File size: 84,727 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 |
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#include <Python.h>
#include <torch/nn/functional/padding.h>
#include <ATen/cuda/CUDAContextLight.h>
#include <c10/cuda/CUDAGuard.h>
#include <cutlass/numeric_types.h>
#include "flash.h"
#include "static_switch.h"
#include "tile_size.h"
#include "heuristics.h"
#include "cuda_check.h"
extern "C" {
/* Creates a dummy empty _C module that can be imported from Python.
The import from Python will load the .so consisting of this file
in this extension, so that the TORCH_LIBRARY static initializers
below are run. */
PyObject* PyInit__C(void)
{
static struct PyModuleDef module_def = {
PyModuleDef_HEAD_INIT,
"_C", /* name of module */
NULL, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
NULL, /* methods */
};
return PyModule_Create(&module_def);
}
}
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
void set_params_fprop(Flash_fwd_params ¶ms,
// sizes
const size_t b,
const size_t seqlen_q,
const size_t seqlen_k,
const size_t seqlen_q_rounded,
const size_t seqlen_k_rounded,
const size_t h,
const size_t h_k,
const size_t d,
const size_t d_rounded,
// device pointers
const at::Tensor q,
const at::Tensor k,
const at::Tensor v,
at::Tensor out,
void *cu_seqlens_q_d,
void *cu_seqlens_k_d,
void *seqused_q,
void *seqused_k,
void *softmax_lse_d,
float p_dropout,
float softmax_scale,
int window_size_left,
int window_size_right,
int attention_chunk,
const float softcap=0.f,
const int sm_margin=0) {
// Reset the parameters
params = {};
params.is_bf16 = q.dtype() == torch::kBFloat16;
params.is_e4m3 = q.dtype() == torch::kFloat8_e4m3fn;
// Set the pointers and strides.
params.q_ptr = q.data_ptr();
params.k_ptr = k.data_ptr();
params.v_ptr = v.data_ptr();
// All stride are in elements, not bytes.
params.q_row_stride = q.stride(-3);
params.k_row_stride = k.stride(-3);
params.v_row_stride = v.stride(-3);
params.q_head_stride = q.stride(-2);
params.k_head_stride = k.stride(-2);
params.v_head_stride = v.stride(-2);
params.v_dim_stride = v.stride(-1);
params.o_ptr = out.data_ptr();
params.o_row_stride = out.stride(-3);
params.o_head_stride = out.stride(-2);
if (cu_seqlens_q_d == nullptr) {
params.q_batch_stride = q.stride(0);
params.o_batch_stride = out.stride(0);
}
if (cu_seqlens_k_d == nullptr) {
params.k_batch_stride = k.stride(0);
params.v_batch_stride = v.stride(0);
}
params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
params.seqused_q = static_cast<int *>(seqused_q);
params.seqused_k = static_cast<int *>(seqused_k);
// Softmax sum
params.softmax_lse_ptr = softmax_lse_d;
// Set the dimensions.
params.b = b;
params.h = h;
params.h_k = h_k;
params.seqlen_q = seqlen_q;
params.seqlen_k = seqlen_k;
params.seqlen_q_rounded = seqlen_q_rounded;
params.seqlen_k_rounded = seqlen_k_rounded;
params.d = d;
params.d_rounded = d_rounded;
// Set the different scale values.
params.scale_softmax = softmax_scale;
params.softcap = softcap;
// Set this to probability of keeping an element to simplify things.
params.p_dropout = 1.f - p_dropout;
// Convert p from float to int so we don't have to convert the random uint to float to compare.
// [Minor] We want to round down since when we do the comparison we use <= instead of <
// params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
// params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
params.rp_dropout = 1.f / params.p_dropout;
TORCH_CHECK(p_dropout < 1.f);
#ifdef FLASHATTENTION_DISABLE_DROPOUT
TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
#endif
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
params.is_causal = window_size_left < 0 && window_size_right == 0 && attention_chunk == 0;
params.is_local = (window_size_left >= 0 || window_size_right >= 0 || attention_chunk >= 1) && !params.is_causal;
// TODO: check this
if (window_size_left < 0) { window_size_left = seqlen_k - 1; }
if (window_size_right < 0) { window_size_right = seqlen_q - 1; }
if (attention_chunk > 0) {
window_size_left = std::min(window_size_left, attention_chunk - 1);
window_size_right = std::min(window_size_right, attention_chunk - 1);
}
params.window_size_left = window_size_left;
params.window_size_right = window_size_right;
params.attention_chunk = attention_chunk;
params.arch = at::cuda::getCurrentDeviceProperties()->major * 10 + at::cuda::getCurrentDeviceProperties()->minor;
params.num_sm = at::cuda::getCurrentDeviceProperties()->multiProcessorCount - sm_margin;
#ifdef FLASHATTENTION_DISABLE_LOCAL
TORCH_CHECK(!params.is_local, "This flash attention build does not support local attention.");
#endif
}
void set_params_dgrad(Flash_bwd_params ¶ms,
// sizes
const size_t b,
const size_t seqlen_q,
const size_t seqlen_k,
const size_t seqlen_q_rounded,
const size_t seqlen_k_rounded,
const size_t h,
const size_t h_k,
const size_t d,
const size_t d_rounded,
// device pointers
const at::Tensor q,
const at::Tensor k,
const at::Tensor v,
const at::Tensor out,
const at::Tensor dout,
at::Tensor dq,
at::Tensor dk,
at::Tensor dv,
void *cu_seqlens_q_d,
void *cu_seqlens_k_d,
void *seqused_q,
void *seqused_k,
void *dq_accum_d,
void *dk_accum_d,
void *dv_accum_d,
void *softmax_lse_d,
void *dsoftmax_sum_d,
float p_dropout,
float softmax_scale,
int window_size_left,
int window_size_right,
int attention_chunk,
const float softcap=0.f,
bool deterministic=false,
int const sm_margin=0) {
set_params_fprop(params,
b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
q, k, v, out,
cu_seqlens_q_d,
cu_seqlens_k_d,
seqused_q,
seqused_k,
softmax_lse_d,
p_dropout,
softmax_scale,
window_size_left,
window_size_right,
attention_chunk,
softcap,
sm_margin);
// Set the pointers and strides.
params.do_ptr = dout.data_ptr();
params.do_row_stride = dout.stride(-3);
params.do_head_stride = dout.stride(-2);
params.dq_ptr = dq.data_ptr();
params.dk_ptr = dk.data_ptr();
params.dv_ptr = dv.data_ptr();
params.dq_row_stride = dq.stride(-3);
params.dk_row_stride = dk.stride(-3);
params.dv_row_stride = dv.stride(-3);
params.dq_head_stride = dq.stride(-2);
params.dk_head_stride = dk.stride(-2);
params.dv_head_stride = dv.stride(-2);
if (cu_seqlens_q_d == nullptr) {
params.do_batch_stride = dout.stride(0);
params.dq_batch_stride = dq.stride(0);
params.dk_batch_stride = dk.stride(0);
params.dv_batch_stride = dv.stride(0);
}
params.dq_accum_ptr = dq_accum_d;
params.dk_accum_ptr = dk_accum_d;
params.dv_accum_ptr = dv_accum_d;
// Softmax sum
params.dsoftmax_sum = dsoftmax_sum_d;
params.deterministic = deterministic;
}
template <int Arch, int Split, bool PagedKVNonTMA, bool PackGQA, bool Has_softcap>
void run_mha_fwd_constexpr(Flash_fwd_params ¶ms, cudaStream_t stream) {
if (!params.is_e4m3) {
if (params.is_bf16) {
#ifndef FLASHATTENTION_DISABLE_HDIM64
if (params.d <= 64) {
if constexpr (Arch == 90) {
if (params.dv > 256) {
return run_mha_fwd_<Arch, cutlass::bfloat16_t, 64, 512, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
} else if (params.dv > 64) {
return run_mha_fwd_<Arch, cutlass::bfloat16_t, 64, 256, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
}
return run_mha_fwd_<Arch, cutlass::bfloat16_t, 64, 64, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM96
if (params.d <= 96) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 96, 96, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM128
if (params.d <= 128) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 128, 128, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM192
if (params.d <= 192) {
if constexpr (Arch == 90) {
if (params.dv <= 128) {
return run_mha_fwd_<Arch, cutlass::bfloat16_t, 192, 128, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
}
return run_mha_fwd_<Arch, cutlass::bfloat16_t, 192, 192, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM256
if (params.d <= 256) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 256, 256, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
} else {
#ifndef FLASHATTENTION_DISABLE_FP16
#ifndef FLASHATTENTION_DISABLE_HDIM64
if (params.d <= 64) {
if constexpr (Arch == 90) {
if (params.dv > 256) {
return run_mha_fwd_<Arch, cutlass::half_t, 64, 512, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
} else if (params.dv > 64) {
return run_mha_fwd_<Arch, cutlass::half_t, 64, 256, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
}
return run_mha_fwd_<Arch, cutlass::half_t, 64, 64, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM96
if (params.d <= 96) { return run_mha_fwd_<Arch, cutlass::half_t, 96, 96, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM128
if (params.d <= 128) { return run_mha_fwd_<Arch, cutlass::half_t, 128, 128, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM192
if (params.d <= 192) {
if constexpr (Arch == 90) {
if (params.dv <= 128) {
return run_mha_fwd_<Arch, cutlass::half_t, 192, 128, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
}
return run_mha_fwd_<Arch, cutlass::half_t, 192, 192, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM256
if (params.d <= 256) { return run_mha_fwd_<Arch, cutlass::half_t, 256, 256, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#else
TORCH_CHECK(false, "This flash attention build does not support FP16.");
#endif
}
} else {
#ifndef FLASHATTENTION_DISABLE_FP8
#ifndef FLASHATTENTION_DISABLE_HDIM64
if (params.d <= 64) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 64, 64, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM96
if (params.d <= 96) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 96, 96, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM128
if (params.d <= 128) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 128, 128, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM192
if (params.d <= 192) {
if constexpr (Arch == 90) {
if (params.dv <= 128) {
return run_mha_fwd_<90, cutlass::float_e4m3_t, 192, 128, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
}
return run_mha_fwd_<90, cutlass::float_e4m3_t, 192, 192, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream);
}
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM256
if (params.d <= 256) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 256, 256, Split, PagedKVNonTMA, Has_softcap, PackGQA>(params, stream); }
#endif
#else
TORCH_CHECK(false, "This flash attention build does not support FP8.");
#endif
}
}
void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream) {
// HEADDIM_SWITCH(params.d, [&] {
// run_mha_fwd_<cutlass::half_t, kHeadSize>(params, stream);
// });
TORCH_CHECK(params.num_splits >= 1);
ARCH_SWITCH(params.arch, Arch, [&] {
SPLIT_SWITCH(params.num_splits > 1, Split, [&] {
PAGEDKV_SWITCH(params.page_table && !params.pagedkv_tma, PagedKVNonTMA, [&] {
PACKGQA_SWITCH(params.pack_gqa, PackGQA_, [&] {
// Always enable PackGQA for Sm8x or PagedKVNonTMA or Split to reduce compilation
static constexpr bool PackGQA = PackGQA_ || Arch < 90 || PagedKVNonTMA || Split;
SOFTCAP_SWITCH(params.softcap > 0.0, Has_softcap, [&] {
run_mha_fwd_constexpr<Arch, Split, PagedKVNonTMA, PackGQA, Has_softcap>(params, stream);
});
});
});
});
});
}
void run_mha_fwd_combine(Flash_fwd_params ¶ms, cudaStream_t stream, bool enable_pdl=false) {
#ifndef FLASHATTENTION_DISABLE_SPLIT
// If hdim is 96 or 192, it's faster to round them to 128 or 256 respectively
// so that kBlockM is smaller and we have more parallelism.
if (params.is_fp32) {
if (params.dv <= 64) {
run_mha_fwd_combine_<float, float, 64>(params, stream, enable_pdl);
} else {
run_mha_fwd_combine_<float, float, 128>(params, stream, enable_pdl);
}
} else if (params.is_bf16) {
if (params.dv <= 64) {
run_mha_fwd_combine_<cutlass::bfloat16_t, float, 64>(params, stream, enable_pdl);
} else {
run_mha_fwd_combine_<cutlass::bfloat16_t, float, 128>(params, stream, enable_pdl);
}
} else {
if (params.dv <= 64) {
run_mha_fwd_combine_<cutlass::half_t, float, 64>(params, stream, enable_pdl);
} else {
run_mha_fwd_combine_<cutlass::half_t, float, 128>(params, stream, enable_pdl);
}
}
#else
TORCH_CHECK(false, "This flash attention build does not support combine kernels.");
#endif
}
inline bool get_pagedkv_tma(Flash_fwd_params const& params) {
if (params.arch < 90 || !params.page_table || params.leftpad_k || params.knew_ptr) { return false; }
// This needs to match the kernel configs
auto kBlockMN_kernel_args_sm90 = tile_size_fwd_sm90(params.d_rounded, params.dv_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, false /*v_colmajor*/, false /*paged_kv_non_TMA*/, params.softcap > 0.f);
int const kBlockM = std::get<0>(kBlockMN_kernel_args_sm90);
int const kBlockN = std::get<1>(kBlockMN_kernel_args_sm90);
// Heuristic: when seqlen_q <= kBlockM, we're not compute bound, and somehow using TMA is slower,
// at least for MLA.
return params.page_size % kBlockN == 0 && params.seqlen_q * (params.h / params.h_k) > kBlockM;
}
inline bool get_pack_gqa(Flash_fwd_params const& params) {
// Always enable PackGQA for Sm8x or PagedKVNonTMA or Split to reduce compilation and binary size.
// Has little effect on speed.
if (params.arch < 90 || (params.page_table && !params.pagedkv_tma) || params.num_splits > 1) { return true; }
#ifdef FLASHATTENTION_DISABLE_PACKGQA
return false;
#else
// params.page_table must already be set
if (params.h == params.h_k) { return false; }
// This needs to match the kernel configs
auto kBlockMN_kernel_args_sm90 = tile_size_fwd_sm90(params.d_rounded, params.dv_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, false /*v_colmajor*/, params.page_table && !params.pagedkv_tma, params.softcap > 0.f);
int const kBlockM = std::get<0>(kBlockMN_kernel_args_sm90);
return should_pack_gqa(params.cu_seqlens_q || params.seqused_q, params.seqlen_q, params.h / params.h_k, kBlockM);
#endif
}
inline int get_num_splits(Flash_fwd_params const& params) {
#ifdef FLASHATTENTION_DISABLE_SPLIT
return 1;
#else
// Always enable PackGQA for Split
// params.page_table must already be set
// This needs to match the kernel configs
bool varlen = params.cu_seqlens_q || params.cu_seqlens_k || params.seqused_q || params.seqused_k || params.leftpad_k;
auto kBlockMN_kernel_args_sm90 = tile_size_fwd_sm90(params.d_rounded, params.dv_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, false /*v_colmajor*/, params.page_table && !params.pagedkv_tma, params.softcap > 0.f);
// Strictly speaking we need to pass in (varlen && params.num_splits > 1) but num_splits
// has not been set here. It's OK though because we might just underestimate kBlockN a bit
auto kBlockMN_kernel_args_sm8x = tile_size_fwd_sm8x(params.arch == 86 || params.arch == 89, params.d_rounded, params.dv_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, params.page_table, varlen, params.softcap > 0.f, params.knew_ptr);
int const kBlockM = params.arch >= 90 ? std::get<0>(kBlockMN_kernel_args_sm90) : std::get<0>(kBlockMN_kernel_args_sm8x);
int const kBlockN = params.arch >= 90 ? std::get<1>(kBlockMN_kernel_args_sm90) : std::get<1>(kBlockMN_kernel_args_sm8x);
int seqlen_q_packgqa = params.seqlen_q * (params.h / params.h_k);
// If is_local, we're not going to load all of seqlen_k
int const seqlen_k_loaded = !params.is_local
? params.seqlen_k
: std::max(0, std::min(params.seqlen_k, params.window_size_right + params.window_size_left + 1 + kBlockM));
int const num_n_blocks = (seqlen_k_loaded + kBlockN - 1) / kBlockN;
int const num_m_blocks = (seqlen_q_packgqa + kBlockM - 1) / kBlockM;
int const size_one_kv_head = params.seqlen_k * (params.d + params.dv) * (params.is_e4m3 ? 1 : 2);
// Always enable PackGQA for Split
// If varlen, we use dynamic split, so this heuristic just needs to get an upper bound on num_splits.
// We assume the case where there's 1 long sequence and the rest are short, i.e. pretending
// that batch = 1.
int total_mblocks = (params.num_splits_dynamic_ptr ? 1 : params.b) * params.h_k * num_m_blocks;
return num_splits_heuristic(total_mblocks, params.num_sm, num_n_blocks, num_m_blocks, size_one_kv_head, params.is_causal || params.is_local, 128);
#endif
}
inline int get_max_headdim() {
#ifndef FLASHATTENTION_DISABLE_HDIM256
return 256;
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM192
return 192;
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM128
return 128;
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM96
return 96;
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM64
return 64;
#endif
return 0;
}
inline int round_up_headdim(int head_size) {
#ifndef FLASHATTENTION_DISABLE_HDIM64
if (head_size <= 64) { return 64; }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM96
if (head_size <= 96) { return 96; }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM128
if (head_size <= 128) { return 128; }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM192
if (head_size <= 192) { return 192; }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM256
if (head_size <= 256) { return 256; }
#endif
return 256;
}
inline int round_up_headdimv(int head_size) {
if (head_size <= 64) { return 64; }
if (head_size <= 96) { return 96; }
if (head_size <= 128) { return 128; }
if (head_size <= 192) { return 192; }
if (head_size <= 256) { return 256; }
return 512;
}
// Only applicable to the case where seqused_k (i.e. cache_seqlens) is available
at::Tensor
mha_fwd_get_scheduler_metadata(
int64_t batch_size,
int64_t max_seqlen_q,
int64_t max_seqlen_k,
int64_t num_heads,
int64_t num_heads_k,
int64_t headdim,
int64_t headdim_v,
at::ScalarType qkv_dtype,
at::Tensor seqused_k, // b
std::optional<at::Tensor> cu_seqlens_q_, // b+1
std::optional<at::Tensor> cu_seqlens_k_, // b+1
std::optional<at::Tensor> cu_seqlens_k_new_, // b+1
std::optional<at::Tensor> seqused_q_, // b. If given, only this many elements of each batch element's queries and outputs are used.
std::optional<at::Tensor> leftpad_k_, // b
std::optional<int64_t> page_size,
int64_t max_seqlen_k_new, // 0 means we're not appending new KV
bool is_causal,
int64_t window_size_left,
int64_t window_size_right,
int64_t attention_chunk,
bool has_softcap,
int64_t num_splits,
std::optional<bool> pack_gqa_,
int64_t sm_margin
) {
TORCH_CHECK(qkv_dtype == at::ScalarType::Half || qkv_dtype == at::ScalarType::BFloat16 || qkv_dtype == at::ScalarType::Float8_e4m3fn,
"FlashAttention only supports fp16, bf16, and fp8_e4m3 data type");
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
// Reset the parameters
Flash_fwd_params params{};
params.is_bf16 = qkv_dtype == at::ScalarType::BFloat16;
params.is_e4m3 = qkv_dtype == at::ScalarType::Float8_e4m3fn;
params.b = batch_size;
params.seqlen_q = max_seqlen_q;
params.seqlen_k = max_seqlen_k;
params.h = num_heads;
params.h_k = num_heads_k;
params.d = headdim;
params.dv = headdim_v;
params.d_rounded = round_up_headdim(headdim);
params.dv_rounded = headdim_v == headdim ? params.d_rounded : round_up_headdimv(headdim_v);
params.seqlen_knew = max_seqlen_k_new;
bool const is_varlen_q = cu_seqlens_q_.has_value();
params.cu_seqlens_q = is_varlen_q ? cu_seqlens_q_.value().data_ptr<int>() : nullptr;
bool const is_varlen_k = cu_seqlens_k_.has_value();
params.cu_seqlens_k = is_varlen_k ? cu_seqlens_k_.value().data_ptr<int>() : nullptr;
params.cu_seqlens_knew = cu_seqlens_k_new_.has_value() ? cu_seqlens_k_new_.value().data_ptr<int>() : nullptr;
params.seqused_q = seqused_q_.has_value() ? seqused_q_.value().data_ptr<int>() : nullptr;
params.seqused_k = seqused_k.data_ptr<int>();
params.leftpad_k = leftpad_k_.has_value() ? leftpad_k_.value().data_ptr<int>() : nullptr;
params.knew_ptr = params.seqlen_knew > 0 ? reinterpret_cast<int*>(1) : nullptr;
if (window_size_left >= max_seqlen_k - 1) { window_size_left = -1; }
if (window_size_right >= max_seqlen_q - 1) { window_size_right = -1; }
// causal=true is the same as causal=false in this case
if (max_seqlen_q == 1 && window_size_left == -1 && window_size_right == -1 && attention_chunk == 0) {
// Special case of hdim 128 where we want causal to have kBlockN=128, better for pagedKV and TMA
if ((headdim <= 64 || headdim > 128) || !page_size.has_value()) {
is_causal = false;
}
}
if (is_causal) { window_size_right = 0; }
params.is_causal = window_size_left < 0 && window_size_right == 0 && attention_chunk == 0;
params.is_local = (window_size_left >= 0 || window_size_right >= 0 || attention_chunk >= 1) && !params.is_causal;
if (window_size_left < 0) { window_size_left = max_seqlen_k - 1; }
if (window_size_right < 0) { window_size_right = max_seqlen_q - 1; }
if (attention_chunk > 0) {
window_size_left = std::min(window_size_left, attention_chunk - 1);
window_size_right = std::min(window_size_right, attention_chunk - 1);
}
params.window_size_left = window_size_left;
params.window_size_right = window_size_right;
params.attention_chunk = attention_chunk;
params.arch = at::cuda::getCurrentDeviceProperties()->major * 10 + at::cuda::getCurrentDeviceProperties()->minor;
params.num_sm = at::cuda::getCurrentDeviceProperties()->multiProcessorCount - sm_margin;
params.softcap = has_softcap ? 1.0f : 0.0f;
params.page_size = page_size.has_value() ? page_size.value() : 1;
params.page_table = !page_size.has_value() ? nullptr : reinterpret_cast<int*>(1);
bool const use_dynamic_split = params.b <= 992;
params.num_splits_dynamic_ptr = !use_dynamic_split ? nullptr : reinterpret_cast<int*>(1);
params.pagedkv_tma = get_pagedkv_tma(params);
params.num_splits = num_splits <= 0 ? get_num_splits(params) : num_splits;
// Always enable PackGQA for Split, and get_pack_gqa requires params.num_splits to decide
params.pack_gqa = pack_gqa_.has_value() ? pack_gqa_.value() : get_pack_gqa(params);
bool is_varlen = true;
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)seqused_k.get_device()};
auto opts = seqused_k.options();
// This needs to be set after get_num_splits
at::Tensor tile_count_semaphore; // Contains the semaphore and optionally num_splits_dynamic
bool const scheduler_needs_semaphore = params.arch >= 90 || params.num_splits > 1;
if (scheduler_needs_semaphore || use_dynamic_split) {
tile_count_semaphore = torch::empty({int(scheduler_needs_semaphore) + int(use_dynamic_split) * params.b}, opts.dtype(torch::kInt32));
if (scheduler_needs_semaphore) {
if (!use_dynamic_split) { tile_count_semaphore.zero_(); } // If varlen we'll manually do the zero-ing
params.tile_count_semaphore = tile_count_semaphore.data_ptr<int>();
} else {
params.tile_count_semaphore = nullptr;
}
params.num_splits_dynamic_ptr = use_dynamic_split ? tile_count_semaphore.data_ptr<int>() + 1 : nullptr;
}
if (params.num_splits_dynamic_ptr) {
auto kBlockMN_kernel_args_sm90 = tile_size_fwd_sm90(params.d_rounded, params.dv_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, false /*v_colmajor*/, params.page_table && !params.pagedkv_tma, params.softcap > 0.f);
auto kBlockMN_kernel_args_sm8x = tile_size_fwd_sm8x(params.arch == 86 || params.arch == 89, params.d_rounded, params.dv_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, params.page_table, is_varlen && params.num_splits > 1, params.softcap > 0.f, params.knew_ptr);
int const kBlockM = params.arch >= 90 ? std::get<0>(kBlockMN_kernel_args_sm90) : std::get<0>(kBlockMN_kernel_args_sm8x);
int const kBlockN = params.arch >= 90 ? std::get<1>(kBlockMN_kernel_args_sm90) : std::get<1>(kBlockMN_kernel_args_sm8x);
auto stream = at::cuda::getCurrentCUDAStream().stream();
prepare_varlen_num_blocks(params, stream, params.pack_gqa, kBlockM, kBlockN, false /*enable_pdl*/);
CHECK_CUDA_KERNEL_LAUNCH();
}
return tile_count_semaphore;
}
// b: batch_size
// b_k: batch_size_k
// s_q: seqlen_q
// s_k: seqlen_k
// s_k_new: seqlen_k_new
// h: num_heads
// h_k: num_heads_k
// d: head_size
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor>
mha_fwd(at::Tensor q, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
at::Tensor k, // (b_k, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k or (num_pages, page_size, h_k, d) if there is page_table.
at::Tensor v, // (b_k, s_k, h_k, dv) or (total_k, h_k, dv) if there is cu_seqlens_k or (num_pages, page_size, h_k, dv) if there is page_table.
std::optional<at::Tensor> k_new_, // (b, s_k_new, h_k, d) or (total_k_new, h_k, d) if there is cu_seqlens_k_new
std::optional<at::Tensor> v_new_, // (b, s_k_new, h_k, dv) or (total_k_new, h_k, dv) if there is cu_seqlens_k_new
std::optional<at::Tensor> q_v_, // (b, s_q, h, dv) or (total_q_new, h, dv) if there is cu_seqlens_q
std::optional<at::Tensor> out_, // (b, s_q, h, dv) or (total_q, h, dv) if there is cu_seqlens_q
std::optional<at::Tensor> cu_seqlens_q_, // b+1
std::optional<at::Tensor> cu_seqlens_k_, // b+1
std::optional<at::Tensor> cu_seqlens_k_new_, // b+1
std::optional<at::Tensor> seqused_q_, // b. If given, only this many elements of each batch element's queries and outputs are used.
std::optional<at::Tensor> seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
std::optional<int64_t> max_seqlen_q_,
// TODO: check if we need max_seqlen_k
std::optional<int64_t> max_seqlen_k_,
std::optional<at::Tensor> page_table_, // (b_k, max_num_pages_per_seq)
std::optional<at::Tensor> kv_batch_idx_, // b. indices to index into the KV cache
std::optional<at::Tensor> leftpad_k_, // b
std::optional<at::Tensor> rotary_cos_, // seqlen_ro x (rotary_dim / 2)
std::optional<at::Tensor> rotary_sin_, // seqlen_ro x (rotary_dim / 2)
std::optional<at::Tensor> seqlens_rotary_, // b
std::optional<at::Tensor> q_descale_, // (b, h_k), not (b, h)
std::optional<at::Tensor> k_descale_, // (b, h_k)
std::optional<at::Tensor> v_descale_, // (b, h_k)
std::optional<double> softmax_scale_,
bool is_causal,
int64_t window_size_left,
int64_t window_size_right,
int64_t attention_chunk,
double softcap,
bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
std::optional<at::Tensor> scheduler_metadata_, // (b + 1)
int64_t num_splits,
std::optional<bool> pack_gqa_,
int64_t sm_margin
) {
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = dprops->major >= 8;
TORCH_CHECK(is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
auto q_type = q.scalar_type();
TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16 || q_type == at::ScalarType::Float8_e4m3fn,
"FlashAttention only supports fp16, bf16, and fp8_e4m3 data type");
if (dprops->major < 9) {
TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16,
"FlashAttention on Ampere/Ada cards only supports fp16 and bf16 data type");
}
TORCH_CHECK(k.scalar_type() == q_type, "query and key must have the same dtype");
TORCH_CHECK(v.scalar_type() == q_type, "query and value must have the same dtype");
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
at::Tensor page_table;
const bool paged_KV = page_table_.has_value();
if (paged_KV) {
page_table = page_table_.value();
CHECK_DEVICE(page_table);
TORCH_CHECK(page_table.dtype() == torch::kInt32, "page_table must have dtype torch.int32");
TORCH_CHECK(page_table.stride(-1) == 1, "page_table must have contiguous last dimension");
}
at::Tensor cu_seqlens_q;
bool const is_varlen_q = cu_seqlens_q_.has_value();
if (is_varlen_q) {
cu_seqlens_q = cu_seqlens_q_.value();
CHECK_DEVICE(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_q);
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype torch.int32");
TORCH_CHECK(max_seqlen_q_.has_value(), "max_seqlen_q must be provided if cu_seqlens_q is provided");
}
at::Tensor cu_seqlens_k;
bool const is_varlen_k = cu_seqlens_k_.has_value();
if (is_varlen_k) {
cu_seqlens_k = cu_seqlens_k_.value();
CHECK_DEVICE(cu_seqlens_k); CHECK_CONTIGUOUS(cu_seqlens_k);
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype torch.int32");
TORCH_CHECK(max_seqlen_k_.has_value(), "max_seqlen_k must be provided if cu_seqlens_k is provided");
TORCH_CHECK(!paged_KV, "If cu_seqlens_k is passed in, then page table is not supported");
TORCH_CHECK(!kv_batch_idx_.has_value(), "If cu_seqlens_k is passed in, then page table is not supported");
}
auto const sizes = q.sizes();
const int batch_size = !is_varlen_q ? sizes[0] : cu_seqlens_q.size(0) - 1;
int seqlen_q = !is_varlen_q ? sizes[1] : max_seqlen_q_.value();
int total_q = !is_varlen_q ? batch_size * sizes[1] : sizes[0];
int num_heads = q.size(-2);
int const head_size = q.size(-1);
int const head_size_v = v.size(-1);
int const max_num_pages_per_seq = !paged_KV ? 0 : page_table.size(1);
int const num_pages = !paged_KV ? 0 : k.size(0);
int const page_size = !paged_KV ? 1 : k.size(1);
int const seqlen_k = !is_varlen_k ? (!paged_KV ? k.size(1) : max_num_pages_per_seq * page_size) : max_seqlen_k_.value();
int const total_k = !is_varlen_k ? batch_size * k.size(1) : k.size(0);
int const num_heads_k = k.size(-2);
int const batch_size_k = !paged_KV ? (!is_varlen_k ? k.size(0) : cu_seqlens_k.size(0) - 1) : page_table.size(0);
double softmax_scale = 1.0 / sqrt(double(head_size));
if (softmax_scale_.has_value()) {
softmax_scale = softmax_scale_.value();
}
if (!kv_batch_idx_.has_value()) {
TORCH_CHECK(batch_size == batch_size_k, "batch_size must be equal to batch_size_k");
}
int const max_headdim = get_max_headdim();
TORCH_CHECK(head_size <= max_headdim, "FlashAttention forward only supports head dimension at most " + std::to_string(max_headdim));
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
if (head_size_v != head_size) {
TORCH_CHECK((head_size > 128 && head_size <= 192 && head_size_v > 96 && head_size_v <= 128) ||
(head_size <= 64 && head_size_v <= 512),
"If V headdim is different from Q/K dim, we only support Q/K headdim in (128, 192] and V headdim in (96, 128], "
"or (Q/K <= 64 and V <= 512).");
TORCH_CHECK(dprops->major == 9, "Only Hopper supports different V headdim");
if (head_size_v > 256) {
TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16,
"HeaddimV > 256 requires fp16 and bf16 data type");
}
}
// This needs to go before kBlockM & kBlockN since we rely on the correct window_size and is_causal to set kBlockM
// TODO: check this
if (window_size_left >= seqlen_k - 1) { window_size_left = -1; }
if (window_size_right >= seqlen_q - 1) { window_size_right = -1; }
// causal=true is the same as causal=false in this case
if (seqlen_q == 1 && window_size_left == -1 && window_size_right == -1 && attention_chunk == 0) {
// Special case of hdim 128 where we want causal to have kBlockN=128, better for pagedKV and TMA
if ((head_size <= 64 || head_size > 128) || !paged_KV) {
is_causal = false;
}
}
if (is_causal) { window_size_right = 0; }
if (!is_varlen_q) {
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
} else {
CHECK_SHAPE(q, total_q, num_heads, head_size);
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
}
if (!paged_KV) {
if (!is_varlen_k) {
CHECK_SHAPE(k, batch_size_k, seqlen_k, num_heads_k, head_size);
CHECK_SHAPE(v, batch_size_k, seqlen_k, num_heads_k, head_size_v);
} else {
CHECK_SHAPE(k, total_k, num_heads_k, head_size);
CHECK_SHAPE(v, total_k, num_heads_k, head_size_v);
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
}
} else {
CHECK_SHAPE(k, num_pages, page_size, num_heads_k, head_size);
CHECK_SHAPE(v, num_pages, page_size, num_heads_k, head_size_v);
CHECK_SHAPE(page_table, batch_size_k, max_num_pages_per_seq);
}
if (seqused_q_.has_value()){
auto seqused_q = seqused_q_.value();
TORCH_CHECK(seqused_q.dtype() == torch::kInt32, "seqused_q must have dtype int32");
CHECK_DEVICE(seqused_q); CHECK_CONTIGUOUS(seqused_q);
CHECK_SHAPE(seqused_q, batch_size);
}
if (seqused_k_.has_value()) {
auto seqused_k = seqused_k_.value();
TORCH_CHECK(seqused_k.dtype() == torch::kInt32, "seqused_k must have dtype int32");
CHECK_DEVICE(seqused_k); CHECK_CONTIGUOUS(seqused_k);
CHECK_SHAPE(seqused_k, batch_size);
}
if (leftpad_k_.has_value()) {
auto leftpad_k = leftpad_k_.value();
TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32");
CHECK_DEVICE(leftpad_k); CHECK_CONTIGUOUS(leftpad_k);
CHECK_SHAPE(leftpad_k, batch_size);
}
// This is what we will template on
bool const is_varlen = is_varlen_q || is_varlen_k || seqused_q_.has_value() || seqused_k_.has_value() || leftpad_k_.has_value();
#ifdef FLASHATTENTION_DISABLE_VARLEN
TORCH_CHECK(!is_varlen, "This flash attention build does not support varlen.");
#endif
int const alignment = q_type == torch::kFloat8_e4m3fn ? 16 : 8;
TORCH_CHECK(head_size % alignment == 0, "head_size should be a multiple of " + std::to_string(alignment));
TORCH_CHECK(head_size_v % alignment == 0, "head_size_v should be a multiple of " + std::to_string(alignment));
auto opts = q.options();
auto out_type = q_type == at::ScalarType::Float8_e4m3fn ? at::ScalarType::BFloat16 : q_type;
at::Tensor out;
if (out_.has_value()) {
out = out_.value();
TORCH_CHECK(out.scalar_type() == out_type, "For FP16/BF16 input, output must have the same dtype as inputs. For FP8 input, output must have dtype BF16");
CHECK_DEVICE(out);
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
if (!is_varlen_q) {
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_v);
} else {
CHECK_SHAPE(out, total_q, num_heads, head_size_v);
}
} else {
out = !is_varlen_q
? torch::empty({batch_size, seqlen_q, num_heads, head_size_v}, opts.dtype(out_type))
: torch::empty({total_q, num_heads, head_size_v}, opts.dtype(out_type));
}
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
int const head_size_rounded = round_up_headdim(head_size);
int const head_size_v_rounded = head_size_v == head_size ? head_size_rounded : round_up_headdimv(head_size_v);
int const seqlen_q_rounded = round_multiple(seqlen_q, 128);
int const seqlen_k_rounded = round_multiple(seqlen_k, 128);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
at::Tensor softmax_lse;
if (!is_varlen_q) {
softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
} else {
softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
}
Flash_fwd_params params;
set_params_fprop(params,
batch_size,
seqlen_q, seqlen_k,
seqlen_q_rounded, seqlen_k_rounded,
num_heads, num_heads_k,
head_size, head_size_rounded,
q, k, v, out,
!is_varlen_q ? nullptr : cu_seqlens_q.data_ptr(),
!is_varlen_k ? nullptr : cu_seqlens_k.data_ptr(),
seqused_q_.has_value() ? seqused_q_.value().data_ptr() : nullptr,
seqused_k_.has_value() ? seqused_k_.value().data_ptr() : nullptr,
softmax_lse.data_ptr(),
/*p_dropout=*/0.f,
softmax_scale,
window_size_left,
window_size_right,
attention_chunk,
softcap,
sm_margin);
params.total_q = total_q;
params.total_k = total_k;
params.b_k = batch_size_k;
params.dv = head_size_v;
params.dv_rounded = head_size_v_rounded;
if (leftpad_k_.has_value()) { // This needs to be set before get_pagedkv_tma
params.leftpad_k = static_cast<int *>(leftpad_k_.value().data_ptr());
}
if (paged_KV) {
params.page_table = page_table.data_ptr<int>();
params.page_table_batch_stride = page_table.stride(0);
}
params.page_size = page_size;
params.num_pages = num_pages;
if (k_new_.has_value()) { // This needs to be set before get_pagedkv_tma
at::Tensor k_new, v_new;
TORCH_CHECK(v_new_.has_value(), "If k_new is supplied, v_new must also be passed in");
TORCH_CHECK(seqused_k_.has_value(), "If k_new is supplied, seqlens_k must also be passed in");
TORCH_CHECK(seqlen_q <= seqlen_k, "If k_new is supplied, it must have seqlen <= the seqlen of the KV cache");
at::Tensor cu_seqlens_k_new;
bool const is_varlen_k_new = cu_seqlens_k_new_.has_value();
if (is_varlen_k_new) {
cu_seqlens_k_new = cu_seqlens_k_new_.value();
CHECK_DEVICE(cu_seqlens_k_new); CHECK_CONTIGUOUS(cu_seqlens_k_new);
TORCH_CHECK(cu_seqlens_k_new.dtype() == torch::kInt32, "cu_seqlens_k_new must have dtype torch.int32");
}
k_new = k_new_.value();
v_new = v_new_.value();
TORCH_CHECK(k_new.dtype() == q_type, "k_new must have the same dtype as query");
TORCH_CHECK(v_new.dtype() == q_type, "v_new must have the same dtype as query");
CHECK_DEVICE(k_new); CHECK_DEVICE(v_new);
TORCH_CHECK(k_new.stride(-1) == 1, "k_new tensor must have contiguous last dimension");
TORCH_CHECK(v_new.stride(-1) == 1, "v_new tensor must have contiguous last dimension");
// We don't need max_seqlen_k_new, so seqlen_k_new can be whatever when is_varlen_k_new
int seqlen_k_new = !is_varlen_k_new ? k_new.size(1) : 0;
int total_k_new = !is_varlen_k_new ? batch_size * k_new.size(1): k_new.size(0);
if (!is_varlen_k_new) {
CHECK_SHAPE(k_new, batch_size, seqlen_k_new, num_heads_k, head_size);
CHECK_SHAPE(v_new, batch_size, seqlen_k_new, num_heads_k, head_size_v);
} else {
CHECK_SHAPE(k_new, total_k_new, num_heads_k, head_size);
CHECK_SHAPE(v_new, total_k_new, num_heads_k, head_size_v);
CHECK_SHAPE(cu_seqlens_k_new, batch_size + 1);
}
params.seqlen_knew = seqlen_k_new;
params.total_knew = total_k_new;
params.knew_ptr = k_new.data_ptr();
params.vnew_ptr = v_new.data_ptr();
// All stride are in elements, not bytes.
params.knew_row_stride = k_new.stride(-3);
params.vnew_row_stride = v_new.stride(-3);
params.knew_head_stride = k_new.stride(-2);
params.vnew_head_stride = v_new.stride(-2);
if (!is_varlen_k_new) {
params.knew_batch_stride = k_new.stride(0);
params.vnew_batch_stride = v_new.stride(0);
}
if (is_varlen_k_new) {
params.cu_seqlens_knew = static_cast<int*>(cu_seqlens_k_new.data_ptr());
}
}
// 992 = 32 * 31 is the max supported batch in prepare_varlen_num_blocks kernel
bool const use_dynamic_split = is_varlen && params.b <= 992;
// Temporarily set num_splits_dynamic_ptr to 1 since get_num_splits checks it
params.num_splits_dynamic_ptr = !use_dynamic_split ? nullptr : reinterpret_cast<int*>(1);
params.pagedkv_tma = get_pagedkv_tma(params);
params.num_splits = num_splits <= 0 ? get_num_splits(params) : num_splits;
// Always enable PackGQA for Split, and get_pack_gqa requires params.num_splits to decide
params.pack_gqa = pack_gqa_.has_value() ? pack_gqa_.value() : get_pack_gqa(params);
// This needs to be set after get_num_splits
at::Tensor tile_count_semaphore; // Contains the semaphore and optionally num_splits_dynamic
// We don't use the persistent scheduler if Split and not Varlen
bool const scheduler_needs_semaphore = params.arch >= 90
? (((params.is_causal || params.is_local) && (params.num_splits == 1)) || is_varlen)
: ((params.is_causal && !is_varlen) || (is_varlen && params.num_splits > 1));
if (scheduler_needs_semaphore || use_dynamic_split) {
int metadata_size = int(scheduler_needs_semaphore) + int(use_dynamic_split) * params.b;
params.skip_scheduler_metadata_computation = scheduler_metadata_.has_value();
if (scheduler_metadata_.has_value()) {
at::Tensor scheduler_metadata = scheduler_metadata_.value();
CHECK_DEVICE(scheduler_metadata);
CHECK_SHAPE(scheduler_metadata, metadata_size);
CHECK_CONTIGUOUS(scheduler_metadata);
TORCH_CHECK(scheduler_metadata.dtype() == torch::kInt32, "scheduler_metadata must have dtype int32");
tile_count_semaphore = scheduler_metadata;
} else {
tile_count_semaphore = torch::empty({metadata_size}, opts.dtype(torch::kInt32));
}
if (scheduler_needs_semaphore && !use_dynamic_split) {
tile_count_semaphore.zero_(); // If varlen we'll manually do the zero-ing
}
params.tile_count_semaphore = scheduler_needs_semaphore ? tile_count_semaphore.data_ptr<int>() : nullptr;
params.num_splits_dynamic_ptr = use_dynamic_split ? tile_count_semaphore.data_ptr<int>() + 1 : nullptr;
}
if (q_v_.has_value()) {
TORCH_CHECK(head_size <= 64, "q_v is only supported for head_size <= 64");
TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16,
"q_v is only supported for fp16 and bf16 data type");
TORCH_CHECK(params.arch == 90, "q_v is only supported for Hopper GPUs");
at::Tensor q_v = q_v_.value();
TORCH_CHECK(q_v.dtype() == q_type, "q_v must have the same dtype as query");
CHECK_DEVICE(q_v);
TORCH_CHECK(q_v.stride(-1) == 1, "q_v tensor must have contiguous last dimension");
if (!is_varlen_q) {
CHECK_SHAPE(q_v, batch_size, seqlen_q, num_heads, head_size_v);
} else {
CHECK_SHAPE(q_v, total_q, num_heads, head_size_v);
}
params.qv_ptr = q_v.data_ptr();
// All stride are in elements, not bytes.
params.qv_row_stride = q_v.stride(-3);
params.qv_head_stride = q_v.stride(-2);
if (!is_varlen_q) {
params.qv_batch_stride = q_v.stride(0);
}
}
if (rotary_cos_.has_value()) {
TORCH_CHECK(k_new_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
auto rotary_cos = rotary_cos_.value();
CHECK_DEVICE(rotary_cos); CHECK_CONTIGUOUS(rotary_cos);
params.rotary_dim = rotary_cos.size(1) * 2;
TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
const int seqlen_ro = rotary_cos.size(0);
if (paged_KV) {
TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
}
CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
TORCH_CHECK(rotary_cos.scalar_type() == q_type, "rotary_cos must have the same dtype as query");
TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
auto rotary_sin = rotary_sin_.value();
CHECK_DEVICE(rotary_sin); CHECK_CONTIGUOUS(rotary_sin);
CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
TORCH_CHECK(rotary_sin.scalar_type() == q_type, "rotary_cos must have the same dtype as query");
params.rotary_cos_ptr = rotary_cos.data_ptr();
params.rotary_sin_ptr = rotary_sin.data_ptr();
params.is_rotary_interleaved = is_rotary_interleaved;
if (seqlens_rotary_.has_value()) {
at::Tensor seqlens_rotary = seqlens_rotary_.value();
CHECK_DEVICE(seqlens_rotary); CHECK_CONTIGUOUS(seqlens_rotary);
TORCH_CHECK(seqlens_rotary.dtype() == torch::kInt32, "seqlens_rotary must have dtype torch.int32");
CHECK_SHAPE(seqlens_rotary, batch_size);
params.seqlens_rotary = seqlens_rotary.data_ptr<int>();
}
} else {
params.rotary_dim = 0;
}
if (kv_batch_idx_.has_value()) {
auto kv_batch_idx = kv_batch_idx_.value();
CHECK_DEVICE(kv_batch_idx); CHECK_CONTIGUOUS(kv_batch_idx);
TORCH_CHECK(kv_batch_idx.scalar_type() == torch::kInt32, "kv_batch_idx must have dtype int32");
params.kv_batch_idx = reinterpret_cast<int *>(kv_batch_idx.data_ptr());
}
at::Tensor out_accum, softmax_lse_accum;
auto outaccum_type = at::ScalarType::Float;
if (params.num_splits > 1) {
TORCH_CHECK(params.num_splits <= 256, "num_splits > 256 not supported");
if (!is_varlen_q) {
out_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q, head_size_v}, opts.dtype(outaccum_type));
softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
params.oaccum_batch_stride = out_accum.stride(1);
params.lseaccum_batch_stride = softmax_lse_accum.stride(1);
} else {
out_accum = torch::empty({params.num_splits, num_heads, total_q, head_size_v}, opts.dtype(outaccum_type));
softmax_lse_accum = torch::empty({params.num_splits, num_heads, total_q}, opts.dtype(at::kFloat));
}
params.is_fp32 = false;
params.oaccum_ptr = out_accum.data_ptr();
params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
params.oaccum_split_stride = out_accum.stride(0);
params.oaccum_row_stride = out_accum.stride(-2);
params.oaccum_head_stride = out_accum.stride(-3);
params.lseaccum_split_stride = softmax_lse_accum.stride(0);
params.lseaccum_head_stride = softmax_lse_accum.stride(-2);
}
if (q_type == at::ScalarType::Float8_e4m3fn) {
if (q_descale_.has_value()) {
auto q_descale = q_descale_.value();
CHECK_DEVICE(q_descale);
CHECK_SHAPE(q_descale, batch_size, num_heads_k);
params.q_descale_ptr = q_descale.data_ptr<float>();
params.q_descale_batch_stride = q_descale.stride(0);
params.q_descale_head_stride = q_descale.stride(1);
} else {
params.q_descale_ptr = nullptr;
}
if (k_descale_.has_value()) {
auto k_descale = k_descale_.value();
CHECK_DEVICE(k_descale);
CHECK_SHAPE(k_descale, batch_size, num_heads_k);
params.k_descale_ptr = k_descale.data_ptr<float>();
params.k_descale_batch_stride = k_descale.stride(0);
params.k_descale_head_stride = k_descale.stride(1);
} else {
params.k_descale_ptr = nullptr;
}
if (v_descale_.has_value()) {
auto v_descale = v_descale_.value();
CHECK_DEVICE(v_descale);
CHECK_SHAPE(v_descale, batch_size, num_heads_k);
params.v_descale_ptr = v_descale.data_ptr<float>();
params.v_descale_batch_stride = v_descale.stride(0);
params.v_descale_head_stride = v_descale.stride(1);
} else {
params.v_descale_ptr = nullptr;
}
}
#ifdef FLASHATTENTION_DISABLE_LOCAL
TORCH_CHECK(!params.is_local, "This flash attention build does not support local attention.");
#endif
#ifdef FLASHATTENTION_DISABLE_SOFTCAP
TORCH_CHECK(params.softcap == 0.0, "This flash attention build does not support tanh softcapping.");
#endif
#ifdef FLASHATTENTION_DISABLE_SPLIT
TORCH_CHECK(params.num_splits == 1, "This flash attention build does not support splits.");
#endif
#ifdef FLASHATTENTION_DISABLE_PACKGQA
TORCH_CHECK(!params.pack_gqa || params.arch < 90 || (params.page_table && !params.pagedkv_tma) || params.num_splits > 1, "This flash attention build does not support pack_gqa.");
#endif
#ifdef FLASHATTENTION_DISABLE_PAGEDKV
TORCH_CHECK(!(params.page_table && !params.pagedkv_tma), "This flash attention build does not support paged KV.");
#endif
#ifdef FLASHATTENTION_DISABLE_APPENDKV
TORCH_CHECK(!k_new_.has_value(), "This flash attention build does not support appending KV.");
#endif
if (total_q > 0 && (total_k + params.total_knew) > 0 && num_heads_k > 0) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
run_mha_fwd(params, stream);
if (params.num_splits > 1) {
if (out_type == at::ScalarType::BFloat16) {
// Since we want output in BF16. Otherwise fwd_combine will output to FP16
params.is_bf16 = true;
}
// Unless there's seqused_q, for the purpose of attn_combine, we can just treat it as batch=1
// and seqlen = total_q, and don't need to dispatch to Varlen there.
// However, with dynamic split, each row needs to know which batch it belongs to
// to read the number of splits, so we just use the varlen version of combine kernel.
// if (is_varlen_q && !seqused_q_.has_value()) {
// if (is_varlen_q) {
// params.b = 1;
// params.seqlen_q = total_q;
// }
// This will zero out the semaphore if needed
run_mha_fwd_combine(params, stream, true /*enable_pdl*/);
} else if (scheduler_needs_semaphore && params.skip_scheduler_metadata_computation) {
// need to zero out the semaphore in this case
tile_count_semaphore.index({torch::indexing::Slice(0, 1)}).zero_();
}
} else if (total_q > 0 && num_heads_k > 0) {
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
out.zero_();
softmax_lse.fill_(std::numeric_limits<float>::infinity());
}
// return {out, softmax_lse};
return {out, softmax_lse, out_accum, softmax_lse_accum};
}
#ifdef FLASHATTENTION_DISABLE_BACKWARD
void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
TORCH_CHECK(false, "Flash-Attention was built with backward disabled");
}
#else
template <int Arch, bool Has_softcap>
void run_mha_bwd_constexpr(Flash_bwd_params ¶ms, cudaStream_t stream) {
if (!params.is_bf16) {
#ifndef FLASHATTENTION_DISABLE_FP16
#ifndef FLASHATTENTION_DISABLE_HDIM64
if (params.d_rounded == 64) { return run_mha_bwd_<Arch, cutlass::half_t, 64, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM96
if (params.d_rounded == 96) { return run_mha_bwd_<Arch, cutlass::half_t, 96, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM128
if (params.d_rounded == 128) { return run_mha_bwd_<Arch, cutlass::half_t, 128, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM192
if (params.d_rounded == 192) { return run_mha_bwd_<Arch, cutlass::half_t, 192, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM256
if (params.d_rounded == 256) { return run_mha_bwd_<Arch, cutlass::half_t, 256, Has_softcap>(params, stream); }
#endif
#else
TORCH_CHECK(false, "This flash attention build does not support FP16.");
#endif
} else {
#ifndef FLASHATTENTION_DISABLE_HDIM64
if (params.d_rounded == 64) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 64, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM96
if (params.d_rounded == 96) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 96, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM128
if (params.d_rounded == 128) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 128, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM192
if (params.d_rounded == 192) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 192, Has_softcap>(params, stream); }
#endif
#ifndef FLASHATTENTION_DISABLE_HDIM256
if (params.d_rounded == 256) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 256, Has_softcap>(params, stream); }
#endif
}
}
void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
// FP16_SWITCH(!params.is_bf16, [&] {
// HEADDIM_SWITCH(params.d, [&] {
// run_mha_bwd_<elem_type, kHeadDim>(params, stream);
// });
// });
ARCH_SWITCH(params.arch, Arch, [&] {
SOFTCAP_SWITCH(params.softcap > 0.f, Has_softcap, [&] {
run_mha_bwd_constexpr<Arch, Has_softcap>(params, stream);
});
});
}
#endif
// b: batch_size
// s_q: seqlen_q
// s_k: seqlen_k
// h: num_heads
// h_k: num_heads_k
// d: head_size
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor> mha_bwd(
at::Tensor dout, // (b, s_q, h, dv) or (total_q, h, dv) if there is cu_seqlens_q
at::Tensor q, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
at::Tensor k, // (b, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k
at::Tensor v, // (b, s_k, h_k, dv) or (total_k, h_k, dv) if there is cu_seqlens_k
at::Tensor out, // (b, s_q, h, dv) or (total_q, h, dv) if there is cu_seqlens_q
at::Tensor softmax_lse, // (b, h, s_q) or (h, total_q) if there is cu_seqlens_q
std::optional<at::Tensor> dq_, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
std::optional<at::Tensor> dk_, // (b, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k
std::optional<at::Tensor> dv_, // (b, s_k, h_k, dv) or (total_k, h_k, dv) if there is cu_seqlens_k
std::optional<at::Tensor> cu_seqlens_q_, // b+1
std::optional<at::Tensor> cu_seqlens_k_, // b+1
std::optional<at::Tensor> seqused_q_, // b. If given, only this many elements of each batch element's queries and outputs are used.
std::optional<at::Tensor> seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
std::optional<int64_t> max_seqlen_q_,
std::optional<int64_t> max_seqlen_k_,
std::optional<double> softmax_scale_,
bool is_causal,
int64_t window_size_left,
int64_t window_size_right,
double softcap,
bool deterministic,
int64_t sm_margin
) {
#ifdef FLASHATTENTION_DISABLE_BACKWARD
TORCH_CHECK(false, "This flash attention build does not support backward.");
#endif
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = dprops->major >= 8;
TORCH_CHECK(is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
auto q_type = q.dtype();
TORCH_CHECK(q_type == torch::kFloat16 || q_type == torch::kBFloat16,
"FlashAttention only support fp16 and bf16 data type");
TORCH_CHECK(k.dtype() == q_type, "query and key must have the same dtype");
TORCH_CHECK(v.dtype() == q_type, "query and value must have the same dtype");
TORCH_CHECK(out.dtype() == q_type, "query and out must have the same dtype");
TORCH_CHECK(dout.dtype() == q_type, "query and dout must have the same dtype");
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
at::Tensor cu_seqlens_q;
bool const is_varlen_q = cu_seqlens_q_.has_value();
if (is_varlen_q) {
cu_seqlens_q = cu_seqlens_q_.value();
CHECK_DEVICE(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_q);
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype torch.int32");
TORCH_CHECK(max_seqlen_q_.has_value(), "max_seqlen_q must be provided if cu_seqlens_q is provided");
}
at::Tensor cu_seqlens_k;
bool const is_varlen_k = cu_seqlens_k_.has_value();
if (is_varlen_k) {
cu_seqlens_k = cu_seqlens_k_.value();
CHECK_DEVICE(cu_seqlens_k); CHECK_CONTIGUOUS(cu_seqlens_k);
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype torch.int32");
TORCH_CHECK(max_seqlen_k_.has_value(), "max_seqlen_k must be provided if cu_seqlens_k is provided");
}
// This is what we will template on
bool const is_varlen = is_varlen_q || is_varlen_k || seqused_q_.has_value() || seqused_k_.has_value();
#ifdef FLASHATTENTION_DISABLE_VARLEN
TORCH_CHECK(!is_varlen, "This flash attention build does not support varlen.");
#endif
auto const sizes = q.sizes();
int const batch_size = !is_varlen_q ? sizes[0] : cu_seqlens_q.size(0) - 1;
int const seqlen_q = !is_varlen_q ? sizes[1] : max_seqlen_q_.value();
int const total_q = !is_varlen_q ? batch_size * sizes[1] : sizes[0];
int const num_heads = q.size(-2);
int const head_size = q.size(-1);
int const head_size_v = v.size(-1);
int const seqlen_k = !is_varlen_k ? k.size(1) : max_seqlen_k_.value();
int const total_k = !is_varlen_k ? batch_size * k.size(1) : k.size(0);
int const num_heads_k = k.size(-2);
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
TORCH_CHECK(head_size_v % 8 == 0, "head_size_v should be a multiple of 8");
int const max_headdim = get_max_headdim();
TORCH_CHECK(std::max(head_size, head_size_v) <= max_headdim, "FlashAttention forward only supports head dimension at most " + std::to_string(max_headdim));
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
double softmax_scale = 1.0 / sqrt(double(head_size));
if (softmax_scale_.has_value()) {
softmax_scale = softmax_scale_.value();
}
// This needs to go before kBlockM & kBlockN since we rely on the correct window_size and is_causal to set kBlockM
if (window_size_left >= seqlen_k - 1) { window_size_left = -1; }
if (window_size_right >= seqlen_q - 1) { window_size_right = -1; }
if (is_causal) { window_size_right = 0; }
// There's a case where is_causal=false, window_size=(-1, 0). Then set_params_bprop will set params.is_causal=true.
// If we don't have is_causal here matching params.is_causal, we might get the wrong kBlockM (and cause IMA).
is_causal = window_size_left < 0 && window_size_right == 0;
int const arch = at::cuda::getCurrentDeviceProperties()->major * 10 + at::cuda::getCurrentDeviceProperties()->minor;
int const head_size_rounded = round_up_headdim(std::max(head_size, head_size_v));
int const head_size_v_rounded = head_size_rounded;
// Very important that these match the kernel configs
bool const is_local = (window_size_left >= 0 || window_size_right >= 0) && !is_causal;
int const kBlockM_sm90 = head_size_rounded <= 64 ? (is_causal && softcap > 0.0 ? 96 : 128)
: (head_size_rounded <= 96 ? 64
: (head_size_rounded <= 128 ? (is_causal || is_local || softcap > 0.0 ? 64 : 80)
: 64));
int const kBlockM_sm80 = head_size_rounded <= 64 ? 128 : 64;
int const kBlockM_sm86 = head_size_rounded <= 192 ? 64 : 32;
int const kBlockM = arch >= 90 ? kBlockM_sm90 : (arch == 86 || arch == 89 ? kBlockM_sm86 : kBlockM_sm80);
int const kBlockN_sm90 = head_size_rounded <= 128
? 128
: (head_size_rounded <= 192 ? 96 : 80);
int const kBlockN_sm80 = head_size_rounded <= 128
? 128
: (head_size_rounded <= 192 ? 80 : 64);
int const kBlockN_sm86 = head_size_rounded <= 64 ? 128
: (head_size_rounded <= 96 ? 128
: (head_size_rounded <= 128 ? 96
: (head_size_rounded <= 192 ? 64 : 64)));
int const kBlockN = arch >= 90 ? kBlockN_sm90 : (arch == 86 || arch == 89 ? kBlockN_sm86 : kBlockN_sm80);
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
int const seqlen_q_rounded = round_multiple(seqlen_q, kBlockM);
int const seqlen_k_rounded = round_multiple(seqlen_k, kBlockN);
int const total_q_padded_rounded = round_multiple(total_q + batch_size * kBlockM, kBlockM);
int const total_k_padded_rounded = round_multiple(total_k + batch_size * kBlockN, kBlockN);
if (!is_varlen_q) {
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_v);
CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_v);
} else {
CHECK_SHAPE(q, total_q, num_heads, head_size);
CHECK_SHAPE(out, total_q, num_heads, head_size_v);
CHECK_SHAPE(dout, total_q, num_heads, head_size_v);
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
}
if (!is_varlen_k) {
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_v);
} else {
CHECK_SHAPE(k, total_k, num_heads_k, head_size);
CHECK_SHAPE(v, total_k, num_heads_k, head_size_v);
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
}
if (seqused_q_.has_value()){
auto seqused_q = seqused_q_.value();
TORCH_CHECK(seqused_q.dtype() == torch::kInt32, "seqused_q must have dtype int32");
CHECK_DEVICE(seqused_q); CHECK_CONTIGUOUS(seqused_q);
CHECK_SHAPE(seqused_q, batch_size);
}
if (seqused_k_.has_value()){
auto seqused_k = seqused_k_.value();
TORCH_CHECK(seqused_k.dtype() == torch::kInt32, "seqused_k must have dtype int32");
CHECK_DEVICE(seqused_k); CHECK_CONTIGUOUS(seqused_k);
CHECK_SHAPE(seqused_k, batch_size);
}
at::Tensor dq, dk, dv;
if (dq_.has_value()) {
dq = dq_.value();
TORCH_CHECK(dq.dtype() == q_type, "dq must have the same dtype as q");
CHECK_DEVICE(dq);
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
if (!is_varlen_q) {
CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
} else {
CHECK_SHAPE(dq, total_q, num_heads, head_size);
}
} else {
dq = torch::empty_like(q);
}
if (dk_.has_value()) {
dk = dk_.value();
TORCH_CHECK(dk.dtype() == q_type, "dk must have the same dtype as q");
CHECK_DEVICE(dk);
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
if (!is_varlen_k) {
CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
} else {
CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
}
} else {
dk = torch::empty_like(k);
}
if (dv_.has_value()) {
dv = dv_.value();
TORCH_CHECK(dv.dtype() == q_type, "dv must have the same dtype as q");
CHECK_DEVICE(dv);
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
if (!is_varlen_k) {
CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size_v);
} else {
CHECK_SHAPE(dv, total_k, num_heads_k, head_size_v);
}
} else {
dv = torch::empty_like(v);
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
// Need softmax_d to have total_q_padded_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
at::Tensor softmax_d, softmax_lse_log2;
if (!is_varlen) {
// Need softmax_d to have seqlen_q_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
softmax_lse_log2 = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
} else {
softmax_d = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
softmax_lse_log2 = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
}
at::Tensor dq_accum, dk_accum, dv_accum;
if (!is_varlen) {
dq_accum = torch::empty({batch_size, num_heads, seqlen_q_rounded * head_size_rounded}, opts.dtype(at::kFloat));
} else {
dq_accum = torch::empty({num_heads, total_q_padded_rounded * head_size_rounded}, opts.dtype(at::kFloat));
}
if (num_heads_k != num_heads) { // MQA / GQA
if (!is_varlen) {
dk_accum = torch::zeros({batch_size, num_heads_k, seqlen_k_rounded * head_size_rounded}, opts.dtype(at::kFloat));
dv_accum = torch::zeros({batch_size, num_heads_k, seqlen_k_rounded * head_size_v_rounded}, opts.dtype(at::kFloat));
} else {
dk_accum = torch::zeros({num_heads_k, total_k_padded_rounded, head_size_rounded}, opts.dtype(at::kFloat));
dv_accum = torch::zeros({num_heads_k, total_k_padded_rounded, head_size_v_rounded}, opts.dtype(at::kFloat));
}
}
Flash_bwd_params params;
set_params_dgrad(params,
batch_size,
seqlen_q, seqlen_k,
seqlen_q_rounded, seqlen_k_rounded,
num_heads, num_heads_k,
head_size, head_size_rounded,
q, k, v, out,
dout, dq, dk, dv,
!is_varlen_q ? nullptr : cu_seqlens_q.data_ptr(),
!is_varlen_k ? nullptr : cu_seqlens_k.data_ptr(),
seqused_q_.has_value() ? seqused_q_.value().data_ptr() : nullptr,
seqused_k_.has_value() ? seqused_k_.value().data_ptr() : nullptr,
dq_accum.data_ptr(),
num_heads_k != num_heads ? dk_accum.data_ptr() : nullptr,
num_heads_k != num_heads ? dv_accum.data_ptr() : nullptr,
softmax_lse.data_ptr(),
softmax_d.data_ptr(),
/*p_dropout=*/0.f,
softmax_scale,
window_size_left,
window_size_right,
0, // attention_chunk
softcap,
deterministic,
sm_margin);
params.total_q = total_q;
params.total_k = total_k;
params.softmax_lse_log2_ptr = softmax_lse_log2.data_ptr();
params.dv = head_size_v;
params.dv_rounded = head_size_v_rounded;
// auto tile_count_semaphore = (params.is_causal || params.is_local) ? torch::zeros({1}, opts.dtype(torch::kInt32)) : torch::empty({1}, opts.dtype(torch::kInt32));
// params.tile_count_semaphore = tile_count_semaphore.data_ptr<int>();
// Will be zero'ed out in the backward preprocess kernel
at::Tensor dq_semaphore = torch::empty({(seqlen_q + kBlockM - 1) / kBlockM, batch_size, num_heads}, opts.dtype(torch::kInt32));
params.dq_semaphore = dq_semaphore.data_ptr<int>();
if (num_heads_k != num_heads && params.deterministic) {
// TODO: do we need to zero them out?
at::Tensor dk_semaphore = torch::empty({(seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
at::Tensor dv_semaphore = torch::empty({(seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
params.dk_semaphore = dk_semaphore.data_ptr<int>();
params.dv_semaphore = dv_semaphore.data_ptr<int>();
}
#ifdef FLASHATTENTION_DISABLE_LOCAL
TORCH_CHECK(!params.is_local, "This flash attention build does not support local attention.");
#endif
#ifdef FLASHATTENTION_DISABLE_SOFTCAP
TORCH_CHECK(params.softcap == 0.0, "This flash attention build does not support tanh softcapping.");
#endif
if (total_q > 0 && total_k > 0 && num_heads_k > 0) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
run_mha_bwd(params, stream);
} else if (total_k > 0 && num_heads_k > 0) {
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
dk.zero_();
dv.zero_();
softmax_d.zero_();
} else if (total_q > 0 && num_heads_k > 0) {
dq.zero_();
softmax_d.zero_();
}
return { dq, dk, dv, softmax_d, softmax_lse_log2, dq_accum, dk_accum, dv_accum };
}
std::tuple<at::Tensor, at::Tensor>
mha_combine(at::Tensor out_partial, // num_splits x batch_size x seqlen x num_heads x head_size
at::Tensor lse_partial, // num_splits x batch_size x seqlen x num_heads
std::optional<at::Tensor> out_, // batch_size x seqlen x num_heads x head_size
std::optional<at::ScalarType> out_dtype_
) {
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm8x = dprops->major >= 8;
TORCH_CHECK(is_sm8x, "Attention combine function only supports Ampere GPUs or newer.");
auto out_partial_type = out_partial.scalar_type();
TORCH_CHECK(out_partial_type == at::ScalarType::Float, "Attention combine function only support fp32 data type");
TORCH_CHECK(lse_partial.scalar_type() == at::ScalarType::Float, "Attention combine function only support fp32 data type");
CHECK_DEVICE(out_partial); CHECK_DEVICE(lse_partial);
TORCH_CHECK(out_partial.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(lse_partial.stride(-2) == 1, "LSE tensor must be contiguous in the seqlen dimension");
const auto sizes = out_partial.sizes();
const int num_splits = sizes[0];
const int batch_size = sizes[1];
const int seqlen = sizes[2];
const int num_heads = sizes[3];
const int head_size_og = sizes[4];
TORCH_CHECK(num_splits <= 256, "FlashAttention combine only supports num_splits at most 256");
CHECK_SHAPE(out_partial, num_splits, batch_size, seqlen, num_heads, head_size_og);
CHECK_SHAPE(lse_partial, num_splits, batch_size, seqlen, num_heads);
int const alignment = 4;
at::Tensor out_partial_padded;
auto pad = [](at::Tensor x, int alignment) {
return x.size(-1) % alignment == 0 ? x : torch::nn::functional::pad(x, torch::nn::functional::PadFuncOptions({0, alignment - x.size(-1) % alignment}));
};
out_partial_padded = pad(out_partial, alignment);
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
const int head_size = round_multiple(head_size_og, alignment);
auto opts = out_partial.options();
at::ScalarType out_type = out_dtype_.value_or(out_partial.scalar_type());
TORCH_CHECK(out_type == at::ScalarType::Float || out_type == at::ScalarType::BFloat16 || out_type == at::ScalarType::Half, "Output type must be FP32, FP16 or BF16");
at::Tensor out;
if (out_.has_value()) {
out = out_.value();
TORCH_CHECK(out.scalar_type() == out_type);
CHECK_DEVICE(out);
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
CHECK_SHAPE(out, batch_size, seqlen, num_heads, head_size_og);
if (head_size_og % alignment != 0) {
out = torch::empty({batch_size, seqlen, num_heads, head_size}, opts.dtype(out_type));
}
} else {
out = torch::empty({batch_size, seqlen, num_heads, head_size}, opts.dtype(out_type));
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)out_partial.get_device()};
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen}, opts.dtype(at::kFloat)).transpose(1, 2);
Flash_fwd_params params {}; // Need to reset the params to set everything to zero
params.is_fp32 = out_type == at::ScalarType::Float;
params.is_bf16 = out_type == at::ScalarType::BFloat16;
params.oaccum_ptr = out_partial_padded.data_ptr();
params.softmax_lseaccum_ptr = lse_partial.data_ptr();
params.o_ptr = out.data_ptr();
params.softmax_lse_ptr = softmax_lse.data_ptr();
params.b = batch_size;
params.h = num_heads;
params.seqlen_q = seqlen;
params.dv = head_size;
params.num_splits = num_splits;
params.oaccum_split_stride = out_partial_padded.stride(0);
params.oaccum_row_stride = out_partial_padded.stride(2);
params.oaccum_head_stride = out_partial_padded.stride(3);
params.oaccum_batch_stride = out_partial_padded.stride(1);
params.lseaccum_split_stride = lse_partial.stride(0);
params.lseaccum_head_stride = lse_partial.stride(3);
params.lseaccum_batch_stride = lse_partial.stride(1);
params.o_row_stride = out.stride(1);
params.o_head_stride = out.stride(2);
params.o_batch_stride = out.stride(0);
params.arch = at::cuda::getCurrentDeviceProperties()->major * 10 + at::cuda::getCurrentDeviceProperties()->minor;
if (seqlen > 0 && batch_size > 0) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
run_mha_fwd_combine(params, stream, false /*enable_pdl*/);
}
at::Tensor out_padded = out;
if (head_size_og % alignment != 0) {
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
// if (out_.has_value()) { out_.value().copy_(out); }
}
return {out, softmax_lse};
}
#ifdef false
TORCH_LIBRARY(flash_attn_3, m) {
m.def("fwd("
"Tensor q,"
"Tensor k,"
"Tensor v,"
"Tensor(k_new!)? k_new = None,"
"Tensor(v_new!)? v_new = None,"
"Tensor? q_v = None,"
"Tensor(out!)? out = None,"
"Tensor? cu_seqlens_q = None,"
"Tensor? cu_seqlens_k = None,"
"Tensor? cu_seqlens_k_new = None,"
"Tensor? seqused_q = None,"
"Tensor? seqused_k = None,"
"int? max_seqlen_q = None,"
"int? max_seqlen_k = None,"
"Tensor? page_table = None,"
"Tensor? kv_batch_idx = None,"
"Tensor? leftpad_k = None,"
"Tensor? rotary_cos = None,"
"Tensor? rotary_sin = None,"
"Tensor? seqlens_rotary = None,"
"Tensor? q_descale = None,"
"Tensor? k_descale = None,"
"Tensor? v_descale = None,"
"float? softmax_scale = None,"
"bool is_causal = False,"
"int window_size_left = -1,"
"int window_size_right = -1,"
"int attention_chunk = 0,"
"float softcap = 0.0,"
"bool is_rotary_interleaved = False,"
"Tensor? scheduler_metadata = None,"
"int num_splits = 0,"
"bool? pack_gqa = None,"
"int sm_margin = 0) -> (Tensor(out!), Tensor, Tensor, Tensor)");
m.def("bwd("
"Tensor dout,"
"Tensor q,"
"Tensor k,"
"Tensor v,"
"Tensor out,"
"Tensor softmax_lse,"
"Tensor(dq!)? dq = None,"
"Tensor(dk!)? dk = None,"
"Tensor(dv!)? dv = None,"
"Tensor? cu_seqlens_q = None,"
"Tensor? cu_seqlens_k = None,"
"Tensor? seqused_q = None,"
"Tensor? seqused_k = None,"
"int? max_seqlen_q = None,"
"int? max_seqlen_k = None,"
"float? softmax_scale = None,"
"bool is_causal = False,"
"int window_size_left = -1,"
"int window_size_right = -1,"
"float softcap = 0.0,"
"bool deterministic = False,"
"int sm_margin = 0) -> (Tensor(dq!), Tensor(dk!), Tensor(dv!), Tensor, Tensor, Tensor, Tensor, Tensor)");
m.def("fwd_combine("
"Tensor out_partial,"
"Tensor lse_partial,"
"Tensor(out!)? out = None,"
"ScalarType? out_dtype = None) -> (Tensor(out!), Tensor)");
m.def("get_scheduler_metadata("
"int batch_size,"
"int max_seqlen_q,"
"int max_seqlen_k,"
"int num_heads,"
"int num_heads_k,"
"int headdim,"
"int headdim_v,"
"ScalarType qkv_dtype,"
"Tensor seqused_k,"
"Tensor? cu_seqlens_q = None,"
"Tensor? cu_seqlens_k = None,"
"Tensor? cu_seqlens_k_new = None,"
"Tensor? seqused_q = None,"
"Tensor? leftpad_k = None,"
"int? page_size = None,"
"int max_seqlen_k_new = 0,"
"bool is_causal = False,"
"int window_size_left = -1,"
"int window_size_right = -1,"
"int attention_chunk = 0,"
"bool has_softcap = False,"
"int num_splits = 0,"
"bool? pack_gqa = None,"
"int sm_margin = 0) -> Tensor");
}
TORCH_LIBRARY_IMPL(flash_attn_3, CUDA, m) {
m.impl("fwd", &mha_fwd);
m.impl("bwd", &mha_bwd);
m.impl("fwd_combine", &mha_combine);
m.impl("get_scheduler_metadata", &mha_fwd_get_scheduler_metadata);
}
#endif
|