File size: 65,592 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 |
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/barrier.h>
#include "cutlass/pipeline/pipeline.hpp"
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/builders/sm90_common.inl"
#include "named_barrier.hpp"
#include "seqlen.h"
#include "block.h"
#include "mask.h"
#include "softmax.h"
#include "utils.h"
#include "copy_sm90_bulk_reduce.hpp"
namespace flash {
using namespace cute;
template <int Stages, int Stages_dO, int Stages_dS, class ClusterShape_, class TileShape_MNK_, class Element_, class ElementAccum_, class ArchTag_,
bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool Deterministic,
bool SdP_swapAB_, bool dKV_swapAB_, bool dQ_swapAB_,
int NumMmaWarpGroups=2, int AtomLayoutMSdP=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=1,
bool Mma_dP_is_RS=false>
struct CollectiveMainloopBwdSm90 {
static constexpr int kStages = Stages;
static constexpr int kStages_dO = Stages_dO;
static constexpr int kStages_dS = Stages_dS;
static_assert(kStages >= kStages_dO);
static_assert(Stages_dS == 1 || Stages_dS == kStages);
static_assert(!Mma_dP_is_RS || SdP_swapAB_); // If Mma_dP_is_RS, we need SdP_SwapAB
using ClusterShape = ClusterShape_;
using TileShape_MNK = TileShape_MNK_;
using Element = Element_;
using ElementAccum = ElementAccum_;
using ArchTag = ArchTag_;
static constexpr bool Is_causal = Is_causal_;
static constexpr bool Is_local = Is_local_;
static constexpr bool Has_softcap = Has_softcap_;
static constexpr bool Varlen = Varlen_;
static constexpr bool SdP_swapAB = SdP_swapAB_;
static constexpr bool dKV_swapAB = dKV_swapAB_;
static constexpr bool dQ_swapAB = dQ_swapAB_;
static constexpr bool Q_dO_same_stages = kStages == kStages_dO;
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
using SeqlenInfo_t = flash::SeqlenInfoQK<Varlen, kBlockM>;
using BlockMN_t = flash::BlockMN<SeqlenInfo_t, kBlockM, kBlockN, Is_causal, Is_local>;
static_assert(ArchTag::kMinComputeCapability >= 90);
static_assert(get<0>(ClusterShape{}) == 1 && get<2>(ClusterShape{}) == 1);
static constexpr int NumMmaThreads = NumMmaWarpGroups * cutlass::NumThreadsPerWarpGroup;
static constexpr int NumProducerThreads = cutlass::NumThreadsPerWarp * 2;
static_assert(NumMmaWarpGroups % AtomLayoutMSdP == 0);
static_assert(NumMmaWarpGroups % AtomLayoutNdKV == 0);
static_assert(NumMmaWarpGroups % AtomLayoutMdQ == 0);
static constexpr bool Mma_dKV_is_RS = AtomLayoutMSdP == 1 && AtomLayoutNdKV == NumMmaWarpGroups && SdP_swapAB && !dKV_swapAB;
static constexpr bool Mma_dQ_is_RS = AtomLayoutMSdP == NumMmaWarpGroups && AtomLayoutMdQ == NumMmaWarpGroups && !SdP_swapAB && !dQ_swapAB; // If dQ_swapAB we can't use RS
static constexpr GMMA::Major PdS_Major = GMMA::Major::K;
// static constexpr GMMA::Major PdS_Major = GMMA::Major::MN;
static constexpr GMMA::Major PdSt_Major = PdS_Major == GMMA::Major::K ? GMMA::Major::MN : GMMA::Major::K;
using TileShapeAtomSdP = std::conditional_t<
!SdP_swapAB,
Shape<Int<kBlockM>, Int<kBlockN / (NumMmaWarpGroups / AtomLayoutMSdP)>, Int<kHeadDim>>,
Shape<Int<kBlockN>, Int<kBlockM / AtomLayoutMSdP>, Int<kHeadDim>>
>;
using AtomLayoutSdP = std::conditional_t<
!SdP_swapAB,
Layout<Shape<Int<AtomLayoutMSdP>, Int<NumMmaWarpGroups / AtomLayoutMSdP>, _1>>,
Layout<Shape<Int<NumMmaWarpGroups / AtomLayoutMSdP>, Int<AtomLayoutMSdP>, _1>>
>;
using TiledMmaSdP = decltype(cute::make_tiled_mma(
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomSdP>(),
AtomLayoutSdP{}));
using TiledMmadPRS = decltype(cute::make_tiled_mma(
cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomSdP>(),
AtomLayoutSdP{}));
using TileShapeAtomdKV = std::conditional_t<
!dKV_swapAB,
Shape<Int<kBlockN>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutNdKV)>, Int<kBlockM>>,
Shape<Int<kHeadDim>, Int<kBlockN / AtomLayoutNdKV>, Int<kBlockM>>
>;
using AtomLayoutdKV = std::conditional_t<
!dKV_swapAB,
Layout<Shape<Int<AtomLayoutNdKV>, Int<NumMmaWarpGroups / AtomLayoutNdKV>, _1>>,
Layout<Shape<Int<NumMmaWarpGroups / AtomLayoutNdKV>, Int<AtomLayoutNdKV>, _1>>
>;
using TiledMmadKV = decltype(cute::make_tiled_mma(
std::conditional_t<
Mma_dKV_is_RS,
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomdKV, GMMA::Major::K, GMMA::Major::MN>()),
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomdKV, !dKV_swapAB ? PdSt_Major : GMMA::Major::MN, !dKV_swapAB ? GMMA::Major::MN : PdSt_Major>())
>{},
AtomLayoutdKV{}));
using TileShapeAtomdQ = std::conditional_t<
!dQ_swapAB,
Shape<Int<kBlockM>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutMdQ)>, Int<kBlockN>>,
Shape<Int<kHeadDim>, Int<kBlockM / AtomLayoutMdQ>, Int<kBlockN>>
>;
using AtomLayoutdQ = std::conditional_t<
!dQ_swapAB,
Layout<Shape<Int<AtomLayoutMdQ>, Int<NumMmaWarpGroups / AtomLayoutMdQ>, _1>>,
Layout<Shape<Int<NumMmaWarpGroups / AtomLayoutMdQ>, Int<AtomLayoutMdQ>, _1>>
>;
using TiledMmadQ = decltype(cute::make_tiled_mma(
std::conditional_t<
Mma_dQ_is_RS,
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomdQ, GMMA::Major::K, GMMA::Major::MN>()),
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomdQ, !dQ_swapAB ? PdS_Major : GMMA::Major::MN, !dQ_swapAB ? GMMA::Major::MN : PdS_Major>())
>{},
AtomLayoutdQ{}));
// We need to accommodate both Q and Q^T (and dO and dO^T) in shared memory.
// Q & dO are used in the SdP Mma and Q^T and dO^T are used in the dKV Mma.
// Since this is GMMA::Major::K, the M dimension (kBlockM) doesn't matter for the layout, only the K dimension
// changes the layout.
using SmemLayoutAtomQdO = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
Int<kBlockM>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutNdKV)>>()); // for dKV_Mma
using SmemLayoutQ =
decltype(tile_to_shape(SmemLayoutAtomQdO{},
make_shape(shape<0>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutdO =
decltype(tile_to_shape(SmemLayoutAtomQdO{},
make_shape(shape<0>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages_dO>{})));
using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
Int<kBlockN>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutMdQ)>>());
using SmemLayoutK = decltype(tile_to_shape(SmemLayoutAtomK{}, select<1, 2>(TileShape_MNK{})));
using SmemLayoutAtomV = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutV = decltype(tile_to_shape(SmemLayoutAtomV{}, select<1, 2>(TileShape_MNK{})));
using SmemLayoutAtomPdS = decltype(cutlass::gemm::collective::detail::ss_smem_selector<PdS_Major, Element,
Int<kBlockM / AtomLayoutMSdP>,
Int<kBlockN / (NumMmaWarpGroups / AtomLayoutMSdP)>>());
using SmemLayoutPdS = decltype(tile_to_shape(
SmemLayoutAtomPdS{},
make_shape(Int<kBlockM>{}, Int<kBlockN>{}, Int<kStages_dS>{}),
std::conditional_t<PdS_Major == GMMA::Major::K, cute::Step<_1, _2, _3>, cute::Step<_2, _1, _3>>{}));
// Need stride to be multiple of 32, otherwise we get error (misaligned address) when doing TMA if e.g. kBlockM=80
// We set stride to be multiple of 64 so that if ShuffleLSE, even if threads read from sLSE but out of bounds,
// it's still a valid smem address.
using SmemLayoutLSE = cute::Layout<cute::Shape<Int<kBlockM>, Int<kStages>>, cute::Stride<_1, Int<cute::round_up(kBlockM, 64)>>>;
using SmemLayoutLSEMma = std::conditional_t<
SdP_swapAB,
cute::Layout<cute::Shape<Int<kBlockN>, Int<kBlockM>, Int<kStages>>, cute::Stride<_0, _1, Int<cute::round_up(kBlockM, 64)>>>,
cute::Layout<cute::Shape<Int<kBlockM>, Int<kBlockN>, Int<kStages>>, cute::Stride<_1, _0, Int<cute::round_up(kBlockM, 64)>>>
>;
// Note this is the transpose in terms of the view, not in terms of memory.
using SmemLayoutQt =
decltype(cute::composition(SmemLayoutQ{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
using SmemLayoutdOt =
decltype(cute::composition(SmemLayoutdO{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages_dO>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
using SmemLayoutKt =
decltype(cute::composition(SmemLayoutK{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{})),
make_stride(Int<kBlockN>{}, _1{}))));
using SmemLayoutPdSt =
decltype(cute::composition(SmemLayoutPdS{},
make_layout(make_shape(Int<kBlockN>{}, Int<kBlockM>{}, Int<kStages_dS>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kBlockN>{}))));
// Thread layout, 256 or 384 threads per row
// We split into NumMmaWarpGroups so that we can do Bulk reduce add for each WG separately.
using R2SLayoutAtomdQaccum = Layout<Shape<Int<cutlass::NumThreadsPerWarpGroup>, Int<NumMmaWarpGroups>>>;
using R2STiledCopydQaccum = decltype(make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{}, R2SLayoutAtomdQaccum{},
Layout<Shape < _4>>{})); // Val layout, 4 vals per store
using SmemLayoutdQaccum = Layout<Shape<Int<kBlockM * kHeadDim / NumMmaWarpGroups>, Int<NumMmaWarpGroups>>>;
static constexpr int kNumPdSStore = kBlockM * kBlockN / NumMmaThreads;
// If !SdP_swapAB, the accum registers hold P / dS, otherwise they hold Pt / dSt.
// If PdS_major is MN, then we need to "transpose" the write.
using SmemCopyAtomPdS = Copy_Atom<
std::conditional_t<(!SdP_swapAB) ^ (PdS_Major == GMMA::Major::MN),
std::conditional_t<kNumPdSStore % 8 == 0, cute::SM90_U32x4_STSM_N, cute::SM90_U32x2_STSM_N>,
std::conditional_t<kNumPdSStore % 8 == 0, cute::SM90_U16x8_STSM_T, cute::SM90_U16x4_STSM_T>
>,
Element
>;
using GmemTiledCopyQdO = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<1>(ClusterShape{})));
using GmemTiledCopyKV = cute::SM90_TMA_LOAD;
using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideQKV = cute::Stride<int64_t, _1, int64_t, int64_t>;
using ShapeLSE = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen, head, batch)
using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen, head, batch)
using ShapedQaccum = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen_q * d, head, batch)
using StridedQaccum = cute::Stride<_1, int64_t, int64_t>;
using TMA_QdO = decltype(make_tma_copy_A_sm90(
GmemTiledCopyQdO{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
take<0, 2>(SmemLayoutQ{}),
TileShape_MNK{},
ClusterShape{})); // mcast along N mode for this M load, if any
using TMA_K = decltype(make_tma_copy_B_sm90(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
SmemLayoutK{},
TileShape_MNK{},
ClusterShape{})); // no mcast for KV
using TMA_V = decltype(make_tma_copy_B_sm90(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
SmemLayoutV{},
TileShape_MNK{},
ClusterShape{})); // no mcast for KV
using MainloopPipeline = typename cutlass::PipelineTmaAsync<kStages>;
using PipelineState = typename MainloopPipeline::PipelineState;
using MainloopPipeline_dO = typename cutlass::PipelineTmaAsync<kStages_dO>;
using PipelineState_dO = typename MainloopPipeline_dO::PipelineState;
// Set the bytes transferred in this TMA transaction (may involve multiple issues)
static constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutQ{})) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size(SmemLayoutK{}) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size(SmemLayoutV{}) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesLSE = static_cast<uint32_t>(size(select<0>(SmemLayoutLSE{})) * cutlass::sizeof_bits_v<ElementAccum> / 8);
// These are tuned for speed. They don't affect correctness.
// We have separate iterations with causal masking. Not necessary for hdim 128 but for hdim 64
// this helps quite a bit to not have to do causal masking for most of the iterations.
// For hdim 192, separating masking iterations results in register spills.
static constexpr bool SeparateMaskingIterations = kHeadDim <= 64;
// Do we keep the LSE and dPsum in each thread, or split them across 8 threads that share them and then
// shuffle to get the value whenever we need? This can reduce register pressure when SdP_swapAB, where each
// thread needs to keep statistics for (kBlockM / 4) rows. If !SdP_swapAB, each thread only needs to keep
// statistic for 2 rows.
static constexpr bool ShuffleLSE = SdP_swapAB && kHeadDim <= 64;
static constexpr bool ShuffledPsum = SdP_swapAB && kHeadDim <= 64;
static constexpr bool dQacc_use_TMA = kHeadDim < 256;
// For hdim256, we want to slice the dQ MMA (64 x 256 on 2 WGs) into two (64 x 128 on 2 WGs) so that we can
// do atomic add on one half before doing the other half of the MMA, to reduce register pressure.
static constexpr bool Slice_dQKV_Mma = kHeadDim == 256 && !dQacc_use_TMA && dQ_swapAB && AtomLayoutMdQ == 1 && NumMmaWarpGroups == 2;
static_assert(!(Deterministic && Slice_dQKV_Mma), "Deterministic mode not supported with Slice_dQKV_Mma");
static constexpr size_t SmemAlignmentP = cutlass::detail::alignment_for_swizzle(SmemLayoutPdS{});
static constexpr size_t SmemAlignmentdS = cutlass::detail::alignment_for_swizzle(SmemLayoutPdS{});
// Without this SmemAlignment, with hdim 256 we get "misaligned address" error in TMA
static constexpr size_t SmemAlignmentQKVdO = kHeadDim % 256 == 0 ? 256 : 128;
static constexpr size_t SmemAlignmentV = !Mma_dP_is_RS ? SmemAlignmentQKVdO : cutlass::detail::alignment_for_swizzle(SmemLayoutV{});
static_assert(SmemAlignmentP >= 128 && SmemAlignmentdS >= 128, "Require at least 128B alignment");
// TODO: do we have to worry that smem_dk and smem_dv in the epilogue don't line up w smem_k and smem_v due to alignment?
using SmemdQacc_t = std::conditional_t<!dQacc_use_TMA, cute::array<ElementAccum, 0>, cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutdQaccum>>>;
using SmemP_t = std::conditional_t<Mma_dKV_is_RS, cute::array<Element, 0>, cute::array_aligned<Element, cute::cosize_v<SmemLayoutPdS>, SmemAlignmentP>>;
struct TensorStorage : cute::aligned_struct<cute::max(SmemAlignmentP, SmemAlignmentdS, SmemAlignmentQKVdO)> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentQKVdO> smem_k;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>, SmemAlignmentV> smem_v;
SmemdQacc_t smem_dqacc;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQKVdO> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutdO>, SmemAlignmentQKVdO> smem_do;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_lse;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_dpsum;
SmemP_t smem_p;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutPdS>, SmemAlignmentdS> smem_ds;
};
// Host side kernel arguments
struct Arguments {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQKV const stride_Q;
Element const* const ptr_K;
ShapeQKV const shape_K;
StrideQKV const stride_K;
Element const* const ptr_V;
ShapeQKV const shape_V;
StrideQKV const stride_V;
Element const* const ptr_dO;
ShapeQKV const shape_dO;
StrideQKV const stride_dO;
ElementAccum* const ptr_dQaccum;
ShapedQaccum const shape_dQaccum;
StridedQaccum const stride_dQaccum;
float const* const ptr_LSE_log2;
ShapeLSE const shape_LSE;
StrideLSE const stride_LSE_log2;
float const* const ptr_dPsum;
StrideLSE const stride_dPsum;
float const softmax_scale;
int const window_size_left, window_size_right, attention_chunk;
float const softcap_val;
int const num_batch;
int* const dq_semaphore;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
};
// Device side kernel params
struct Params {
ShapeQKV const shape_Q;
ShapeQKV const shape_K;
ShapeQKV const shape_V;
ShapeQKV const shape_dO;
ElementAccum* const ptr_dQaccum;
ShapedQaccum const shape_dQaccum;
StridedQaccum stride_dQaccum;
cutlass::FastDivmod qhead_per_khead_divmod;
TMA_QdO tma_load_Q, tma_load_dO;
TMA_K tma_load_K;
TMA_V tma_load_V;
float const* const ptr_LSE_log2;
ShapeLSE const shape_LSE;
StrideLSE const stride_LSE_log2;
float const* const ptr_dPsum;
StrideLSE const stride_dPsum;
float const softmax_scale, softmax_scale_log2;
int const window_size_left, window_size_right;
cutlass::FastDivmod attention_chunk_divmod;
float const softcap_val;
int const num_batch;
int* const dq_semaphore;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
};
static Params
to_underlying_arguments(Arguments const& args) {
Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.shape_Q, args.stride_Q);
TMA_QdO tma_load_Q = make_tma_copy_A_sm90(
GmemTiledCopyQdO{},
mQ,
SmemLayoutQ{}(_, _, _0{}),
TileShape_MNK{},
ClusterShape{}); // mcast along N mode for this M load, if any
Tensor mdO = make_tensor(make_gmem_ptr(args.ptr_dO), args.shape_dO, args.stride_dO);
TMA_QdO tma_load_dO = make_tma_copy_A_sm90(
GmemTiledCopyQdO{},
mdO,
SmemLayoutdO{}(_, _, _0{}),
TileShape_MNK{},
ClusterShape{}); // mcast along N mode for this M load, if any
Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.shape_K, args.stride_K);
TMA_K tma_load_K = make_tma_copy_B_sm90(
GmemTiledCopyKV{},
mK,
SmemLayoutK{},
TileShape_MNK{},
ClusterShape{}); // no mcast for KV
Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V), args.shape_V, args.stride_V);
TMA_V tma_load_V = make_tma_copy_B_sm90(
GmemTiledCopyKV{},
mV,
SmemLayoutV{},
TileShape_MNK{},
ClusterShape{}); // no mcast for KV
if constexpr (Deterministic) { assert(args.dq_semaphore != nullptr); }
// Avoid dividing by zero
cutlass::FastDivmod attention_chunk_divmod(args.attention_chunk >= 1 ? args.attention_chunk : 1);
attention_chunk_divmod.divisor = args.attention_chunk;
// If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
// Right after this, we multiply by log2(e) before applying exp2.
// To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
// (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
// (assigning it to params.softmax_scale_log2).
// In the backward, we need to multiply by
// (1 - tanh^2) * softmax_scale / softcap_val * softcap_val = (1 - tanh^2) * softmax_scale.
// Instead we multiply by (1 - tanh^2) and multiply dK and dV by params.softmax_scale
// (the original softmax_scale) at the end.
return {args.shape_Q, args.shape_K,
args.shape_V, args.shape_dO,
args.ptr_dQaccum, args.shape_dQaccum, args.stride_dQaccum,
cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
tma_load_Q, tma_load_dO, tma_load_K, tma_load_V,
args.ptr_LSE_log2, args.shape_LSE, args.stride_LSE_log2, args.ptr_dPsum, args.stride_dPsum,
args.softmax_scale,
!Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
args.window_size_left, args.window_size_right, attention_chunk_divmod,
!Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
args.num_batch, args.dq_semaphore,
args.cu_seqlens_q, args.cu_seqlens_k, args.seqused_q, args.seqused_k};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& params) {
cute::prefetch_tma_descriptor(params.tma_load_Q.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_dO.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_K.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_V.get_tma_descriptor());
}
template <typename SchedulerPrefetch, typename SharedStorage>
CUTLASS_DEVICE void
load(Params const& params,
MainloopPipeline pipeline_q,
MainloopPipeline_dO pipeline_do,
PipelineState& smem_pipe_write,
PipelineState_dO& smem_pipe_write_do,
SharedStorage &shared_storage,
SchedulerPrefetch const& scheduler_prefetch,
cute::tuple<int32_t, int32_t, int32_t> block_coord
) {
auto [n_block, bidh, bidb] = block_coord;
SeqlenInfo_t seqlen_info{
bidb, get<0>(params.shape_Q), size<0>(params.shape_K),
params.cu_seqlens_q, params.cu_seqlens_k, params.seqused_q, params.seqused_k
};
auto [m_block_min, m_block_max] = BlockMN_t::get_m_block_min_max(
seqlen_info, n_block, bidb,
params.window_size_left, params.window_size_right, 0 /*sink_token_length*/);
// It's possible to have m_block_max <= m_block_min. Loading Q, K can cause illegal memory access.
if constexpr (Is_causal || Is_local || Varlen) {
if (m_block_max <= m_block_min) {
scheduler_prefetch();
return;
}
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sdO = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdO{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_lse.data()), SmemLayoutLSE{});
Tensor sdPsum = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dpsum.data()), SmemLayoutLSE{});
int bidh_kv = params.qhead_per_khead_divmod.divide(bidh);
// Prepare the TMA loads
uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
bool const is_varlen_q = Varlen && params.cu_seqlens_q;
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
Tensor mQ = params.tma_load_Q.get_tma_tensor(params.shape_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mdO = params.tma_load_dO.get_tma_tensor(params.shape_dO)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mK = params.tma_load_K.get_tma_tensor(params.shape_K)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
Tensor mV = params.tma_load_V.get_tma_tensor(params.shape_V)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE_log2), params.shape_LSE, params.stride_LSE_log2)(_, bidh, !is_varlen_q ? bidb : 0);
Tensor mdPsum = make_tensor(make_gmem_ptr(params.ptr_dPsum), params.shape_LSE, params.stride_dPsum)(_, bidh, !is_varlen_q ? bidb : 0);
Tensor gQ = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mQ), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
Tensor gdO = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mdO), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
Tensor gK = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
Tensor gV = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}), mV), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
Tensor gLSE = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded), mLSE), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
Tensor gdPsum = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded), mdPsum), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
Tensor sK_x = make_tensor(sK.data(), make_layout(sK.layout(), Layout<_1>{}));
Tensor gK_x = make_tensor(gK.data(), make_layout(gK.layout(), Layout<_1>{}));
Tensor sV_x = make_tensor(sV.data(), make_layout(sV.layout(), Layout<_1>{}));
Tensor gV_x = make_tensor(gV.data(), make_layout(gV.layout(), Layout<_1>{}));
// auto [tQgQ, tQsQ] = tma_partition(params.tma_load_Q, block_rank_in_cluster, Layout<ClusterShape>{},
// group_modes<0, 2>(sQ), group_modes<0, 2>(gQ)); // (TMA, k), (TMA, PIPE)
// auto [tdOgdO, tdOsdO] = tma_partition(params.tma_load_dO, block_rank_in_cluster, Layout<ClusterShape>{},
// group_modes<0, 2>(sdO), group_modes<0, 2>(gdO)); // (TMA, k), (TMA, PIPE)
auto block_tma_Q = params.tma_load_Q.get_slice(cluster_local_block_id.y);
auto block_tma_dO = params.tma_load_dO.get_slice(cluster_local_block_id.y);
Tensor tQgQ = group_modes<0, 3>(block_tma_Q.partition_S(gQ));
Tensor tQsQ = group_modes<0, 3>(block_tma_Q.partition_D(sQ));
Tensor tdOgdO = group_modes<0, 3>(block_tma_dO.partition_S(gdO));
Tensor tdOsdO = group_modes<0, 3>(block_tma_dO.partition_D(sdO));
auto [tKgK, tKsK] = tma_partition(params.tma_load_K, _0{}, Layout<_1>{},
group_modes<0, 2>(sK_x), group_modes<0, 2>(gK_x)); // (TMA), (TMA)
auto [tVgV, tVsV] = tma_partition(params.tma_load_V, _0{}, Layout<_1>{},
group_modes<0, 2>(sV_x), group_modes<0, 2>(gV_x)); // (TMA), (TMA)
auto bulk_copy = Copy_Traits<SM90_BULK_COPY_AUTO>{};
uint16_t mcast_mask_qdo = 0;
if constexpr (cute::is_same_v<GmemTiledCopyQdO, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
for (int n = 0; n < size<1>(block_layout); ++n) {
mcast_mask_qdo |= (uint16_t(1) << block_layout(cluster_local_block_id.x, n, _0{}));
}
}
int m_block = m_block_min;
int lane_predicate = cute::elect_one_sync();
if (lane_predicate) {
pipeline_q.producer_acquire(smem_pipe_write);
copy(params.tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
tQgQ(_, m_block), tQsQ(_, smem_pipe_write.index()));
copy(bulk_copy.with(*pipeline_q.producer_get_barrier(smem_pipe_write)),
gLSE(_, m_block), sLSE(_, smem_pipe_write.index()));
}
// // Wait for the MMA warpgroups to say that smem_k and smem_v are ready
// cutlass::arch::NamedBarrier::sync(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::KVEmpty) /*id*/);
if (lane_predicate) {
// Copy K tile and V tile from GMEM to SMEM.
shared_storage.pipelines.barrier_KV.arrive_and_expect_tx(TmaTransactionBytesK + TmaTransactionBytesV);
copy(params.tma_load_K.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_KV), 0 /*mcast_mask*/), tKgK, tKsK);
copy(params.tma_load_V.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_KV), 0 /*mcast_mask*/), tVgV, tVsV);
#pragma unroll (kHeadDim < 256 ? 2 : 1)
for (; m_block < m_block_max - 1; ++m_block) {
// If Q and dO have the same number of stages, we can use the same pipeline state variable
// to reduce registers
PipelineState_dO smem_pipe_write_do_cur = cute::conditional_return<Q_dO_same_stages>(smem_pipe_write, smem_pipe_write_do);
pipeline_do.producer_acquire(smem_pipe_write_do_cur);
copy(params.tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
tdOgdO(_, m_block), tdOsdO(_, smem_pipe_write_do_cur.index()));
copy(bulk_copy.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur)),
gdPsum(_, m_block), sdPsum(_, smem_pipe_write_do_cur.index()));
if constexpr (!Q_dO_same_stages) { ++smem_pipe_write_do; }
++smem_pipe_write;
pipeline_q.producer_acquire(smem_pipe_write);
copy(params.tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
tQgQ(_, m_block + 1), tQsQ(_, smem_pipe_write.index()));
copy(bulk_copy.with(*pipeline_q.producer_get_barrier(smem_pipe_write)),
gLSE(_, m_block + 1), sLSE(_, smem_pipe_write.index()));
}
}
scheduler_prefetch();
if (lane_predicate) {
PipelineState_dO smem_pipe_write_do_cur = cute::conditional_return<Q_dO_same_stages>(smem_pipe_write, smem_pipe_write_do);
pipeline_do.producer_acquire(smem_pipe_write_do_cur);
copy(params.tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
tdOgdO(_, m_block), tdOsdO(_, smem_pipe_write_do_cur.index()));
copy(bulk_copy.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur)),
gdPsum(_, m_block), sdPsum(_, smem_pipe_write_do_cur.index()));
if constexpr (!Q_dO_same_stages) { ++smem_pipe_write_do; }
++smem_pipe_write;
}
if constexpr (Q_dO_same_stages) { smem_pipe_write_do = smem_pipe_write; }
}
/// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
CUTLASS_DEVICE void
load_tail(MainloopPipeline pipeline_q, MainloopPipeline_dO pipeline_do,
PipelineState& smem_pipe_write) {
static_assert(Q_dO_same_stages, "Q and dO must have the same number of stages");
// Need to copy since pipeline_q.producer_tail(smem_pipe_write) will increment smem_pipe_write
PipelineState smem_pipe_write_do = smem_pipe_write;
// Issue the epilogue waits
if (cute::elect_one_sync()) {
/* This helps avoid early exit of blocks in Cluster
* Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
* then would just be acquired since the phase was still inverted from make_producer_start_state
*/
pipeline_q.producer_tail(smem_pipe_write);
pipeline_do.producer_tail(smem_pipe_write_do);
}
}
/// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
CUTLASS_DEVICE void
load_tail(MainloopPipeline pipeline_q, MainloopPipeline_dO pipeline_do,
PipelineState& smem_pipe_write, PipelineState_dO& smem_pipe_write_do) {
// Issue the epilogue waits
if (cute::elect_one_sync()) {
/* This helps avoid early exit of blocks in Cluster
* Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
* then would just be acquired since the phase was still inverted from make_producer_start_state
*/
pipeline_q.producer_tail(smem_pipe_write);
pipeline_do.producer_tail(smem_pipe_write_do);
}
}
template <typename SharedStorage>
CUTLASS_DEVICE void
store_dq(Params const& params,
SharedStorage &shared_storage,
cute::tuple<int32_t, int32_t, int32_t> block_coord
) {
if constexpr (!dQacc_use_TMA) { return; }
auto [n_block, bidh, bidb] = block_coord;
SeqlenInfo_t seqlen_info{
bidb, get<0>(params.shape_Q), size<0>(params.shape_K),
params.cu_seqlens_q, params.cu_seqlens_k, params.seqused_q, params.seqused_k
};
auto [m_block_min, m_block_max] = BlockMN_t::get_m_block_min_max(
seqlen_info, n_block, bidb, params.window_size_left,
params.window_size_right, 0 /*sink_token_length*/);
// It's possible to have m_block_max <= m_block_min. Exit early
if constexpr (Is_causal || Is_local || Varlen) {
if (m_block_max <= m_block_min) { return; }
}
Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dqacc.data()), SmemLayoutdQaccum{});
static constexpr int dQ_TMA_num_bytes = CUTE_STATIC_V(size<0>(sdQ)) * sizeof(ElementAccum);
bool const is_varlen = Varlen && params.cu_seqlens_q;
Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.ptr_dQaccum)),
params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen ? bidb : 0);
Tensor gdQaccum_ = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded * kHeadDim), mdQaccum), Shape<Int<kBlockM * kHeadDim>>{}, make_coord(_)); // (M * K, _)
Tensor gdQaccum = cute::flat_divide(gdQaccum_, Int<kBlockM * kHeadDim / NumMmaWarpGroups>{}); // (M * K / WG, WG, _)
int const num_batch = params.num_batch;
int const num_head = get<2>(params.shape_Q);
int *lock_ptr = !Deterministic ? nullptr : params.dq_semaphore + bidb * num_head + bidh;
using Barrier = cutlass::GenericBarrier<cutlass::detail::SyncwarpSync>;
bool const lane_predicate = cute::elect_one_sync();
int m_block = m_block_min;
#pragma unroll 2
for (; m_block < m_block_max; ++m_block) {
if constexpr (Deterministic) {
Barrier::wait_eq(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head, n_block);
}
#pragma unroll
for (int warpgroup_idx = 0; warpgroup_idx < NumMmaWarpGroups; ++warpgroup_idx) {
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::dQFullWG1) + warpgroup_idx /*id*/); // sdQ full, to be written to gmem
if (lane_predicate) {
SM90_BULK_REDUCE_ADD::copy(raw_pointer_cast(sdQ(_, warpgroup_idx).data()), raw_pointer_cast(gdQaccum(_, warpgroup_idx, m_block).data()), dQ_TMA_num_bytes, static_cast<uint64_t>(TMA::CacheHintSm90::EVICT_LAST));
tma_store_arrive();
}
}
// Note, the for_each() function is required here to ensure `warpgroup_idx` is of type Int<x>.
for_each(make_int_sequence<NumMmaWarpGroups>{}, [&] (auto warpgroup_idx) {
if (lane_predicate) { tma_store_wait<NumMmaWarpGroups - 1 - CUTE_STATIC_V(warpgroup_idx)>(); }
cutlass::arch::NamedBarrier::arrive(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::dQEmptyWG1) + warpgroup_idx /*id*/); // sdQ empty, ready to be written to
});
if constexpr (Deterministic) {
Barrier::arrive_inc(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head);
}
}
if constexpr (Is_local && Deterministic) {
constexpr int kBlockM = get<0>(TileShape_MNK{});
int const m_block_global_max = cute::ceil_div(seqlen_info.seqlen_q, kBlockM);
#pragma unroll 2
for (; m_block < m_block_global_max; ++m_block) {
Barrier::arrive_inc(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head);
}
}
}
CUTLASS_DEVICE void
mma_init() {
// We're not currently using this bc we're not using persistent scheduler
// // Tell producer (warp 0) that smem_k and smem_v are ready
// cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::KVEmpty) /*id*/);
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
if constexpr (dQacc_use_TMA) {
if (warp_idx_in_warpgroup == 0) {
cutlass::arch::NamedBarrier::arrive(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::dQEmptyWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/); // sdQ empty, ready to be written to
}
}
}
template <typename SharedStorage, typename FrgTensordKV>
CUTLASS_DEVICE bool
mma(Params const& params,
MainloopPipeline pipeline_q,
MainloopPipeline_dO pipeline_do,
PipelineState& smem_pipe_read,
PipelineState_dO& smem_pipe_read_do,
FrgTensordKV& tdKrdK,
FrgTensordKV& tdVrdV,
int thread_idx,
int &work_idx,
cute::tuple<int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensordKV>::value, "dK and dV tensor must be rmem resident.");
int n_block = get<0>(block_coord);
int bidb = get<2>(block_coord);
SeqlenInfo_t seqlen_info{
bidb, get<0>(params.shape_Q), size<0>(params.shape_K),
params.cu_seqlens_q, params.cu_seqlens_k, params.seqused_q, params.seqused_k
};
auto [m_block_min, m_block_max] = BlockMN_t::get_m_block_min_max(
seqlen_info, n_block, bidb, params.window_size_left,
params.window_size_right, 0 /*sink_token_length*/);
// It's possible to have m_block_max <= m_block_min. Exit early
if constexpr (Is_causal || Is_local || Varlen) {
if (m_block_max <= m_block_min) { return false; }
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sdO = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdO{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
Tensor sQt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQt{});
Tensor sdOt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdOt{});
Tensor sKt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutKt{});
Tensor sP = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutPdS{});
Tensor sP_pi = cute::as_position_independent_swizzle_tensor(sP);
Tensor sPt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutPdSt{});
Tensor sPt_pi = cute::as_position_independent_swizzle_tensor(sPt);
Tensor sdS = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_ds.data()), SmemLayoutPdS{});
Tensor sdS_pi = cute::as_position_independent_swizzle_tensor(sdS);
Tensor sdSt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_ds.data()), SmemLayoutPdSt{});
Tensor sdSt_pi = cute::as_position_independent_swizzle_tensor(sdSt);
Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dqacc.data()), SmemLayoutdQaccum{});
Tensor sLSEMma = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_lse.data()), SmemLayoutLSEMma{});
Tensor sdPsumMma = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dpsum.data()), SmemLayoutLSEMma{});
static_assert(stride<0>(typename TiledMmaSdP::ALayout{}) == 0 and
stride<0>(typename TiledMmaSdP::BLayout{}) == 0 and
size<0>(typename TiledMmaSdP::ALayout{}) == cutlass::NumThreadsPerWarpGroup and
size<0>(typename TiledMmaSdP::BLayout{}) == cutlass::NumThreadsPerWarpGroup,
"Stride of the first mode must be 0 and the size of the mode must be NumThreadsPerWarpGroup");
constexpr int MmaWarpGroups = NumMmaThreads / cutlass::NumThreadsPerWarpGroup;
Layout warp_group_thread_layout = make_layout(make_shape(Int<MmaWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
Layout warp_group_thread_layout_dq = make_layout(make_shape(Int<NumMmaWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / cutlass::NumThreadsPerWarpGroup, 0);
TiledMmaSdP tiled_mma_SdP;
using TiledMmadP = std::conditional_t<!Mma_dP_is_RS, TiledMmaSdP, TiledMmadPRS>;
TiledMmadP tiled_mma_dP;
TiledMmadKV tiled_mma_dKV;
TiledMmadQ tiled_mma_dQ;
auto wg_mma_SdP = tiled_mma_SdP.get_slice(warp_group_thread_layout(warp_group_idx));
auto wg_mma_dP = tiled_mma_dP.get_slice(warp_group_thread_layout(warp_group_idx));
auto thread_mma_SdP = tiled_mma_SdP.get_thread_slice(thread_idx);
auto wg_mma_dKV = tiled_mma_dKV.get_slice(warp_group_thread_layout(warp_group_idx));
auto wg_mma_dQ = tiled_mma_dQ.get_slice(warp_group_thread_layout_dq(warp_group_idx));
auto smem_tiled_copy_PdS = make_tiled_copy_C(SmemCopyAtomPdS{}, tiled_mma_SdP);
auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(thread_idx);
R2STiledCopydQaccum r2s_tiled_copy_dQaccum;
auto r2s_thr_copy_dQaccum = r2s_tiled_copy_dQaccum.get_thread_slice(thread_idx);
Tensor tdQsdQaccum = r2s_thr_copy_dQaccum.partition_D(sdQ);
// if (thread_idx == 0) { print(sdQ); printf("\n"); print(tdQsdQaccum); printf("\n"); }
// Allocate "fragments/descriptors"
// We have to use the templated mma_partition_fragment_AB instead of cute::conditional_return or lambda,
// because some partition_fragment_A/B don't compile.
// https://stackoverflow.com/questions/50051473/if-constexpr-in-c17-does-not-work-in-a-non-templated-function
Tensor tSrQ = mma_partition_fragment_AB</*A=*/!SdP_swapAB>(wg_mma_SdP, sQ);
Tensor tSrK = mma_partition_fragment_AB</*A=*/SdP_swapAB>(wg_mma_SdP, sK);
Tensor tdPrdO = mma_partition_fragment_AB</*A=*/!SdP_swapAB>(wg_mma_SdP, sdO);
Tensor tdPrV = mma_partition_fragment_AB</*A=*/SdP_swapAB>(wg_mma_dP, sV);
Tensor tdVrdO = mma_partition_fragment_AB</*A=*/dKV_swapAB>(wg_mma_dKV, sdOt);
Tensor tdKrQ = mma_partition_fragment_AB</*A=*/dKV_swapAB>(wg_mma_dKV, sQt);
Tensor tdQrdS = mma_partition_fragment_AB</*A=*/!dQ_swapAB>(wg_mma_dQ, sdS);
Tensor tdQrK = mma_partition_fragment_AB</*A=*/dQ_swapAB>(wg_mma_dQ, sKt);
Tensor tPsP = smem_thr_copy_PdS.partition_D(cute::conditional_return<!SdP_swapAB>(sP_pi, sPt_pi)); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor tdSsdS = smem_thr_copy_PdS.partition_D(cute::conditional_return<!SdP_swapAB>(sdS_pi, sdSt_pi)); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// if (blockIdx.x == 0 && threadIdx.x == 128) { print(smem_thr_copy_PdS); print(sP_pi); printf("\n"); print(sPt_pi); printf("\n"); print(tPsP); printf("\n"); print(tdSsdS); printf("\n"); }
// thread_mma_SdP.partition_C(sLSEMma) has shape ((2, 2, V), MMA_M, MMA_N, PIPE), we only take the col indices
// or row indices, depending on whether SdP_swapAB.
Tensor tLSEsLSE = cute::conditional_return<!SdP_swapAB>(
group_modes<0, 2>(thread_mma_SdP.partition_C(sLSEMma)(make_coord(_0{}, _, _0{}), _, _0{}, _)), // (2, MMA_M, PIPE)
group_modes<0, 3>(thread_mma_SdP.partition_C(sLSEMma)(make_coord(_, _0{}, _), _0{}, _, _))); // (2, V, MMA_N, PIPE)
Tensor tLSEsdPsum = cute::conditional_return<!SdP_swapAB>(
group_modes<0, 2>(thread_mma_SdP.partition_C(sdPsumMma)(make_coord(_0{}, _, _0{}), _, _0{}, _)),
group_modes<0, 3>(thread_mma_SdP.partition_C(sdPsumMma)(make_coord(_, _0{}, _), _0{}, _, _)));
// if (blockIdx.x == 0 && threadIdx.x == 128) { print(sLSEMma); printf("\n"); print(tLSEsLSE); printf("\n"); }
// If we want to split the stats among the 8 threads that share the same rows.
static constexpr int kStatsPerThread = cute::ceil_div(decltype(size(tLSEsLSE))::value, 8);
auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
pipeline.consumer_wait(smem_pipe_read, barrier_token);
};
int bidh = get<1>(block_coord);
int const seqlen_q = seqlen_info.seqlen_q;
int const seqlen_k = seqlen_info.seqlen_k;
// For the case where we do atomicAdd directly to gdQaccum instead of using TMA
bool const is_varlen = Varlen && params.cu_seqlens_q;
Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.ptr_dQaccum)),
params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen ? bidb : 0);
Tensor gdQaccum_ = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded * kHeadDim), mdQaccum), Shape<Int<kBlockM * kHeadDim>>{}, make_coord(_)); // (M * K, _)
Tensor gdQaccum = cute::flat_divide(gdQaccum_, Int<kBlockM * kHeadDim / NumMmaWarpGroups>{}); // (M * K / WG, WG, _)
// We can reuse r2s_thr_copy_dQaccum for this partitioning
Tensor tdQgdQaccum = r2s_thr_copy_dQaccum.partition_D(gdQaccum);
// if (blockIdx.x == 0 && threadIdx.x == 128) { print(mdQaccum); printf("\n"); print(gdQaccum_); printf("\n"); print(gdQaccum); printf("\n"); print(tdQgdQaccum); printf("\n"); }
flash::Mask<kBlockM, kBlockN, false /*PackGQA*/, TiledMmaSdP, SdP_swapAB> mask(
thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, 0 /*sink_token_length*/,
params.attention_chunk_divmod, params.qhead_per_khead_divmod
);
int m_block = m_block_min;
clear(tdKrdK);
clear(tdVrdV);
// tiled_mma_dKV.accumulate_ = GMMA::ScaleOut::Zero;
cutlass::ConsumerToken barrier_token = static_cast<cutlass::BarrierStatus>(shared_storage.pipelines.barrier_KV.try_wait(work_idx % 2));
if (barrier_token == cutlass::BarrierStatus::WaitAgain) { shared_storage.pipelines.barrier_KV.wait(work_idx % 2); }
if constexpr (Mma_dP_is_RS) {
using SmemCopyAtomV = Copy_Atom<cute::SM75_U32x4_LDSM_N, Element>;
auto smem_tiled_copy_V = make_tiled_copy_A(SmemCopyAtomV{}, tiled_mma_dP);
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(thread_idx);
Tensor tdPrV_copy_view = smem_thr_copy_V.retile_D(tdPrV);
Tensor tdPsV_copy_view = smem_thr_copy_V.partition_S(cute::as_position_independent_swizzle_tensor(sV));
cute::copy(smem_tiled_copy_V, tdPsV_copy_view, tdPrV_copy_view);
}
auto bwd_step = [&](int m_block, auto mask_fn) {
Tensor tSrS = partition_fragment_C(tiled_mma_SdP, select<!SdP_swapAB ? 0 : 1, !SdP_swapAB ? 1 : 0>(TileShape_MNK{}));
consumer_wait(pipeline_q, smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1, /*SwapAB=*/SdP_swapAB>(tiled_mma_SdP, tSrQ(_, _, _, smem_pipe_read.index()), tSrK, tSrS);
Tensor tLSErLSE = cute::conditional_return<!ShuffleLSE>(make_fragment_like(tLSEsLSE(_, _0{})), make_tensor<ElementAccum>(Int<kStatsPerThread>{}));
if constexpr (!ShuffleLSE) {
cute::copy(tLSEsLSE(_, smem_pipe_read.index()), tLSErLSE);
} else {
#pragma unroll
for (int i = 0; i < kStatsPerThread; ++i) {
// It's ok to read OOB, since we made sure sLSE is large enough and we won't use the OOB values
tLSErLSE(i) = tLSEsLSE((thread_idx % 32) / 4 + i * 8, smem_pipe_read.index());
}
}
Tensor tdPrdP = partition_fragment_C(tiled_mma_SdP, select<!SdP_swapAB ? 0 : 1, !SdP_swapAB ? 1 : 0>(TileShape_MNK{}));
PipelineState_dO smem_pipe_read_do_cur = cute::conditional_return<Q_dO_same_stages>(smem_pipe_read, smem_pipe_read_do);
consumer_wait(pipeline_do, smem_pipe_read_do_cur);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1, /*SwapAB=*/SdP_swapAB>(tiled_mma_dP, tdPrdO(_, _, _, smem_pipe_read_do_cur.index()), tdPrV, tdPrdP);
warpgroup_wait<1>();
if constexpr (Has_softcap) { flash::apply_softcap(tSrS, params.softcap_val); }
// Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_rowcol</*Transposed=*/SdP_swapAB>(tSrS.layout()));
// dtanh needs to happen before masking, otherwise we get 1 - (-inf)^2 = NaN in the dtanh
auto dtanh = [&] { if constexpr (Has_softcap) return flash::calculate_dtanh(scores); else return nullptr; }();
mask_fn(tSrS, m_block);
#pragma unroll
for (int mi = 0; mi < size<0>(scores); ++mi) {
float const lse_scaled = [&] {
if constexpr (!ShuffleLSE) return tLSErLSE(mi);
else return __shfl_sync(0xffffffff, tLSErLSE(mi / 8), (mi % 8) * 4 + (thread_idx % 4));
}();
#pragma unroll
for (int ni = 0; ni < size<1>(scores); ++ni) {
scores(mi, ni) = exp2f(scores(mi, ni) * params.softmax_scale_log2 - lse_scaled);
}
}
Tensor tLSErdPsum = cute::conditional_return<!ShuffledPsum>(make_fragment_like(tLSEsdPsum(_, _0{})), make_tensor<ElementAccum>(Int<kStatsPerThread>{}));
if constexpr (!ShuffledPsum) {
cute::copy(tLSEsdPsum(_, smem_pipe_read_do_cur.index()), tLSErdPsum);
} else {
#pragma unroll
for (int i = 0; i < kStatsPerThread; ++i) {
tLSErdPsum(i) = tLSEsdPsum((thread_idx % 32) / 4 + i * 8, smem_pipe_read_do_cur.index());
}
}
warpgroup_wait<0>();
// Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
#pragma unroll
for (int mi = 0; mi < size<0>(dS); ++mi) {
float const dP_sum_cur = [&] {
if constexpr (!ShuffledPsum) return tLSErdPsum(mi);
else return __shfl_sync(0xffffffff, tLSErdPsum(mi / 8), (mi % 8) * 4 + (thread_idx % 4));
}();
#pragma unroll
for (int ni = 0; ni < size<1>(dS); ++ni) {
dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum_cur);
if constexpr (Has_softcap) { dS(mi, ni) *= dtanh(mi, ni); }
}
}
// Convert scores from fp32 to fp16/bf16
Tensor rP = make_tensor_like<Element>(tSrS);
flash::convert_type_out(tSrS, rP);
if constexpr (!Mma_dKV_is_RS) {
// Need to sync to make sure P has already been used in the previous iteration before writing new values
if constexpr (kStages_dS == 1) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(BwdNamedBarriers::PdS) /*id*/);
}
Tensor tPaP = smem_thr_copy_PdS.retile_S(rP); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tPaP, tPsP(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index())));
}
Tensor rdS = make_tensor_like<Element>(tdPrdP);
flash::convert_type_out(tdPrdP, rdS);
// If there's double buffering on dS, we don't need to sync here.
// Otherwise we might have WG1 writing to dS before WG2 is done reading from it during MmadQ.
// But because both WGs have to sync at the end of the loop and double buffering,
// this race condition is not possible.
// This sync is to ensure (1) P is written in case of !Mma_dKV_is_RS and
// (2) dS is already read by the Mma in the previous iteration in case of Mma_dKV_is_RS.
if constexpr (!Mma_dKV_is_RS || (kStages_dS == 1 && Mma_dKV_is_RS)) {
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(BwdNamedBarriers::PdS) /*id*/);
}
// For hdim 64, It's faster to write to smem_dS first before the dV gemm
Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index())));
if constexpr (!Slice_dQKV_Mma) {
// Most cases take this path, except for hdim256 where we want to slice to reduce register pressure
if constexpr (Mma_dKV_is_RS) {
Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<TiledMmadKV>(tSrS.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_dKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
} else {
Tensor tdVrP = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sPt);
Tensor tdVrP_cur = tdVrP(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1, /*SwapAB=*/dKV_swapAB>(tiled_mma_dKV, tdVrP_cur, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
}
// SMEM fence to make sure sdS is written before it's read by WGMMA
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(BwdNamedBarriers::PdS) /*id*/);
Tensor tdQrdQ = partition_fragment_C(tiled_mma_dQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
Tensor tdQrdS_cur = tdQrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
flash::gemm</*zero_init=*/true, /*wg_wait=*/1, /*SwapAB=*/dQ_swapAB>(tiled_mma_dQ, tdQrdS_cur, tdQrK, tdQrdQ);
pipeline_do.consumer_release(smem_pipe_read_do_cur); // release dQ
if constexpr (Mma_dKV_is_RS) {
Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<TiledMmadKV>(tdPrdP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/1>(tiled_mma_dKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
} else {
Tensor tdKrdS = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sdSt);
Tensor tdKrdS_cur = tdKrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/1, /*SwapAB=*/dKV_swapAB>(tiled_mma_dKV, tdKrdS_cur, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
}
if constexpr (dQacc_use_TMA) {
int const warp_group_idx = flash::canonical_warp_group_idx_nosync() - 1;
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::dQEmptyWG1) + warp_group_idx /*id*/); // sdQ full, to be written to gmem
Tensor taccdQrdQ = r2s_thr_copy_dQaccum.retile_S(tdQrdQ);
cute::copy(r2s_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum);
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::arrive(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(BwdNamedBarriers::dQFullWG1) + warp_group_idx /*id*/); // sdQ full, to be written to gmem
} else {
// We can reuse r2s_thr_copy_dQaccum for this partitioning
Tensor tdQrdQ_atomic = recast<float4>(r2s_thr_copy_dQaccum.retile_S(tdQrdQ));
Tensor tdQgdQaccum_atomic = recast<float4>(tdQgdQaccum(_, _, _, m_block));
static_assert(CUTE_STATIC_V(size(tdQrdQ_atomic)) == CUTE_STATIC_V(size(tdQgdQaccum_atomic)));
#pragma unroll
for (int i = 0; i < size(tdQrdQ_atomic); ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
}
} else { // Slice_dQKV_Mma
static_assert(!(Slice_dQKV_Mma && Mma_dKV_is_RS));
Tensor tdVrP = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sPt);
Tensor tdVrP_cur = tdVrP(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/0>(tiled_mma_dKV, tdVrP_cur, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(BwdNamedBarriers::PdS) /*id*/);
Tensor tdQrdQ = partition_fragment_C(tiled_mma_dQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
Tensor tdQrdS_cur = tdQrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1, /*SwapAB=*/dQ_swapAB, /*M_slice=*/0>(tiled_mma_dQ, tdQrdS_cur, tdQrK, tdQrdQ);
flash::gemm</*zero_init=*/false, /*wg_wait=*/1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/1>(tiled_mma_dKV, tdVrP_cur, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
Tensor tdQrdQ_atomic = recast<float4>(r2s_thr_copy_dQaccum.retile_S(tdQrdQ));
Tensor tdQgdQaccum_atomic = recast<float4>(tdQgdQaccum(_, _, _, m_block));
#pragma unroll
for (int i = 0; i < size(tdQrdQ_atomic) / 2; ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
Tensor tdKrdS = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sdSt);
Tensor tdKrdS_cur = tdKrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/0>(tiled_mma_dKV, tdKrdS_cur, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
pipeline_do.consumer_release(smem_pipe_read_do_cur); // release dO
flash::gemm</*zero_init=*/true, /*wg_wait=*/0, /*SwapAB=*/dQ_swapAB, /*M_slice=*/1>(tiled_mma_dQ, tdQrdS_cur, tdQrK, tdQrdQ);
#pragma unroll
for (int i = size(tdQrdQ_atomic) / 2; i < size(tdQrdQ_atomic); ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/1>(tiled_mma_dKV, tdKrdS_cur, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
}
warpgroup_wait<0>();
pipeline_q.consumer_release(smem_pipe_read); // release Q
++smem_pipe_read;
if constexpr (!Q_dO_same_stages) { ++smem_pipe_read_do; }
};
// We have separate iterations with causal masking. Not necessary for hdim 128 but for hdim 64
// this helps quite a bit to not have to do causal masking for most of the iterations.
if constexpr ((Is_causal || Is_local) && SeparateMaskingIterations) {
auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
static constexpr int kBlockM = get<0>(TileShape_MNK{});
int const m_block_masking_max = ((n_block + 1) * kBlockN - 1 + seqlen_q - seqlen_k - params.window_size_right) / kBlockM + 1;
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < std::min(m_block_max, m_block_masking_max); ++m_block) {
bwd_step(m_block, mask_fn);
}
}
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
int const m_block_max_before_local_mask = !Is_local || !SeparateMaskingIterations
? m_block_max
: std::min(m_block_max, (n_block * kBlockN + seqlen_q - seqlen_k + params.window_size_left) / kBlockM);
auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal && !SeparateMaskingIterations, Is_local && !SeparateMaskingIterations>(tSrS, m_block, n_block); };
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < m_block_max_before_local_mask; ++m_block) {
bwd_step(m_block, mask_fn);
}
if constexpr (Is_local && SeparateMaskingIterations) {
auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < m_block_max; ++m_block) {
bwd_step(m_block, mask_fn);
}
}
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(tdVrdV); }
#pragma unroll
for (int i = 0; i < size(tdKrdK); ++i) { tdKrdK(i) *= params.softmax_scale; }
if constexpr (Q_dO_same_stages) { smem_pipe_read_do = smem_pipe_read; }
++work_idx;
return true;
}
};
} // namespace flash
|