Build (aarch64-linux)
Browse files- build/torch28-cxx11-cu126-aarch64-linux/activation/__init__.py +57 -0
- build/torch28-cxx11-cu126-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu126-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu126-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu126-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so +3 -0
- build/torch28-cxx11-cu126-aarch64-linux/activation/_ops.py +9 -0
- build/torch28-cxx11-cu126-aarch64-linux/activation/layers.py +128 -0
- build/torch28-cxx11-cu128-aarch64-linux/activation/__init__.py +57 -0
- build/torch28-cxx11-cu128-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu128-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu128-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu128-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so +3 -0
- build/torch28-cxx11-cu128-aarch64-linux/activation/_ops.py +9 -0
- build/torch28-cxx11-cu128-aarch64-linux/activation/layers.py +128 -0
- build/torch28-cxx11-cu129-aarch64-linux/activation/__init__.py +57 -0
- build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
- build/torch28-cxx11-cu129-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so +3 -0
- build/torch28-cxx11-cu129-aarch64-linux/activation/_ops.py +9 -0
- build/torch28-cxx11-cu129-aarch64-linux/activation/layers.py +128 -0
build/torch28-cxx11-cu126-aarch64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ._ops import ops
|
4 |
+
|
5 |
+
from . import layers
|
6 |
+
|
7 |
+
|
8 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
9 |
+
ops.silu_and_mul(out, x)
|
10 |
+
return out
|
11 |
+
|
12 |
+
|
13 |
+
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
+
ops.mul_and_silu(out, x)
|
15 |
+
return out
|
16 |
+
|
17 |
+
|
18 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
+
ops.gelu_and_mul(out, x)
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
24 |
+
ops.gelu_tanh_and_mul(out, x)
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
29 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
30 |
+
return out
|
31 |
+
|
32 |
+
|
33 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
34 |
+
ops.gelu_fast(out, x)
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
39 |
+
ops.gelu_new(out, x)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
+
ops.gelu_quick(out, x)
|
45 |
+
return out
|
46 |
+
|
47 |
+
|
48 |
+
__all__ = [
|
49 |
+
"silu_and_mul",
|
50 |
+
"gelu_and_mul",
|
51 |
+
"gelu_tanh_and_mul",
|
52 |
+
"fatrelu_and_mul",
|
53 |
+
"gelu_fast",
|
54 |
+
"gelu_new",
|
55 |
+
"gelu_quick",
|
56 |
+
"layers",
|
57 |
+
]
|
build/torch28-cxx11-cu126-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (2.5 kB). View file
|
|
build/torch28-cxx11-cu126-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc
ADDED
Binary file (539 Bytes). View file
|
|
build/torch28-cxx11-cu126-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc
ADDED
Binary file (6.92 kB). View file
|
|
build/torch28-cxx11-cu126-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02b62f5d045f370c3fb7c0e7ef458165feb987fba186b8cb9aee55c735a82e93
|
3 |
+
size 2699928
|
build/torch28-cxx11-cu126-aarch64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_0c3eb4e_dirty
|
3 |
+
ops = torch.ops._activation_0c3eb4e_dirty
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_0c3eb4e_dirty::{op_name}"
|
build/torch28-cxx11-cu126-aarch64-linux/activation/layers.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from ._ops import ops
|
5 |
+
|
6 |
+
|
7 |
+
class SiluAndMul(nn.Module):
|
8 |
+
"""An activation function for SwiGLU.
|
9 |
+
|
10 |
+
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
+
|
12 |
+
Shapes:
|
13 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
+
"""
|
16 |
+
|
17 |
+
can_torch_compile: bool = True
|
18 |
+
|
19 |
+
def forward(self, x: torch.Tensor):
|
20 |
+
d = x.shape[-1] // 2
|
21 |
+
output_shape = x.shape[:-1] + (d,)
|
22 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
+
ops.silu_and_mul(out, x)
|
24 |
+
return out
|
25 |
+
|
26 |
+
|
27 |
+
class MulAndSilu(nn.Module):
|
28 |
+
"""An activation function for SwiGLU.
|
29 |
+
|
30 |
+
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
+
|
32 |
+
Shapes:
|
33 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
+
"""
|
36 |
+
|
37 |
+
can_torch_compile: bool = True
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
d = x.shape[-1] // 2
|
41 |
+
output_shape = x.shape[:-1] + (d,)
|
42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
+
ops.mul_and_silu(out, x)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
class GeluAndMul(nn.Module):
|
48 |
+
"""An activation function for GeGLU.
|
49 |
+
|
50 |
+
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
+
|
52 |
+
Shapes:
|
53 |
+
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
+
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
+
"""
|
56 |
+
|
57 |
+
can_torch_compile: bool = True
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor):
|
60 |
+
d = x.shape[-1] // 2
|
61 |
+
output_shape = x.shape[:-1] + (d,)
|
62 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
+
ops.gelu_and_mul(out, x)
|
64 |
+
return out
|
65 |
+
|
66 |
+
|
67 |
+
class GeluTanhAndMul(nn.Module):
|
68 |
+
can_torch_compile: bool = True
|
69 |
+
|
70 |
+
def forward(self, x: torch.Tensor):
|
71 |
+
d = x.shape[-1] // 2
|
72 |
+
output_shape = x.shape[:-1] + (d,)
|
73 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
+
ops.gelu_tanh_and_mul(out, x)
|
75 |
+
return out
|
76 |
+
|
77 |
+
|
78 |
+
class FatreluAndMul(nn.Module):
|
79 |
+
"""An activation function for FATReLU.
|
80 |
+
|
81 |
+
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
+
d = x.shape[-1] // 2.
|
83 |
+
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
+
|
85 |
+
Shapes:
|
86 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
+
"""
|
89 |
+
|
90 |
+
can_torch_compile: bool = True
|
91 |
+
|
92 |
+
def __init__(self, threshold: float = 0.0):
|
93 |
+
super().__init__()
|
94 |
+
self.threshold = threshold
|
95 |
+
|
96 |
+
def forward(self, x: torch.Tensor):
|
97 |
+
d = x.shape[-1] // 2
|
98 |
+
output_shape = x.shape[:-1] + (d,)
|
99 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
+
return out
|
102 |
+
|
103 |
+
|
104 |
+
class FastGELU(nn.Module):
|
105 |
+
can_torch_compile: bool = True
|
106 |
+
|
107 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
+
out = torch.empty_like(x)
|
109 |
+
ops.gelu_fast(out, x)
|
110 |
+
return out
|
111 |
+
|
112 |
+
|
113 |
+
class NewGELU(nn.Module):
|
114 |
+
can_torch_compile: bool = True
|
115 |
+
|
116 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
+
out = torch.empty_like(x)
|
118 |
+
ops.gelu_new(out, x)
|
119 |
+
return out
|
120 |
+
|
121 |
+
|
122 |
+
class QuickGELU(nn.Module):
|
123 |
+
can_torch_compile: bool = True
|
124 |
+
|
125 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
+
out = torch.empty_like(x)
|
127 |
+
ops.gelu_quick(out, x)
|
128 |
+
return out
|
build/torch28-cxx11-cu128-aarch64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ._ops import ops
|
4 |
+
|
5 |
+
from . import layers
|
6 |
+
|
7 |
+
|
8 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
9 |
+
ops.silu_and_mul(out, x)
|
10 |
+
return out
|
11 |
+
|
12 |
+
|
13 |
+
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
+
ops.mul_and_silu(out, x)
|
15 |
+
return out
|
16 |
+
|
17 |
+
|
18 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
+
ops.gelu_and_mul(out, x)
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
24 |
+
ops.gelu_tanh_and_mul(out, x)
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
29 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
30 |
+
return out
|
31 |
+
|
32 |
+
|
33 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
34 |
+
ops.gelu_fast(out, x)
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
39 |
+
ops.gelu_new(out, x)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
+
ops.gelu_quick(out, x)
|
45 |
+
return out
|
46 |
+
|
47 |
+
|
48 |
+
__all__ = [
|
49 |
+
"silu_and_mul",
|
50 |
+
"gelu_and_mul",
|
51 |
+
"gelu_tanh_and_mul",
|
52 |
+
"fatrelu_and_mul",
|
53 |
+
"gelu_fast",
|
54 |
+
"gelu_new",
|
55 |
+
"gelu_quick",
|
56 |
+
"layers",
|
57 |
+
]
|
build/torch28-cxx11-cu128-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (2.5 kB). View file
|
|
build/torch28-cxx11-cu128-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc
ADDED
Binary file (539 Bytes). View file
|
|
build/torch28-cxx11-cu128-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc
ADDED
Binary file (6.92 kB). View file
|
|
build/torch28-cxx11-cu128-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f7fe0a00eaf2e228f237ee3058ac9eb2c6fbc4927b1276d0f566bb05bb043b9
|
3 |
+
size 3683080
|
build/torch28-cxx11-cu128-aarch64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_0c3eb4e_dirty
|
3 |
+
ops = torch.ops._activation_0c3eb4e_dirty
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_0c3eb4e_dirty::{op_name}"
|
build/torch28-cxx11-cu128-aarch64-linux/activation/layers.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from ._ops import ops
|
5 |
+
|
6 |
+
|
7 |
+
class SiluAndMul(nn.Module):
|
8 |
+
"""An activation function for SwiGLU.
|
9 |
+
|
10 |
+
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
+
|
12 |
+
Shapes:
|
13 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
+
"""
|
16 |
+
|
17 |
+
can_torch_compile: bool = True
|
18 |
+
|
19 |
+
def forward(self, x: torch.Tensor):
|
20 |
+
d = x.shape[-1] // 2
|
21 |
+
output_shape = x.shape[:-1] + (d,)
|
22 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
+
ops.silu_and_mul(out, x)
|
24 |
+
return out
|
25 |
+
|
26 |
+
|
27 |
+
class MulAndSilu(nn.Module):
|
28 |
+
"""An activation function for SwiGLU.
|
29 |
+
|
30 |
+
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
+
|
32 |
+
Shapes:
|
33 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
+
"""
|
36 |
+
|
37 |
+
can_torch_compile: bool = True
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
d = x.shape[-1] // 2
|
41 |
+
output_shape = x.shape[:-1] + (d,)
|
42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
+
ops.mul_and_silu(out, x)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
class GeluAndMul(nn.Module):
|
48 |
+
"""An activation function for GeGLU.
|
49 |
+
|
50 |
+
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
+
|
52 |
+
Shapes:
|
53 |
+
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
+
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
+
"""
|
56 |
+
|
57 |
+
can_torch_compile: bool = True
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor):
|
60 |
+
d = x.shape[-1] // 2
|
61 |
+
output_shape = x.shape[:-1] + (d,)
|
62 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
+
ops.gelu_and_mul(out, x)
|
64 |
+
return out
|
65 |
+
|
66 |
+
|
67 |
+
class GeluTanhAndMul(nn.Module):
|
68 |
+
can_torch_compile: bool = True
|
69 |
+
|
70 |
+
def forward(self, x: torch.Tensor):
|
71 |
+
d = x.shape[-1] // 2
|
72 |
+
output_shape = x.shape[:-1] + (d,)
|
73 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
+
ops.gelu_tanh_and_mul(out, x)
|
75 |
+
return out
|
76 |
+
|
77 |
+
|
78 |
+
class FatreluAndMul(nn.Module):
|
79 |
+
"""An activation function for FATReLU.
|
80 |
+
|
81 |
+
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
+
d = x.shape[-1] // 2.
|
83 |
+
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
+
|
85 |
+
Shapes:
|
86 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
+
"""
|
89 |
+
|
90 |
+
can_torch_compile: bool = True
|
91 |
+
|
92 |
+
def __init__(self, threshold: float = 0.0):
|
93 |
+
super().__init__()
|
94 |
+
self.threshold = threshold
|
95 |
+
|
96 |
+
def forward(self, x: torch.Tensor):
|
97 |
+
d = x.shape[-1] // 2
|
98 |
+
output_shape = x.shape[:-1] + (d,)
|
99 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
+
return out
|
102 |
+
|
103 |
+
|
104 |
+
class FastGELU(nn.Module):
|
105 |
+
can_torch_compile: bool = True
|
106 |
+
|
107 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
+
out = torch.empty_like(x)
|
109 |
+
ops.gelu_fast(out, x)
|
110 |
+
return out
|
111 |
+
|
112 |
+
|
113 |
+
class NewGELU(nn.Module):
|
114 |
+
can_torch_compile: bool = True
|
115 |
+
|
116 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
+
out = torch.empty_like(x)
|
118 |
+
ops.gelu_new(out, x)
|
119 |
+
return out
|
120 |
+
|
121 |
+
|
122 |
+
class QuickGELU(nn.Module):
|
123 |
+
can_torch_compile: bool = True
|
124 |
+
|
125 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
+
out = torch.empty_like(x)
|
127 |
+
ops.gelu_quick(out, x)
|
128 |
+
return out
|
build/torch28-cxx11-cu129-aarch64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ._ops import ops
|
4 |
+
|
5 |
+
from . import layers
|
6 |
+
|
7 |
+
|
8 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
9 |
+
ops.silu_and_mul(out, x)
|
10 |
+
return out
|
11 |
+
|
12 |
+
|
13 |
+
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
+
ops.mul_and_silu(out, x)
|
15 |
+
return out
|
16 |
+
|
17 |
+
|
18 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
+
ops.gelu_and_mul(out, x)
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
24 |
+
ops.gelu_tanh_and_mul(out, x)
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
29 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
30 |
+
return out
|
31 |
+
|
32 |
+
|
33 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
34 |
+
ops.gelu_fast(out, x)
|
35 |
+
return out
|
36 |
+
|
37 |
+
|
38 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
39 |
+
ops.gelu_new(out, x)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
+
ops.gelu_quick(out, x)
|
45 |
+
return out
|
46 |
+
|
47 |
+
|
48 |
+
__all__ = [
|
49 |
+
"silu_and_mul",
|
50 |
+
"gelu_and_mul",
|
51 |
+
"gelu_tanh_and_mul",
|
52 |
+
"fatrelu_and_mul",
|
53 |
+
"gelu_fast",
|
54 |
+
"gelu_new",
|
55 |
+
"gelu_quick",
|
56 |
+
"layers",
|
57 |
+
]
|
build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (2.5 kB). View file
|
|
build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc
ADDED
Binary file (539 Bytes). View file
|
|
build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc
ADDED
Binary file (6.92 kB). View file
|
|
build/torch28-cxx11-cu129-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9f6a161283a05672bb3ed442990cf8a5ce553625bb482cd31ce514e07cfcf0a
|
3 |
+
size 3684504
|
build/torch28-cxx11-cu129-aarch64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_0c3eb4e_dirty
|
3 |
+
ops = torch.ops._activation_0c3eb4e_dirty
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_0c3eb4e_dirty::{op_name}"
|
build/torch28-cxx11-cu129-aarch64-linux/activation/layers.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from ._ops import ops
|
5 |
+
|
6 |
+
|
7 |
+
class SiluAndMul(nn.Module):
|
8 |
+
"""An activation function for SwiGLU.
|
9 |
+
|
10 |
+
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
+
|
12 |
+
Shapes:
|
13 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
+
"""
|
16 |
+
|
17 |
+
can_torch_compile: bool = True
|
18 |
+
|
19 |
+
def forward(self, x: torch.Tensor):
|
20 |
+
d = x.shape[-1] // 2
|
21 |
+
output_shape = x.shape[:-1] + (d,)
|
22 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
+
ops.silu_and_mul(out, x)
|
24 |
+
return out
|
25 |
+
|
26 |
+
|
27 |
+
class MulAndSilu(nn.Module):
|
28 |
+
"""An activation function for SwiGLU.
|
29 |
+
|
30 |
+
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
+
|
32 |
+
Shapes:
|
33 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
+
"""
|
36 |
+
|
37 |
+
can_torch_compile: bool = True
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
d = x.shape[-1] // 2
|
41 |
+
output_shape = x.shape[:-1] + (d,)
|
42 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
+
ops.mul_and_silu(out, x)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
class GeluAndMul(nn.Module):
|
48 |
+
"""An activation function for GeGLU.
|
49 |
+
|
50 |
+
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
+
|
52 |
+
Shapes:
|
53 |
+
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
+
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
+
"""
|
56 |
+
|
57 |
+
can_torch_compile: bool = True
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor):
|
60 |
+
d = x.shape[-1] // 2
|
61 |
+
output_shape = x.shape[:-1] + (d,)
|
62 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
+
ops.gelu_and_mul(out, x)
|
64 |
+
return out
|
65 |
+
|
66 |
+
|
67 |
+
class GeluTanhAndMul(nn.Module):
|
68 |
+
can_torch_compile: bool = True
|
69 |
+
|
70 |
+
def forward(self, x: torch.Tensor):
|
71 |
+
d = x.shape[-1] // 2
|
72 |
+
output_shape = x.shape[:-1] + (d,)
|
73 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
+
ops.gelu_tanh_and_mul(out, x)
|
75 |
+
return out
|
76 |
+
|
77 |
+
|
78 |
+
class FatreluAndMul(nn.Module):
|
79 |
+
"""An activation function for FATReLU.
|
80 |
+
|
81 |
+
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
+
d = x.shape[-1] // 2.
|
83 |
+
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
+
|
85 |
+
Shapes:
|
86 |
+
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
+
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
+
"""
|
89 |
+
|
90 |
+
can_torch_compile: bool = True
|
91 |
+
|
92 |
+
def __init__(self, threshold: float = 0.0):
|
93 |
+
super().__init__()
|
94 |
+
self.threshold = threshold
|
95 |
+
|
96 |
+
def forward(self, x: torch.Tensor):
|
97 |
+
d = x.shape[-1] // 2
|
98 |
+
output_shape = x.shape[:-1] + (d,)
|
99 |
+
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
+
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
+
return out
|
102 |
+
|
103 |
+
|
104 |
+
class FastGELU(nn.Module):
|
105 |
+
can_torch_compile: bool = True
|
106 |
+
|
107 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
+
out = torch.empty_like(x)
|
109 |
+
ops.gelu_fast(out, x)
|
110 |
+
return out
|
111 |
+
|
112 |
+
|
113 |
+
class NewGELU(nn.Module):
|
114 |
+
can_torch_compile: bool = True
|
115 |
+
|
116 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
+
out = torch.empty_like(x)
|
118 |
+
ops.gelu_new(out, x)
|
119 |
+
return out
|
120 |
+
|
121 |
+
|
122 |
+
class QuickGELU(nn.Module):
|
123 |
+
can_torch_compile: bool = True
|
124 |
+
|
125 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
+
out = torch.empty_like(x)
|
127 |
+
ops.gelu_quick(out, x)
|
128 |
+
return out
|