visual effects\",\n",
" \"wonderful movie with great performances\",\n",
" \"fantastic story with amazing development\",\n",
" \"excellent film with brilliant acting\",\n",
" \"amazing direction and wonderful cast\",\n",
" \"great movie with fantastic visuals\",\n",
" \"excellent entertainment with brilliant story\",\n",
" \"wonderful film with amazing performances\",\n",
" \"fantastic movie with great character work\",\n",
" \"amazing story with excellent direction\",\n",
" \"brilliant film with wonderful acting\",\n",
" \"excellent movie with fantastic plot\",\n",
" \"great film with amazing performances\",\n",
" \"wonderful story with brilliant execution\",\n",
" \"fantastic acting and excellent direction\",\n",
" \"amazing movie with great entertainment value\"\n",
" ] * 2 # Duplicate to get 100\n",
" \n",
" # 100 negative reviews\n",
" negative_reviews = [\n",
" \"this movie was terrible and boring\",\n",
" \"worst film i have ever watched\",\n",
" \"awful acting and poor storyline\",\n",
" \"complete waste of time and money\",\n",
" \"terrible plot and bad character development\",\n",
" \"boring and uninteresting throughout\",\n",
" \"poor directing and weak performances\",\n",
" \"disappointing and predictable story\",\n",
" \"bad cinematography and awful soundtrack\",\n",
" \"terrible movie with no redeeming qualities\",\n",
" \"awful script with poor execution\",\n",
" \"boring storyline with terrible acting\",\n",
" \"disappointing film with weak characters\",\n",
" \"poor production and bad direction\",\n",
" \"terrible dialogue and awful performances\",\n",
" \"boring plot with predictable ending\",\n",
" \"awful movie with poor character development\",\n",
" \"disappointing story with weak execution\",\n",
" \"terrible film with boring characters\",\n",
" \"poor acting and awful screenplay\",\n",
" \"boring movie with terrible pacing\",\n",
" \"awful direction and poor cinematography\",\n",
" \"disappointing film with weak storyline\",\n",
" \"terrible performances and boring plot\",\n",
" \"poor script with awful character development\",\n",
" \"boring film with disappointing ending\",\n",
" \"awful movie with terrible acting\",\n",
" \"disappointing story with poor execution\",\n",
" \"terrible film with boring dialogue\",\n",
" \"poor movie with awful performances\",\n",
" \"boring story with terrible direction\",\n",
" \"awful film with poor character work\",\n",
" \"disappointing movie with weak plot\",\n",
" \"terrible acting and boring story\",\n",
" \"poor film with awful direction\",\n",
" \"boring movie with terrible performances\",\n",
" \"awful story with disappointing execution\",\n",
" \"terrible film with poor acting\",\n",
" \"boring plot with awful characters\",\n",
" \"disappointing movie with terrible story\",\n",
" \"poor acting and boring direction\",\n",
" \"awful film with terrible plot\",\n",
" \"boring movie with disappointing performances\",\n",
" \"terrible story with poor execution\",\n",
" \"awful acting and boring film\",\n",
" \"disappointing plot with terrible direction\",\n",
" \"poor movie with awful story\",\n",
" \"boring film with terrible acting\",\n",
" \"awful direction and disappointing story\",\n",
" \"terrible movie with boring performances\"\n",
" ] * 2 # Duplicate to get 100\n",
" \n",
" texts = positive_reviews + negative_reviews\n",
" labels = [1] * len(positive_reviews) + [0] * len(negative_reviews)\n",
" \n",
" # Shuffle\n",
" combined = list(zip(texts, labels))\n",
" random.shuffle(combined)\n",
" texts, labels = zip(*combined)\n",
" \n",
" logger.info(f\"Created dataset with {len(texts)} samples\")\n",
" logger.info(f\"Positive: {len(positive_reviews)}, Negative: {len(negative_reviews)}\")\n",
" \n",
" return list(texts), list(labels)\n",
"\n",
"def build_vocabulary(texts, min_freq=2):\n",
" logger.info(\"Building vocabulary from text data\")\n",
" \n",
" word_counts = {}\n",
" for text in texts:\n",
" words = text.lower().split()\n",
" for word in words:\n",
" word_counts[word] = word_counts.get(word, 0) + 1\n",
" \n",
" vocab_to_idx = {'<PAD>': 0, '<UNK>': 1}\n",
" idx = 2\n",
" \n",
" for word, count in word_counts.items():\n",
" if count >= min_freq:\n",
" vocab_to_idx[word] = idx\n",
" idx += 1\n",
" \n",
" logger.info(f\"Vocabulary size: {len(vocab_to_idx)}\")\n",
" return vocab_to_idx\n",
"\n",
"def create_padding_mask(x, pad_idx=0):\n",
" # Create mask for padding tokens\n",
" mask = (x != pad_idx).unsqueeze(1).unsqueeze(2)\n",
" return mask\n",
"\n",
"def train_model(model, train_loader, val_loader, num_epochs, device):\n",
" logger.info(\"Starting model training\")\n",
" \n",
" criterion = nn.CrossEntropyLoss()\n",
" optimizer = optim.AdamW(model.parameters(), lr=0.0001, weight_decay=0.01)\n",
" scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)\n",
" \n",
" train_losses = []\n",
" val_accuracies = []\n",
" best_val_acc = 0\n",
" patience = 5\n",
" patience_counter = 0\n",
" \n",
" for epoch in range(num_epochs):\n",
" logger.info(f\"Epoch {epoch+1}/{num_epochs}\")\n",
" \n",
" # Training\n",
" model.train()\n",
" total_loss = 0\n",
" num_batches = 0\n",
" \n",
" for batch_idx, (data, target) in enumerate(train_loader):\n",
" data, target = data.to(device), target.to(device)\n",
" \n",
" # Debug shapes on first batch\n",
" if batch_idx == 0 and epoch == 0:\n",
" logger.info(f\"Input data shape: {data.shape}\")\n",
" logger.info(f\"Target shape: {target.shape}\")\n",
" \n",
" optimizer.zero_grad()\n",
" output = model(data)\n",
" \n",
" # Debug output shape\n",
" if batch_idx == 0 and epoch == 0:\n",
" logger.info(f\"Model output shape: {output.shape}\")\n",
" \n",
" loss = criterion(output, target)\n",
" loss.backward()\n",
" \n",
" # Gradient clipping\n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)\n",
" \n",
" optimizer.step()\n",
" \n",
" total_loss += loss.item()\n",
" num_batches += 1\n",
" \n",
" if batch_idx % 20 == 0:\n",
" logger.info(f\"Batch {batch_idx}/{len(train_loader)}, Loss: {loss.item():.4f}\")\n",
" \n",
" avg_loss = total_loss / num_batches\n",
" train_losses.append(avg_loss)\n",
" \n",
" # Validation\n",
" model.eval()\n",
" correct = 0\n",
" total = 0\n",
" \n",
" with torch.no_grad():\n",
" for data, target in val_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" output = model(data)\n",
" _, predicted = torch.max(output, 1)\n",
" total += target.size(0)\n",
" correct += (predicted == target).sum().item()\n",
" \n",
" val_accuracy = 100 * correct / total\n",
" val_accuracies.append(val_accuracy)\n",
" \n",
" # Early stopping and model saving\n",
" if val_accuracy > best_val_acc:\n",
" best_val_acc = val_accuracy\n",
" torch.save(model.state_dict(), 'best_transformer_model.pth')\n",
" patience_counter = 0\n",
" else:\n",
" patience_counter += 1\n",
" \n",
" logger.info(f\"Epoch {epoch+1} - Loss: {avg_loss:.4f}, Val Acc: {val_accuracy:.2f}%\")\n",
" \n",
" # Early stopping\n",
" if patience_counter >= patience:\n",
" logger.info(f\"Early stopping at epoch {epoch+1}\")\n",
" break\n",
" \n",
" scheduler.step()\n",
" \n",
" # Load best model\n",
" model.load_state_dict(torch.load('best_transformer_model.pth'))\n",
" logger.info(f\"Best validation accuracy: {best_val_acc:.2f}%\")\n",
" \n",
" return train_losses, val_accuracies\n",
"\n",
"def evaluate_model(model, test_loader, device):\n",
" logger.info(\"Evaluating model on test set\")\n",
" \n",
" model.eval()\n",
" all_predictions = []\n",
" all_targets = []\n",
" \n",
" with torch.no_grad():\n",
" for data, target in test_loader:\n",
" data, target = data.to(device), target.to(device)\n",
" output = model(data)\n",
" _, predicted = torch.max(output, 1)\n",
" \n",
" all_predictions.extend(predicted.cpu().numpy())\n",
" all_targets.extend(target.cpu().numpy())\n",
" \n",
" accuracy = accuracy_score(all_targets, all_predictions)\n",
" logger.info(f\"Test Accuracy: {accuracy:.4f}\")\n",
" \n",
" report = classification_report(all_targets, all_predictions, target_names=['Negative', 'Positive'])\n",
" logger.info(f\"Classification Report:\\n{report}\")\n",
" \n",
" return accuracy, all_predictions, all_targets\n",
"\n",
"def main():\n",
" logger.info(\"Starting M4-optimized Transformer implementation\")\n",
" \n",
" # M4 chip setup\n",
" if torch.backends.mps.is_available():\n",
" device = torch.device('mps')\n",
" logger.info(\"Using Apple Silicon M4 MPS acceleration\")\n",
" else:\n",
" device = torch.device('cpu')\n",
" logger.info(\"Using CPU\")\n",
" \n",
" # Create extensive dataset\n",
" texts, labels = create_extensive_dataset()\n",
" vocab_to_idx = build_vocabulary(texts)\n",
" \n",
" # Proper data splitting\n",
" X_train, X_temp, y_train, y_temp = train_test_split(\n",
" texts, labels, test_size=0.3, random_state=42, stratify=labels\n",
" )\n",
" X_val, X_test, y_val, y_test = train_test_split(\n",
" X_temp, y_temp, test_size=0.5, random_state=42, stratify=y_temp\n",
" )\n",
" \n",
" logger.info(f\"Dataset splits - Train: {len(X_train)}, Val: {len(X_val)}, Test: {len(X_test)}\")\n",
" \n",
" # Create datasets\n",
" max_length = 24\n",
" train_dataset = TextDataset(X_train, y_train, vocab_to_idx, max_length)\n",
" val_dataset = TextDataset(X_val, y_val, vocab_to_idx, max_length)\n",
" test_dataset = TextDataset(X_test, y_test, vocab_to_idx, max_length)\n",
" \n",
" # Data loaders optimized for M4\n",
" train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=0)\n",
" val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False, num_workers=0)\n",
" test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False, num_workers=0)\n",
" \n",
" # Model configuration optimized for M4\n",
" model = TransformerClassifier(\n",
" vocab_size=len(vocab_to_idx),\n",
" d_model=128,\n",
" num_heads=8,\n",
" num_layers=4,\n",
" d_ff=256,\n",
" max_len=max_length,\n",
" num_classes=2,\n",
" dropout=0.1\n",
" ).to(device)\n",
" \n",
" total_params = sum(p.numel() for p in model.parameters())\n",
" logger.info(f\"Total parameters: {total_params:,}\")\n",
" \n",
" # Train model\n",
" train_losses, val_accuracies = train_model(model, train_loader, val_loader, num_epochs=30, device=device)\n",
" \n",
" # Evaluate\n",
" test_accuracy, predictions, targets = evaluate_model(model, test_loader, device)\n",
" \n",
" # Visualization\n",
" plt.figure(figsize=(15, 5))\n",
" \n",
" plt.subplot(1, 3, 1)\n",
" plt.plot(train_losses, label='Training Loss')\n",
" plt.title('Training Loss')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Loss')\n",
" plt.legend()\n",
" \n",
" plt.subplot(1, 3, 2)\n",
" plt.plot(val_accuracies, label='Validation Accuracy')\n",
" plt.title('Validation Accuracy')\n",
" plt.xlabel('Epoch')\n",
" plt.ylabel('Accuracy (%)')\n",
" plt.legend()\n",
" \n",
" plt.subplot(1, 3, 3)\n",
" plt.hist(predictions, bins=2, alpha=0.7, label='Predictions')\n",
" plt.hist(targets, bins=2, alpha=0.7, label='Targets')\n",
" plt.title('Prediction Distribution')\n",
" plt.xlabel('Class')\n",
" plt.ylabel('Count')\n",
" plt.legend()\n",
" \n",
" plt.tight_layout()\n",
" plt.savefig('m4_transformer_results.png', dpi=300)\n",
" plt.show()\n",
" \n",
" # Test predictions\n",
" def predict_sentiment(text, model, vocab_to_idx, device, max_length=24):\n",
" model.eval()\n",
" tokens = text.lower().split()\n",
" token_ids = [vocab_to_idx.get(token, vocab_to_idx['<UNK>']) for token in tokens]\n",
" \n",
" if len(token_ids) > max_length:\n",
" token_ids = token_ids[:max_length]\n",
" else:\n",
" token_ids.extend([vocab_to_idx['<PAD>']] * (max_length - len(token_ids)))\n",
" \n",
" input_tensor = torch.tensor([token_ids], dtype=torch.long).to(device)\n",
" \n",
" with torch.no_grad():\n",
" output = model(input_tensor)\n",
" probabilities = F.softmax(output, dim=1)\n",
" _, predicted = torch.max(output, 1)\n",
" \n",
" sentiment = \"Positive\" if predicted.item() == 1 else \"Negative\"\n",
" confidence = probabilities[0][predicted.item()].item()\n",
" \n",
" return sentiment, confidence\n",
" \n",
" logger.info(\"Testing model predictions on M4 chip\")\n",
" \n",
" test_sentences = [\n",
" \"this movie is absolutely amazing and fantastic with great acting\",\n",
" \"terrible film with awful acting and poor boring story\",\n",
" \"good story but disappointing execution and weak characters\",\n",
" \"excellent film with brilliant performances and wonderful direction\",\n",
" \"boring movie with terrible plot and awful disappointing ending\",\n",
" \"fantastic entertainment with amazing visuals and great soundtrack\",\n",
" \"poor acting with boring dialogue and terrible character development\"\n",
" ]\n",
" \n",
" for sentence in test_sentences:\n",
" sentiment, confidence = predict_sentiment(sentence, model, vocab_to_idx, device)\n",
" logger.info(f\"'{sentence[:50]}...' -> {sentiment} ({confidence:.3f})\")\n",
" \n",
" logger.info(f\"Final test accuracy: {test_accuracy:.4f}\")\n",
" logger.info(\"M4 Transformer implementation completed successfully!\")\n",
"\n",
"if __name__ == \"__main__\":\n",
" main()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "37c4844e-d5a5-4cc7-8dc7-9750c318bfcd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|