File size: 106,810 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 |
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/builders/sm90_common.inl"
#include "named_barrier.hpp"
#include "seqlen.h"
#include "block.h"
#include "mask.h"
#include "pack_gqa.h"
#include "paged_kv.h"
#include "rotary.h"
#include "utils.h"
#include "sm90_pipeline_no_cluster.hpp"
namespace flash {
using namespace cute;
template <int Stages, class ClusterShape_, class TileShape_MNK_, int kHeadDimV, class Element_, class ElementAccum_, class ArchTag_,
bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool PagedKVNonTMA_, bool AppendKV_, bool HasQv_,
bool MmaPV_is_RS, bool IntraWGOverlap, bool PackGQA_, bool Split_, bool V_colmajor_>
struct CollectiveMainloopFwdSm90 {
static constexpr int kStages = Stages;
using ClusterShape = ClusterShape_;
using TileShape_MNK = TileShape_MNK_;
using TileShape_MNK_PV = Shape<decltype(get<0>(TileShape_MNK{})), Int<kHeadDimV>, decltype(get<1>(TileShape_MNK{}))>;
using TileShape_MNK_QV = Shape<decltype(get<0>(TileShape_MNK{})), decltype(get<1>(TileShape_MNK{})), Int<kHeadDimV>>;
using Element = Element_;
using ElementAccum = ElementAccum_;
using ArchTag = ArchTag_;
static constexpr bool Is_FP8 = cute::is_same_v<Element, cutlass::float_e4m3_t> || cute::is_same_v<Element, cutlass::float_e5m2_t>;;
static constexpr bool Is_causal = Is_causal_;
static constexpr bool Is_local = Is_local_;
static constexpr bool Has_softcap = Has_softcap_;
static constexpr bool Varlen = Varlen_;
static constexpr bool PagedKVNonTMA = PagedKVNonTMA_;
static constexpr bool AppendKV = AppendKV_;
static constexpr bool HasQv = HasQv_;
static constexpr bool PackGQA = PackGQA_;
static constexpr bool Split = Split_;
static constexpr bool V_colmajor = V_colmajor_;
static constexpr bool Transpose_V = Is_FP8 && !V_colmajor;
static constexpr bool Use_TMA_Q = !PackGQA;
static constexpr bool Use_TMA_KV = !PagedKVNonTMA;
static_assert(Use_TMA_KV || CUTE_STATIC_V(size(ClusterShape{})) == 1, "If not using TMA for KV, ClusterShape must be 1");
static_assert(Use_TMA_KV || !V_colmajor, "If not using TMA for KV, V_colmajor is not supported");
static constexpr bool SameHeadDim = get<2>(TileShape_MNK{}) == kHeadDimV;
static constexpr bool LargeHeadDimV = kHeadDimV > 256;
static_assert(ArchTag::kMinComputeCapability >= 90);
static constexpr cute::GMMA::Major MmaMajorV = !Is_FP8 && !V_colmajor ? GMMA::Major::MN : GMMA::Major::K;
static constexpr cute::GMMA::Major TmaMajorV = !V_colmajor ? GMMA::Major::MN : GMMA::Major::K;
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
using SeqlenInfo_t = flash::SeqlenInfoQKNewK<Varlen, AppendKV>;
using BlockMN_t = flash::BlockMN<SeqlenInfo_t, kBlockM, kBlockN, Is_causal, Is_local, PackGQA, Split>;
static_assert(!LargeHeadDimV || kHeadDimV % 256 == 0);
static_assert(!LargeHeadDimV || kBlockM <= 64, "kBlockM must be 64 or less for large Headdim_V");
static_assert(!LargeHeadDimV || !MmaPV_is_RS, "MmaPV must be SS for large Headdim_V");
// Register bandwidth is actually a bottleneck so we don't want Q to be in registers.
// Leaving this option here for reference.
static constexpr bool MmaQK_is_RS = false;
// We can have MmaPV with P in smem in rmem to reduce register pressure at the cost of more smem.
static_assert(!(!MmaPV_is_RS && Is_FP8), "MmaPV must be RS if FP8");
static_assert(!(!MmaPV_is_RS && Transpose_V), "MmaPV must be RS if Transpose_V");
// Slightly faster in this case to have WG1 use RS instead of SS to avoid waiting for the P smem write
static constexpr bool MmaPV_use_RS_WG1 = !MmaPV_is_RS && kHeadDim == 64 && kHeadDimV == 512;
using AtomLayoutQK = Layout<Shape<Int<kBlockM / 64>, _1, _1>>;
using TiledMmaQK = decltype(cute::make_tiled_mma(
std::conditional_t<
!MmaQK_is_RS,
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShape_MNK>()),
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShape_MNK>())
>{},
AtomLayoutQK{}));
using AtomLayoutPV = std::conditional_t<
!LargeHeadDimV,
AtomLayoutQK,
Layout<Shape<_1, Int<kHeadDimV / 256>, _1>>
>;
using TiledMmaPV = decltype(cute::make_tiled_mma(
std::conditional_t<
!MmaPV_is_RS,
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum,
TileShape_MNK_PV, GMMA::Major::K, MmaMajorV>()),
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum,
TileShape_MNK_PV, GMMA::Major::K, MmaMajorV>())
>{},
AtomLayoutPV{}));
using TiledMmaQV = decltype(cute::make_tiled_mma(
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShape_MNK_QV>(),
AtomLayoutQK{}));
// For hdim64,512, WG1 can use RS but WG2 must use SS
using TiledMmaPV_RS = decltype(cute::make_tiled_mma(
cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShape_MNK_PV, GMMA::Major::K, MmaMajorV>(),
AtomLayoutPV{}));
static constexpr int NumMmaThreadsQK = size(TiledMmaQK{});
static constexpr int NumMmaThreads = size(TiledMmaPV{});
static constexpr int NumProducerThreads = !Transpose_V && Use_TMA_KV && Use_TMA_Q ? cutlass::NumThreadsPerWarp : cutlass::NumThreadsPerWarpGroup;
static_assert(NumMmaThreadsQK % cutlass::NumThreadsPerWarpGroup == 0);
static_assert(NumMmaThreads % cutlass::NumThreadsPerWarpGroup == 0);
static constexpr int NumMmaWarpGroups = NumMmaThreads / cutlass::NumThreadsPerWarpGroup;
static_assert(NumMmaWarpGroups == 1 || NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);
using SmemLayoutAtomQ = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQ{}, select<0, 2>(TileShape_MNK{})));
using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutK = decltype(tile_to_shape(
SmemLayoutAtomK{},
make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutAtomVt = decltype(cutlass::gemm::collective::detail::ss_smem_selector<TmaMajorV, Element,
Int<kHeadDimV>, decltype(cute::get<2>(TileShape_MNK_PV{}))>());
using SmemLayoutVt = decltype(tile_to_shape(
SmemLayoutAtomVt{},
make_shape(Int<kHeadDimV>{}, shape<2>(TileShape_MNK_PV{}), Int<kStages>{}),
std::conditional_t<TmaMajorV == GMMA::Major::K, cute::Step<_1, _2, _3>, cute::Step<_2, _1, _3>>{}));
using SmemLayoutAtomVtMma = decltype(cutlass::gemm::collective::detail::ss_smem_selector<MmaMajorV, Element,
Int<kHeadDimV>, decltype(cute::get<2>(TileShape_MNK_PV{}))>());
using SmemLayoutVtMma = decltype(tile_to_shape(
SmemLayoutAtomVtMma{},
make_shape(Int<kHeadDimV>{}, shape<2>(TileShape_MNK_PV{}), Int<kStages>{}),
std::conditional_t<MmaMajorV == GMMA::Major::K, cute::Step<_1, _2, _3>, cute::Step<_2, _1, _3>>{}));
using SmemLayoutAtomQv = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK_QV{})), decltype(cute::get<2>(TileShape_MNK_QV{}))>());
using SmemLayoutQv = decltype(tile_to_shape(SmemLayoutAtomQv{}, select<0, 2>(TileShape_MNK_QV{})));
using SmemLayoutAtomVMmaQV = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK_QV{})), decltype(cute::get<2>(TileShape_MNK_QV{}))>());
using SmemLayoutVMmaQV = decltype(tile_to_shape(
SmemLayoutAtomVMmaQV{},
make_shape(shape<1>(TileShape_MNK_QV{}), Int<kHeadDimV>{}, Int<kStages>{})));
static_assert(CUTE_STATIC_V(size(SmemLayoutVMmaQV{})) == size(SmemLayoutVtMma{}));
// Only used if we're using cp.async to load V
using SmemLayoutAtomVCpAsync = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK{})), Int<kHeadDimV>>());
using SmemLayoutVCpAsync = decltype(tile_to_shape(
SmemLayoutAtomVCpAsync{},
make_shape(shape<1>(TileShape_MNK{}), Int<kHeadDimV>{}, Int<kStages>{})));
using SmemLayoutAtomP = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<1>(TileShape_MNK{}))>());
using SmemLayoutP = decltype(tile_to_shape(SmemLayoutAtomP{}, select<0, 1>(TileShape_MNK{})));
// Only for LargeHeadDimV where WG0 sends WG1 the scales
using SmemLayoutScale = cute::Layout<cute::Shape<Int<kBlockM>, Int<kStages>>>;
using SmemCopyAtomP = Copy_Atom<cute::SM90_U32x4_STSM_N, Element>;
// Use LDSM.T and STSM to transpose V in the case of FP8 and V being row-major.
// For FP16/BF16 we don't do any transposing.
static_assert(!Transpose_V || (kHeadDimV % 32 == 0 && kBlockN % 32 == 0));
static constexpr bool kHeadDimV_multiple_64 = kHeadDimV % 64 == 0;
// Either kHeadDimV is a multiple of 64 (in which case we use a block size of 64 x 32 for the transpose),
// or we need kBlockN to be a multiple of 64 (in which case we use a block size of 32 x 64 for the transpose).
static_assert(!Transpose_V || (kHeadDimV_multiple_64 || kBlockN % 64 == 0));
using LDSM_thread_shape = std::conditional_t<kHeadDimV_multiple_64, Shape<_32, _4, _1, _1>, Shape<_16, _4, _1, _2>>;
using LDSM_thread_stride = std::conditional_t<kHeadDimV_multiple_64, Stride<_4, _1, _0, _0>, Stride<_4, _1, _0, _64>>;
using LDSM_value_shape = Shape<_2, _2, _1, _4>;
using LDSM_value_stride = Stride<_1, _2, _16, _4>;
using LDSM_divide_shape = std::conditional_t<kHeadDimV_multiple_64, Shape<_64, _8>, Shape<_32, _8>>;
using S2RTiledCopyVt = decltype(make_tiled_copy(
Copy_Atom<SM75_U16x8_LDSM_T, Element>{}, Layout<LDSM_thread_shape, LDSM_thread_stride>{},
Layout<LDSM_value_shape, LDSM_value_stride>{}));
using STSM_thread_shape = std::conditional_t<kHeadDimV_multiple_64, Shape<_8, _4, _4, _1>, Shape<_8, _4, _2, _2>>;
using STSM_thread_stride = std::conditional_t<kHeadDimV_multiple_64, Stride<_4, _1, _32, _0>, Stride<_4, _1, _32, _64>>;
using STSM_value_shape = Shape<_1, _4, _2, _2>;
using STSM_value_stride = Stride<_0, _1, _4, _8>;
using STSM_divide_shape = Shape<_8, _16>;
// These will not permute the columns of V (the kHeadDimV dimension) but incur bank conflicts
// so a little slower (e.g. 1150 TFLOPS for hdim 256 instead of 1200 TFLOPS).
// Instead we will permute the cols of V, and un-permute the cols of O in the epilogue.
// using STSM_value_shape = Shape<_2, _4, _1, _2>;
// using STSM_value_stride = Stride<_4, _1, _0, _8>;
// using STSM_divide_shape = Shape<_16, _16>;
using R2STiledCopyV = decltype(make_tiled_copy(
Copy_Atom<SM90_U32x4_STSM_N, Element>{}, Layout<STSM_thread_shape, STSM_thread_stride>{},
Layout<STSM_value_shape, STSM_value_stride>{}));
using GmemTiledCopyQ = cute::SM90_TMA_LOAD;
using GmemTiledCopyKV = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<0>(ClusterShape{})));
// We use CpAsync for K and V if PagedKVNonTMA and AppendKV, since TMA doesn't work there
static constexpr int kHeadDimGCD = cute::gcd(kHeadDim, kHeadDimV);
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDimGCD % kGmemElemsPerLoad == 0, "Headdim and HeaddimV must be a multiple of kGmemElemsPerLoad");
// We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). E.g. if hdim=128, we want each
// thread to have 4 loads in the M direction and 2 vectorized load in the K direction.
// We want each thread to have at least 2 loads in the K direction since in the case of non-interleaved
// rotary (combining elements at indices 0 and rotary_dim/2, 1 and rotary_dim/2+1, etc), each thread will
// load twice from the same row.
static constexpr int kBytePerHalfRow = kHeadDimGCD / 2 * sizeof(Element);
static constexpr int kBlockKGmem = (kBytePerHalfRow % 128 == 0 ? 128 : (kBytePerHalfRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(NumMmaThreads % kGmemThreadsPerRow == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRow");
// We assume threads loading the same row are in the same warp. This is for an optimization in PagedKVNonTMA where
// these threads share the same page table entry and share the work of computing pointers to paged K and paged V.
static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRow == 0, "kGmemThreadsPerRow must divide NumThreadsPerWarp");
using GmemLayoutAtom = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// If AppendKV, we'll be loading Q for rotary, and we assume divisibility to avoid predication
static_assert(!AppendKV || kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0, "kBlockM must be a multiple of NumMmaThreads / kGmemThreadsPerRow");
using GmemTiledCopyAppendKV = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per store
using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideQK = cute::Stride<int64_t, _1, int64_t, int64_t>;
using StrideV = std::conditional_t<!V_colmajor, StrideQK, cute::Stride<_1, int64_t, int64_t, int64_t>>;
// ((qhead_per_khead, seqlen_q), d, nheads_kv, batch, num_splits)
using ShapeQPacked = std::conditional_t<!PackGQA, ShapeQKV, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t>>;
using StrideQPacked = std::conditional_t<!PackGQA, StrideQK, cute::Stride<cute::Stride<int64_t, int64_t>, _1, int64_t, int64_t>>;
using ShapePageTable = cute::Shape<int32_t, int32_t>; // (batch, max_num_pages_per_seq)
using StridePageTable = cute::Stride<int64_t, _1>;
using ShapeRotary = cute::Shape<int32_t, int32_t>; // (seqlen_ro, rotary_dim // 2)
using StrideRotary = cute::Stride<int64_t, _1>;
using StrideDescale = cute::Stride<int64_t, int64_t>;
using TMA_Q = decltype(make_tma_copy_A_sm90(
GmemTiledCopyQ{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQK{}),
SmemLayoutQ{},
TileShape_MNK{},
ClusterShape{}));
using TMA_K = decltype(make_tma_copy_B_sm90(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQK{}),
take<0, 2>(SmemLayoutK{}),
TileShape_MNK{},
ClusterShape{})); // mcast along M mode for this N load, if any
using TMA_V = decltype(make_tma_copy(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, select<1, 0, 2, 3>(StrideV{})),
take<0, 2>(SmemLayoutVt{}),
select<1, 2>(TileShape_MNK_PV{}),
size<0>(ClusterShape{}))); // mcast along M mode for this N load, if any
using TMA_Qv_ = decltype(make_tma_copy_A_sm90(
GmemTiledCopyQ{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQK{}),
SmemLayoutQv{},
TileShape_MNK_QV{},
ClusterShape{}));
using TMA_Qv = std::conditional_t<HasQv, TMA_Qv_, std::nullptr_t>;
// Set the bytes transferred in this TMA transaction (may involve multiple issues)
static constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size(SmemLayoutQ{}) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutK{})) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutVt{})) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesQv = static_cast<uint32_t>(size(SmemLayoutQv{}) * cutlass::sizeof_bits_v<Element> / 8);
using PipelineTmaAsync = std::conditional_t<CUTE_STATIC_V(size(ClusterShape{})) == 1, typename cutlass::PipelineTmaAsyncNoCluster<kStages>, typename cutlass::PipelineTmaAsync<kStages>>;
using MainloopPipelineK = std::conditional_t<Use_TMA_KV, PipelineTmaAsync, typename cutlass::PipelineAsync<kStages>>;
using MainloopPipelineV = std::conditional_t<!Transpose_V && Use_TMA_KV, PipelineTmaAsync, typename cutlass::PipelineAsync<kStages>>;
using MainloopPipelineVt = std::conditional_t<Use_TMA_KV, PipelineTmaAsync, typename cutlass::PipelineAsync<kStages>>;
// We always use TMA for K_new and V_new
using MainloopPipelineKVNew = PipelineTmaAsync;
using PipelineState = cutlass::PipelineState<kStages>;
// If PackGQA, we use cp.async (instead of TMA) to load Q, so we want smem_q to be aligned
// and have sQ being position_independent_swizzle_tensor.
// If !Use_TMA_KV, we use cp.async (instead of TMA) to load K & V, so we want smem_k and smem_v to be aligned.
static constexpr size_t SmemAlignmentQ = Use_TMA_Q && !MmaQK_is_RS ? 128 : cutlass::detail::alignment_for_swizzle(SmemLayoutQ{});
static constexpr size_t SmemAlignmentK = Use_TMA_KV && !AppendKV ? 128 : cutlass::detail::alignment_for_swizzle(SmemLayoutK{});
static constexpr size_t SmemAlignmentVtNoTranspose = cutlass::detail::alignment_for_swizzle(SmemLayoutVt{});
static constexpr size_t SmemAlignmentQv = Use_TMA_Q ? 128 : cutlass::detail::alignment_for_swizzle(SmemLayoutQv{});
static_assert(SmemAlignmentQ >= 128 and SmemAlignmentK >= 128 && SmemAlignmentVtNoTranspose >= 128, "Require at least 128B alignment");
static constexpr size_t SmemAlignmentP = cutlass::detail::alignment_for_swizzle(SmemLayoutP{});
static_assert(SmemAlignmentP >= 128, "Require at least 128B alignment");
using SmemP_t = std::conditional_t<MmaPV_is_RS, cute::array<Element, 0>, cute::array_aligned<Element, cute::cosize_v<SmemLayoutP>, SmemAlignmentP>>;
using SmemScale_t = std::conditional_t<!LargeHeadDimV, cute::array<float, 0>, cute::array_aligned<float, cute::cosize_v<SmemLayoutScale>, 128>>;
using SmemQv_t = std::conditional_t<!HasQv, cute::array<Element, 0>, cute::array_aligned<Element, cute::cosize_v<SmemLayoutQv>, SmemAlignmentQv>>;
// Sometimes even with SmemP_t = cute::array<Element, 0>, putting it in the TensorStorage struct causes
// smem size to go from 227KB to 228KB and we get "invalid argument".
struct TensorStorageWithoutPNoTranspose : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentVtNoTranspose), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVtNoTranspose> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
};
struct TensorStorageWithPNoTranspose : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentVtNoTranspose, SmemAlignmentP), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVtNoTranspose> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
SmemP_t smem_p;
};
struct TensorStorageWithPScaleNoTranspose : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentVtNoTranspose, SmemAlignmentP), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVtNoTranspose> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
SmemP_t smem_p;
SmemScale_t smem_scale;
};
using TensorStorageNoTranspose = std::conditional_t<
MmaPV_is_RS,
TensorStorageWithoutPNoTranspose,
std::conditional_t<!LargeHeadDimV, TensorStorageWithPNoTranspose, TensorStorageWithPScaleNoTranspose>
>;
static constexpr size_t SmemAlignmentVt = cutlass::detail::alignment_for_swizzle(SmemLayoutVt{});
static constexpr size_t SmemAlignmentV = cutlass::detail::alignment_for_swizzle(SmemLayoutVtMma{});
static_assert(SmemAlignmentVt >= 128 and SmemAlignmentV >= 128, "Require at least 128B alignment");
struct TensorStorageTransposeV : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentV), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVtMma>, SmemAlignmentV> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVt> smem_vt;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
SmemScale_t smem_scale;
};
using TensorStorage = std::conditional_t<!Transpose_V, TensorStorageNoTranspose, TensorStorageTransposeV>;
// These are tuned for speed. They don't affect correctness.
static constexpr bool UseSchedulerBarrier = (IntraWGOverlap
? (NumMmaWarpGroups >= 2) && (!Is_FP8 ? kHeadDim <= 128 : kHeadDim >= 128)
: NumMmaWarpGroups == 2)
&& !LargeHeadDimV;
static constexpr bool RescaleOBeforeGemm = kHeadDim > 128 && (!Is_FP8 || V_colmajor) && IntraWGOverlap;
// Host side kernel arguments
struct Arguments {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
Element* const ptr_K; // not Element const* since we might append to KV cache in-place
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_Qv;
StrideQK const stride_Qv;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
float const softmax_scale;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
int const window_size_left = -1, window_size_right = -1, attention_chunk = 0;
float const softcap_val;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const* const seqlens_rotary = nullptr;
};
// Device side kernel params
struct Params {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
ShapeQPacked const shape_Q_packed;
StrideQPacked const stride_Q_packed;
Element* const ptr_K;
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_Qv;
StrideV const stride_Qv;
ShapeQPacked const shape_Qv_packed;
StrideQPacked const stride_Qv_packed;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
cutlass::FastDivmod page_size_divmod;
cutlass::FastDivmod blockN_per_page_size_divmod;
cutlass::FastDivmod qhead_per_khead_divmod;
TMA_Q tma_load_Q;
TMA_K tma_load_K;
TMA_V tma_load_V;
TMA_K tma_load_K_new;
TMA_V tma_load_V_new;
TMA_Qv tma_load_Qv;
float const softmax_scale_log2;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
float const softcap_val;
int const window_size_left, window_size_right;
cutlass::FastDivmod attention_chunk_divmod;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const *const seqlens_rotary = nullptr;
};
static Params
to_underlying_arguments(Arguments const& args) {
Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.shape_Q, args.stride_Q);
TMA_Q tma_load_Q = make_tma_copy_A_sm90(
GmemTiledCopyQ{},
mQ,
SmemLayoutQ{},
TileShape_MNK{},
ClusterShape{}); // no mcast for Q
Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.shape_K, args.stride_K);
TMA_K tma_load_K = make_tma_copy_B_sm90(
GmemTiledCopyKV{},
mK,
take<0, 2>(SmemLayoutK{}),
TileShape_MNK{},
ClusterShape{}); // mcast along M mode for this N load, if any
Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V),
make_shape(args.headdim_v, get<0>(args.shape_K), get<2>(args.shape_K), get<3>(args.shape_K)),
select<1, 0, 2, 3>(args.stride_V));
TMA_V tma_load_V = make_tma_copy(
GmemTiledCopyKV{},
mV,
take<0, 2>(SmemLayoutVt{}),
select<1, 2>(TileShape_MNK_PV{}),
size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
Tensor mKnew = make_tensor(make_gmem_ptr(args.ptr_K_new), args.shape_K_new, args.stride_K_new);
TMA_K tma_load_K_new = make_tma_copy_B_sm90(
GmemTiledCopyKV{},
cute::conditional_return<AppendKV>(mKnew, mK),
take<0, 2>(SmemLayoutK{}),
TileShape_MNK{},
ClusterShape{}); // mcast along M mode for this N load, if any
Tensor mVnew = make_tensor(make_gmem_ptr(args.ptr_V_new),
make_shape(args.headdim_v, get<0>(args.shape_K_new), get<2>(args.shape_K_new), get<3>(args.shape_K_new)),
select<1, 0, 2, 3>(args.stride_V_new));
TMA_V tma_load_V_new = make_tma_copy(
GmemTiledCopyKV{},
cute::conditional_return<AppendKV>(mVnew, mV),
take<0, 2>(SmemLayoutVt{}),
select<1, 2>(TileShape_MNK_PV{}),
size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
auto shape_Qv = make_shape(get<0>(args.shape_Q), args.headdim_v, get<2>(args.shape_Q), get<3>(args.shape_Q));
Tensor mQv = make_tensor(make_gmem_ptr(args.ptr_Qv), shape_Qv, args.stride_Qv);
TMA_Qv tma_load_Qv = [&] {
if constexpr (HasQv) {
return make_tma_copy_A_sm90(
GmemTiledCopyQ{},
mQv,
SmemLayoutQv{},
TileShape_MNK_QV{},
ClusterShape{}); // no mcast for Qv
} else {
return nullptr;
}
}();
// If PackGQA, reshape Q to be ((qhead_per_khead, seqlen_q), head_size, nhead_k, batch_size)
int const qhead_per_khead = !PackGQA ? 1 : cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K));
auto const shape_Q_packed = cute::conditional_return<!PackGQA>(
args.shape_Q,
make_shape(make_shape(qhead_per_khead, get<0>(args.shape_Q)), get<1>(args.shape_Q), get<2>(args.shape_K), get<3>(args.shape_Q))
);
auto const stride_Q_packed = cute::conditional_return<!PackGQA>(
args.stride_Q,
make_stride(make_stride(get<2>(args.stride_Q), get<0>(args.stride_Q)), get<1>(args.stride_Q), get<2>(args.stride_Q) * qhead_per_khead, get<3>(args.stride_Q))
);
auto const shape_Qv_packed = cute::conditional_return<!PackGQA>(
shape_Qv,
make_shape(make_shape(qhead_per_khead, get<0>(shape_Qv)), get<1>(shape_Qv), get<2>(args.shape_K), get<3>(shape_Qv))
);
auto const stride_Qv_packed = cute::conditional_return<!PackGQA>(
args.stride_Qv,
make_stride(make_stride(get<2>(args.stride_Qv), get<0>(args.stride_Qv)), get<1>(args.stride_Qv), get<2>(args.stride_Qv) * qhead_per_khead, get<3>(args.stride_Qv))
);
if (get<1>(args.shape_rotary) > 0) {
assert(args.ptr_rotary_cos != nullptr && args.ptr_rotary_sin != nullptr);
}
assert(args.num_splits >= 1);
int page_size = !args.ptr_pagetable ? 1 : get<0>(args.shape_K);
if (!PagedKVNonTMA && args.ptr_pagetable != nullptr) {
assert(page_size % kBlockN == 0);
assert(!args.leftpad_k);
}
// Avoid dividing by zero
cutlass::FastDivmod attention_chunk_divmod(args.attention_chunk >= 1 ? args.attention_chunk : 1);
attention_chunk_divmod.divisor = args.attention_chunk;
// If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
// Right after this, we multiply by log2(e) before applying exp2.
// To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
// (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
// (assigning it to params.softmax_scale_log2).
return {args.ptr_Q, args.shape_Q, args.stride_Q, shape_Q_packed, stride_Q_packed,
args.ptr_K, args.shape_K, args.stride_K, args.ptr_V, args.headdim_v, args.stride_V,
args.ptr_K_new, args.shape_K_new, args.stride_K_new, args.ptr_V_new, args.stride_V_new,
args.ptr_Qv, args.stride_Qv, shape_Qv_packed, stride_Qv_packed,
args.ptr_rotary_cos, args.shape_rotary, args.stride_rotary_cos,
args.ptr_rotary_sin, args.stride_rotary_sin, args.is_rotary_interleaved,
args.ptr_pagetable, args.shape_pagetable, args.stride_pagetable,
cutlass::FastDivmod(page_size), // page_size_divmod
cutlass::FastDivmod(!args.ptr_pagetable ? 1 : cute::ceil_div(page_size, kBlockN)), // blockN_per_page_size_divmod
cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
tma_load_Q, tma_load_K, tma_load_V, tma_load_K_new, tma_load_V_new, tma_load_Qv,
!Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
args.ptr_q_descale, args.ptr_k_descale, args.ptr_v_descale,
args.stride_q_descale, args.stride_k_descale, args.stride_v_descale,
!Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
args.window_size_left, args.window_size_right, attention_chunk_divmod,
!Split ? 1 : args.num_splits,
args.kv_batch_idx,
args.cu_seqlens_q, args.cu_seqlens_k, args.cu_seqlens_k_new,
args.seqused_q, args.seqused_k, args.leftpad_k, args.seqlens_rotary};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& params) {
if constexpr (Use_TMA_Q) {
cute::prefetch_tma_descriptor(params.tma_load_Q.get_tma_descriptor());
if constexpr (HasQv) {
cute::prefetch_tma_descriptor(params.tma_load_Qv.get_tma_descriptor());
}
}
if constexpr (Use_TMA_KV) {
cute::prefetch_tma_descriptor(params.tma_load_K.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_V.get_tma_descriptor());
}
if constexpr (AppendKV) {
cute::prefetch_tma_descriptor(params.tma_load_K_new.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_V_new.get_tma_descriptor());
}
}
template <typename SchedulerPrefetch, typename SharedStorage>
CUTLASS_DEVICE void
load(Params const& params,
MainloopPipelineK pipeline_k,
MainloopPipelineV pipeline_v,
MainloopPipelineVt pipeline_vt,
PipelineState& smem_pipe_write,
SharedStorage &shared_storage,
SchedulerPrefetch const& scheduler_prefetch,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
int &work_idx
) {
// some of these are captured in lambda so can't use structured binding
int const m_block = get<0>(block_coord);
int const bidh = get<1>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
auto [n_block_min, n_block_max] = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
// It's possible to have n_block_max <= n_block_min. Loading K can cause illegal memory access.
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) {
scheduler_prefetch();
return;
}
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sK_pi = as_position_independent_swizzle_tensor(sK);
// as_position_independent_swizzle_tensor makes address calculation easier when we do LDSM & STSM to transpose.
// But it requires smem_vt and smem_v to be aligned to e.g 512 bytes.
Tensor sVt = [&] {
if constexpr (!Transpose_V) {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVt{});
} else {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVt{}));
}
}();
// Only used if Transpose_V
Tensor sV = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVtMma{}));
// Only used if we're using cp.async to load V
Tensor sVcpasync = [&] {
if constexpr (!Transpose_V) {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVCpAsync{}));
} else {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVCpAsync{}));
}
}();
Tensor sQv = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_qv.data()), SmemLayoutQv{});
int const thread_idx = threadIdx.x % NumProducerThreads;
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
// Prepare the TMA loads
uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
bool const is_varlen_q = Varlen && params.cu_seqlens_q;
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
Tensor mQ = params.tma_load_Q.get_tma_tensor(params.shape_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mK_TMA = params.tma_load_K.get_tma_tensor(params.shape_K)(_, _, bidh_kv, _);
auto shape_V = make_shape(params.headdim_v, get<0>(params.shape_K), get<2>(params.shape_K), get<3>(params.shape_K));
Tensor mVt_TMA = params.tma_load_V.get_tma_tensor(shape_V)(_, _, bidh_kv, _);
Tensor gQ = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mQ), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
// if (cute::thread0()) { printf("Varlen = %d, params.leftpad_k = %p, leftpad_k = %d\n", Varlen, params.leftpad_k, leftpad_k); }
Tensor gK_TMA = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}, _0{}), mK_TMA), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}, _)); // (N, K, _, _)
Tensor gVt_TMA = local_tile(domain_offset(make_coord(_0{}, seqlen_info.offset_k, _0{}), mVt_TMA), select<1, 2>(TileShape_MNK_PV{}), make_coord(_0{}, _, _)); // (K, N, _, _)
auto block_tma_Q = params.tma_load_Q.get_slice(_0{});
Tensor tQgQ = group_modes<0, 3>(block_tma_Q.partition_S(gQ)); // (TMA)
Tensor tQsQ = group_modes<0, 3>(block_tma_Q.partition_D(sQ)); // (TMA)
if (Use_TMA_Q && thread_idx == 0) { prefetch(params.tma_load_Q, tQgQ); }
// tma_partition doesn't handle position_independent_swizzle_tensor correctly, so we need to do it manually
auto block_tma_K = params.tma_load_K.get_slice(cluster_local_block_id.x);
Tensor tKgK_TMA = group_modes<0, 3>(block_tma_K.partition_S(gK_TMA)); // (TMA, k, batch)
Tensor tKsK_TMA = group_modes<0, 3>(block_tma_K.partition_D(sK)); // (TMA, PIPE)
auto block_tma_V = params.tma_load_V.get_slice(cluster_local_block_id.x);
Tensor tVgVt_TMA = group_modes<0, 3>(block_tma_V.partition_S(gVt_TMA)); // (TMA, k, batch)
Tensor tVsVt_TMA = group_modes<0, 3>(block_tma_V.partition_D(sVt)); // (TMA, PIPE)
auto [tQvgQv, tQvsQv] = [&] {
if constexpr (HasQv) {
auto shape_Qv = make_shape(get<0>(params.shape_Q), params.headdim_v, get<2>(params.shape_Q), get<3>(params.shape_Q));
Tensor mQv = params.tma_load_Qv.get_tma_tensor(shape_Qv)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor gQv = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mQv), select<0, 2>(TileShape_MNK_QV{}), make_coord(m_block, _0{})); // (M, Kv)
auto block_tma_Qv = params.tma_load_Qv.get_slice(_0{});
Tensor tQvgQv = group_modes<0, 3>(block_tma_Qv.partition_S(gQv)); // (TMA)
Tensor tQvsQv = group_modes<0, 3>(block_tma_Qv.partition_D(sQv)); // (TMA)
return cute::make_tuple(tQvgQv, tQvsQv);
} else {
return cute::make_tuple(nullptr, nullptr);
}
}();
// This is used to index into the batch dimension of mK and mV
int const bidb_kv_idx = !is_varlen_k && !params.ptr_pagetable ? bidb_kv : 0;
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumProducerThreads, Element, Transpose_V || !IntraWGOverlap /*KV_Same_Iter*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod, params.blockN_per_page_size_divmod,
bidb_kv, bidh_kv, thread_idx, seqlen_info.seqlen_k, seqlen_info.leftpad_k, bidb_kv_idx
);
// Set up for transposing V, only used if Transpose_V
S2RTiledCopyVt s2r_tiled_copy_vt;
R2STiledCopyV r2s_tiled_copy_v;
auto s2r_thr_copy_vt = s2r_tiled_copy_vt.get_thread_slice(thread_idx);
auto r2s_thr_copy_v = r2s_tiled_copy_v.get_thread_slice(thread_idx);
// flat_divide(sVt, LDSM_divide_shape{}): (64, 8, kHeadDim / 64, kBlockN / 8, kStages)
Tensor tTranssVt_ = s2r_thr_copy_vt.partition_S(flat_divide(sVt, LDSM_divide_shape{})); // ((16, 1), 1, 1, kHeadDim / 64, kBlockN / 32, kStages)
// flat_divide(sV, STSM_divide_shape{}): (8, 16, kHeadDim / 8, (4, kBlockN / 64), kStages)
Tensor tTranssV_ = r2s_thr_copy_v.partition_D(flat_divide(sV, STSM_divide_shape{})); // ((16, 1), 1, 1, kHeadDim / 64, (2, kBlockN / 64), kStages)
CUTE_STATIC_ASSERT_V(rank(tTranssVt_) == rank(tTranssV_));
CUTE_STATIC_ASSERT_V(size<0>(tTranssVt_) == size<0>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<1>(tTranssVt_) == size<1>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<2>(tTranssVt_) == size<2>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<3>(tTranssVt_) == size<3>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<4>(tTranssVt_) == size<4>(tTranssV_));
// Faster to have 2 LDSM.T, byte permute, STSM for better ILP
static constexpr int Transpose_ILP = (size<2>(tTranssVt_) * size<3>(tTranssVt_)) % 2 == 0 ? 2 : 1;
Tensor tTranssVt = logical_divide(group_modes<1, rank(tTranssVt_) - 1>(tTranssVt_), Shape<Underscore, Int<Transpose_ILP>>{}); // ((16, 1), (2, kHeadDim / 64 * kBlockN / 32 / 2), kStages)
Tensor tTranssV = logical_divide(group_modes<1, rank(tTranssV_) - 1>(tTranssV_), Shape<Underscore, Int<Transpose_ILP>>{}); // ((16, 1), (2, kHeadDim / 64 * kBlockN / 32 / 2), kStages)
auto transpose_V = [&](int stage) {
if constexpr (Transpose_V) {
#pragma unroll
for (int i = 0; i < size<1, 1>(tTranssVt); ++i) {
Tensor tTransrV = make_fragment_like(tTranssV(_, make_coord(_, _0{}), _0{}));
static_assert(size<0>(tTransrV) == 16);
Tensor tTransrV_64 = recast<uint2>(tTransrV);
cute::copy(s2r_tiled_copy_vt, tTranssVt(_, make_coord(_, i), stage), tTransrV);
#pragma unroll
for (int j = 0; j < size(tTransrV_64); ++j) {
uint32_t upper = tTransrV_64[j].x;
uint32_t lower = tTransrV_64[j].y;
tTransrV_64[j].x = __byte_perm(upper, lower, 0x6420);
tTransrV_64[j].y = __byte_perm(upper, lower, 0x7531);
}
cute::copy(r2s_tiled_copy_v, tTransrV, tTranssV(_, make_coord(_, i), stage));
}
}
};
uint16_t mcast_mask_kv = 0;
if constexpr (cute::is_same_v<GmemTiledCopyKV, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
for (int m = 0; m < size<0>(block_layout); ++m) {
mcast_mask_kv |= (uint16_t(1) << block_layout(m, cluster_local_block_id.y, _0{}));
}
}
auto load_K = [&] (int const n_block, auto const& smem_pipe_write, auto need_seqlenk_masking_type) {
pipeline_k.producer_acquire(smem_pipe_write);
if constexpr (!PagedKVNonTMA) {
auto [n_block_idx, bidb_kv_idx] = paged_kv_manager.get_indices_for_K_TMA();
copy(params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_LAST),
tKgK_TMA(_, n_block_idx, bidb_kv_idx), tKsK_TMA(_, smem_pipe_write.index()));
} else {
constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
paged_kv_manager.template load_K<Seqlenk_mask>(n_block, sK_pi(_, _, smem_pipe_write.index()));
pipeline_k.producer_commit(smem_pipe_write, cutlass::arch::cpasync_barrier_arrive);
}
};
auto load_V = [&] (int const n_block, auto const& smem_pipe_write, auto need_seqlenk_masking_type) {
auto pipeline_v_load = cute::conditional_return<!Transpose_V>(pipeline_v, pipeline_vt);
pipeline_v_load.producer_acquire(smem_pipe_write);
if constexpr (!PagedKVNonTMA) {
auto [n_block_idx, bidb_kv_idx] = paged_kv_manager.get_indices_for_V_TMA();
copy(params.tma_load_V.with(*pipeline_v_load.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_LAST),
tVgVt_TMA(_, n_block_idx, bidb_kv_idx), tVsVt_TMA(_, smem_pipe_write.index()));
} else {
constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
paged_kv_manager.template load_V<Seqlenk_mask>(n_block, sVcpasync(_, _, smem_pipe_write.index()));
pipeline_v_load.producer_commit(smem_pipe_write, cutlass::arch::cpasync_barrier_arrive);
}
};
auto copy_Vt_to_V = [&] (auto const& smem_pipe_write) {
// Instead of maintaining smem_pipe_read as a separate variable, we can just use smem_pipe_write,
// and exploit the invariance that smem_pipe_write.phase() == smem_pipe_read.phase() ^ 1.
// This saves 1 or 2 registers.
PipelineState smem_pipe_read{smem_pipe_write.index(), smem_pipe_write.phase() ^ 1, smem_pipe_write.count()};
pipeline_vt.consumer_wait(smem_pipe_read);
pipeline_v.producer_acquire(smem_pipe_write);
transpose_V(smem_pipe_write.index());
// SMEM fence to make sure V is transposed before math
cutlass::arch::fence_view_async_shared();
pipeline_v.producer_commit(smem_pipe_write);
// Very important: PipelineTmaAsync::consumer_release assumes that the warpgroup is synchronized
// before calling. Without this we get race conditions.
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup, cutlass::arch::ReservedNamedBarriers::TransposeBarrier /*id*/);
pipeline_vt.consumer_release(smem_pipe_read);
};
int n_block = n_block_max - 1;
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
// If this is true, we're guaranteed that only the first warp will execute this function
static constexpr bool SingleProducerWarp = NumProducerThreads == cutlass::NumThreadsPerWarp;
bool should_load_KV = !Use_TMA_KV || ((SingleProducerWarp || warp_idx_in_warpgroup == 0) && cute::elect_one_sync());
if (should_load_KV) {
if constexpr (PagedKVNonTMA) {
paged_kv_manager.template load_page_table<true /*Seqlenk_mask*/, true /*First_iter*/>(n_block);
} else {
paged_kv_manager.template load_page_table_TMA<true /*First_iter*/>(n_block);
}
if constexpr (Transpose_V) { load_V(n_block, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/); }
// if (thread_idx == 0) { printf("Producer: main load, before load_K, index = %d\n", smem_pipe_write.index());}
load_K(n_block, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/);
// if (thread_idx == 0) { printf("Producer: main load, after load K, index = %d\n", smem_pipe_write.index());}
}
if constexpr (Use_TMA_Q) {
// Wait for the MMA warpgroups to signal that smem_q is ready
if (SingleProducerWarp || warp_idx_in_warpgroup == 0) {
cutlass::arch::NamedBarrier::sync(NumMmaThreadsQK + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
}
if ((SingleProducerWarp || warp_idx_in_warpgroup == 0) && cute::elect_one_sync()) {
shared_storage.pipelines.barrier_Q.arrive_and_expect_tx(TmaTransactionBytesQ);
copy(params.tma_load_Q.with(reinterpret_cast<typename cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_Q), 0 /*mcast_mask*/, !Split ? TMA::CacheHintSm90::EVICT_FIRST : TMA::CacheHintSm90::EVICT_LAST),
tQgQ, tQsQ);
if constexpr (HasQv) {
shared_storage.pipelines.barrier_Qv.arrive_and_expect_tx(TmaTransactionBytesQv);
copy(params.tma_load_Qv.with(reinterpret_cast<typename cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_Qv), 0 /*mcast_mask*/, !Split ? TMA::CacheHintSm90::EVICT_FIRST : TMA::CacheHintSm90::EVICT_LAST),
tQvgQv, tQvsQv);
}
}
} else { // Load Q with cp.async
cutlass::arch::NamedBarrier::sync(NumMmaThreadsQK + NumProducerThreads, static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
Tensor mQ = make_tensor(make_gmem_ptr(params.ptr_Q + seqlen_info.offset_q * get<0>(params.stride_Q)), params.shape_Q_packed, params.stride_Q_packed)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor sQ_pi = cute::as_position_independent_swizzle_tensor(sQ);
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumProducerThreads, Element>;
PackGQAt::load_Q(mQ, sQ_pi, params.qhead_per_khead_divmod, thread_idx, seqlen_info.seqlen_q, m_block);
auto &barrier_Q = shared_storage.pipelines.barrier_Q;
cutlass::arch::cpasync_barrier_arrive(reinterpret_cast<uint64_t*>(&barrier_Q));
barrier_Q.arrive();
if constexpr (HasQv) {
Tensor mQv = make_tensor(make_gmem_ptr(params.ptr_Qv + seqlen_info.offset_q * get<0>(params.stride_Qv)), params.shape_Qv_packed, params.stride_Qv_packed)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor sQv_pi = cute::as_position_independent_swizzle_tensor(sQv);
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK_QV{}), get<2>(TileShape_MNK_QV{}), NumProducerThreads, Element>;
PackGQAt::load_Q(mQv, sQv_pi, params.qhead_per_khead_divmod, thread_idx, seqlen_info.seqlen_q, m_block);
auto &barrier_Qv = shared_storage.pipelines.barrier_Qv;
cutlass::arch::cpasync_barrier_arrive(reinterpret_cast<uint64_t*>(&barrier_Qv));
barrier_Qv.arrive();
}
}
// Wait for the MMA WGs to signal that smem_v are ready and V can be copied from gmem
// Need ClusterBarrier, not just NamedBarrier. Otherwise we might have CTA 0 finishing the
// TMA store on O first, call TMA multicast load on V, before CTA 1 can finishing TMA store on O.
// if (thread_idx == 0) { printf("Producer: main load, before barrier_O, work_idx = %d\n", work_idx);}
shared_storage.pipelines.barrier_O.wait((work_idx + 1) % 2);
// if (thread_idx == 0) { printf("Producer: main load, after barrier_O\n");}
if constexpr (!Transpose_V && !IntraWGOverlap) {
if (should_load_KV) { load_V(n_block, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/); }
}
int n_block_prev = n_block;
--n_block;
#pragma unroll (!Transpose_V && Use_TMA_KV ? 2 : 1)
for (; n_block >= n_block_min; --n_block) {
PipelineState smem_pipe_write_v = smem_pipe_write; // copy the state, write_v is always 1 step behind
++smem_pipe_write;
if (should_load_KV) {
if constexpr (PagedKVNonTMA) {
paged_kv_manager.template load_page_table<false /*Seqlenk_mask*/>(n_block);
} else {
paged_kv_manager.load_page_table_TMA(n_block);
}
if constexpr (Transpose_V) { load_V(n_block, smem_pipe_write, cute::false_type{} /*Seqlenk_mask*/); }
load_K(n_block, smem_pipe_write, cute::false_type{} /*Seqlenk_mask*/);
if constexpr (!Transpose_V) {
if constexpr (IntraWGOverlap) {
load_V(n_block_prev, smem_pipe_write_v, cute::true_type{} /*Seqlenk_mask*/);
} else {
load_V(n_block, smem_pipe_write, cute::false_type{} /*Seqlenk_mask*/);
}
}
}
n_block_prev = n_block;
if constexpr (Transpose_V) { copy_Vt_to_V(smem_pipe_write_v); }
}
scheduler_prefetch();
if constexpr (!Transpose_V && IntraWGOverlap) {
if (should_load_KV) { load_V(n_block_prev, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/); }
}
if constexpr (Transpose_V) { copy_Vt_to_V(smem_pipe_write); }
++smem_pipe_write;
// At the end, all threads have the correct smem_pipe_write.
++work_idx;
}
template <typename SharedStorage>
CUTLASS_DEVICE void
load_tail(MainloopPipelineK pipeline_k, MainloopPipelineV pipeline_v, MainloopPipelineVt pipeline_vt,
PipelineState& smem_pipe_write, SharedStorage &shared_storage, int const work_idx) {
// If we don't wait for barrier_O here, when using Cluster, CTA0 might exit early and CTA1 will
// try to arrive on barrier_O of CTA0, causing "unspecified launch failure".
shared_storage.pipelines.barrier_O.wait((work_idx + 1) % 2);
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
// Issue the epilogue waits
// TODO: check if this should be called by 1 thread or more
if (warp_idx_in_warpgroup == 0 && cute::elect_one_sync()) {
/* This helps avoid early exit of blocks in Cluster
* Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
* then would just be acquired since the phase was still inverted from make_producer_start_state
*/
pipeline_k.producer_tail(smem_pipe_write);
pipeline_v.producer_tail(smem_pipe_write);
if constexpr (Transpose_V) { pipeline_vt.producer_tail(smem_pipe_write); }
}
}
CUTLASS_DEVICE void
warp_scheduler_barrier_sync() {
if constexpr (UseSchedulerBarrier) {
cutlass::arch::NamedBarrier::sync(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/);
}
}
CUTLASS_DEVICE void
warp_scheduler_barrier_arrive() {
if constexpr (UseSchedulerBarrier) {
static_assert(NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);
int const cur_WG = flash::canonical_warp_group_idx_nosync() - 1;
int const next_WG = NumMmaWarpGroups == 2
? 1 - cur_WG
: (cur_WG < NumMmaWarpGroups - 1 ? cur_WG + 1 : 0);
cutlass::arch::NamedBarrier::arrive(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) + next_WG /*id*/);
}
}
CUTLASS_DEVICE void
mma_init() {
int warp_group_idx = flash::canonical_warp_group_idx_nosync();
// Tell producers that smem_q is ready
if (!LargeHeadDimV || warp_group_idx == 1) {
cutlass::arch::NamedBarrier::arrive(NumMmaThreadsQK + (Use_TMA_Q ? cutlass::NumThreadsPerWarp : NumProducerThreads), static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
}
if (LargeHeadDimV && warp_group_idx > 1) {
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
}
if constexpr (UseSchedulerBarrier) {
// We have NamedBarrier for up to 3 WGs
static_assert(NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);
// WG1 needs the very first signal to start
if (warp_group_idx == 1) {
cutlass::arch::NamedBarrier::arrive(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) /*id*/);
}
}
}
template <typename SharedStorage, typename FrgTensorO, typename Softmax>
CUTLASS_DEVICE bool
mma(Params const& params,
MainloopPipelineK pipeline_k,
MainloopPipelineV pipeline_v,
PipelineState& smem_pipe_read,
FrgTensorO& tOrO,
Softmax& softmax,
int const thread_idx,
int &work_idx,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
// can't use auto [m_block, ...] = block_coord since structured binding cannot be captured in lambda
int const m_block = get<0>(block_coord);
int const bidh = get<1>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
auto [n_block_min, n_block_max] = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
// It's possible to have n_block_max <= n_block_min. We don't want to load Q or change any barrier
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) { return false; }
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVtMma{});
Tensor sP = [&] {
if constexpr (MmaPV_is_RS) {
// We might not have smem_p if !MmaPV_is_RS, just use smem_q as a placeholder since we don't use it
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutP{});
} else {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutP{});
}
}();
Tensor sScale = [&] {
if constexpr (LargeHeadDimV) {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_scale.data()), SmemLayoutScale{});
} else { // won't be used, just a placeholder
return make_tensor(make_smem_ptr(static_cast<float*>(nullptr)), SmemLayoutScale{});
}
}();
Tensor sQv = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_qv.data()), SmemLayoutQv{});
Tensor sVMmaQV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVMmaQV{});
if constexpr (!MmaQK_is_RS) {
static_assert(stride<0>(typename TiledMmaQK::ALayout{}) == 0 and
stride<0>(typename TiledMmaQK::BLayout{}) == 0 and
size<0>(typename TiledMmaQK::ALayout{}) == cutlass::NumThreadsPerWarpGroup and
size<0>(typename TiledMmaQK::BLayout{}) == cutlass::NumThreadsPerWarpGroup,
"Stride of the first mode must be 0 and the size of the mode must be NumThreadsPerWarpGroup");
}
static constexpr int MmaWarpGroups = size(TiledMmaPV{}) / cutlass::NumThreadsPerWarpGroup;
Layout warp_group_thread_layout = make_layout(make_shape(Int<MmaWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / cutlass::NumThreadsPerWarpGroup, 0);
TiledMmaQK tiled_mma_qk;
TiledMmaPV tiled_mma_pv;
TiledMmaQV tiled_mma_qv;
auto wg_mma_qk = tiled_mma_qk.get_slice(warp_group_thread_layout(warp_group_idx));
auto wg_mma_pv = tiled_mma_pv.get_slice(warp_group_thread_layout(warp_group_idx));
auto wg_mma_qv = tiled_mma_qv.get_slice(warp_group_thread_layout(warp_group_idx));
auto smem_tiled_copy_P = make_tiled_copy_C(SmemCopyAtomP{}, tiled_mma_qk);
auto smem_thr_copy_P = smem_tiled_copy_P.get_thread_slice(thread_idx);
// Allocate "fragments/descriptors"
Tensor tSrQ = wg_mma_qk.partition_fragment_A(sQ);
Tensor tSrK = wg_mma_qk.partition_fragment_B(sK);
Tensor tOrV = wg_mma_pv.partition_fragment_B(sV);
Tensor tOsP = wg_mma_pv.partition_fragment_A(sP);
Tensor tSrQv = wg_mma_qv.partition_fragment_A(sQv);
Tensor tSrV = wg_mma_qv.partition_fragment_B(sVMmaQV);
Tensor tPsP = smem_thr_copy_P.partition_D(cute::as_position_independent_swizzle_tensor(sP));
// For storing scales to smem, only used when LargeHeadDimV
auto thread_mma_pv = tiled_mma_pv.get_thread_slice(thread_idx);
Tensor taccOcO = thread_mma_pv.partition_C(cute::make_identity_tensor(select<0, 1>(TileShape_MNK_PV{})));
Tensor taccOcO_rowcol = make_tensor(taccOcO.data(), flash::convert_layout_acc_rowcol(taccOcO.layout()));
Tensor taccOcO_row = taccOcO_rowcol(_, _0{});
auto store_scales = [&](auto& scales, int stage) {
static_assert(CUTE_STATIC_V(size(scales)) == CUTE_STATIC_V(size(taccOcO_row)));
#pragma unroll
for (int mi = 0; mi < size(taccOcO_row); ++mi) {
if (get<1>(taccOcO_row(_0{})) == 0) {
sScale(get<0>(taccOcO_row(mi)), stage) = scales(mi);
}
}
};
auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
pipeline.consumer_wait(smem_pipe_read, barrier_token);
};
int const seqlen_q = seqlen_info.seqlen_q;
int const seqlen_k = seqlen_info.seqlen_k;
int n_block = n_block_max - 1;
flash::Mask<kBlockM, kBlockN, PackGQA, TiledMmaQK> mask(
thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, 0 /*sink_token_length*/,
params.attention_chunk_divmod, params.qhead_per_khead_divmod
);
float softcap_val = params.softcap_val;
if constexpr (Has_softcap && Is_FP8) {
float const q_descale = params.ptr_q_descale == nullptr ? 1.0f : params.ptr_q_descale[bidb * get<0>(params.stride_q_descale) + bidh_kv * get<1>(params.stride_q_descale)];
float const k_descale = params.ptr_k_descale == nullptr ? 1.0f : params.ptr_k_descale[bidb * get<0>(params.stride_k_descale) + bidh_kv * get<1>(params.stride_k_descale)];
softcap_val *= q_descale * k_descale;
}
// Softcapping needs to happen before masking since if we apply after masking, softcapping
// can turn -inf to e.g. -50.0, which can affect the attention softmax.
auto scoremod_premask_fn = [&](auto& tSrS) {
if constexpr (Has_softcap) { flash::apply_softcap(tSrS, softcap_val); }
};
auto write_P_to_smem = [&](auto& tOrP) {
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
}
cute::copy(smem_tiled_copy_P, smem_thr_copy_P.retile_S(tOrP), tPsP);
};
auto arrive_on_P_write_barrier = [&] {
cutlass::arch::fence_view_async_shared();
__syncwarp(); // Only need syncwarp since each warp is using its own P values for MmaPV
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
}
};
auto &barrier_Q = shared_storage.pipelines.barrier_Q;
if constexpr (!AppendKV) {
barrier_Q.wait(work_idx % 2);
} else {
if (get<1>(params.shape_rotary) > 0) { // Apply rotary to Q
using Rotary_t = Rotary<kBlockM, kHeadDim, NumMmaThreadsQK, Element, !(Is_causal || Is_local) /*FixedPosition*/>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_q,
seqlen_info.seqlen_rotary);
Tensor sQ_pi = cute::as_position_independent_swizzle_tensor(sQ);
int const qhead_per_khead = !PackGQA ? 1 : params.qhead_per_khead_divmod.divisor;
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<true /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<true /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
barrier_Q.wait(work_idx % 2);
rotary.apply_Q_interleaved(sQ_pi, tRrCos, tRrSin, m_block, qhead_per_khead);
} else {
auto [tRrCosCont, tRrSinCont] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<false /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<false /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
barrier_Q.wait(work_idx % 2);
rotary.apply_Q_contiguous(sQ_pi, tRrCosCont, tRrSinCont, m_block, qhead_per_khead);
}
// SMEM fence to make sure the rotated Q is visible to GMMA
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(NumMmaThreadsQK, static_cast<uint32_t>(FwdNamedBarriers::QueryRotated) /*id*/);
} else {
barrier_Q.wait(work_idx % 2);
}
}
if constexpr (MmaQK_is_RS) {
using SmemCopyAtomQ = Copy_Atom<cute::SM75_U32x4_LDSM_N, Element>;
auto smem_tiled_copy_Q = make_tiled_copy_A(SmemCopyAtomQ{}, tiled_mma_qk);
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(thread_idx);
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
Tensor tSsQ_copy_view = smem_thr_copy_Q.partition_S(cute::as_position_independent_swizzle_tensor(sQ));
cute::copy(smem_tiled_copy_Q, tSsQ_copy_view, tSrQ_copy_view);
}
if constexpr (IntraWGOverlap) {
Tensor tSrS = partition_fragment_C(tiled_mma_qk, select<0, 1>(TileShape_MNK{}));
consumer_wait(pipeline_k, smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_qk, tSrQ, tSrK(_, _, _, smem_pipe_read.index()), tSrS);
warpgroup_wait<0>();
pipeline_k.consumer_release(smem_pipe_read);
if constexpr (HasQv) {
shared_storage.pipelines.barrier_Qv.wait(work_idx % 2);
consumer_wait(pipeline_v, smem_pipe_read);
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_qv, tSrQv, tSrV(_, _, _, smem_pipe_read.index()), tSrS);
}
scoremod_premask_fn(tSrS);
mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block);
Tensor scores_scale = softmax.template max_get_scale</*Is_first=*/true, /*Check_inf=*/true>(tSrS);
// Don't need to store scales to send to WG1 (in the case of LargeHeadDimV) since it's 1.f
softmax.template online_softmax</*Is_first=*/true, /*Check_inf=*/true>(tSrS);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_Cregs_fp8(tSrS); }
Tensor tOrP_acc = make_tensor(tSrS.data(), flash::convert_layout_acc_Aregs<TiledMmaPV>(tSrS.layout()));
Tensor tOrP = make_tensor_like<Element>(tOrP_acc);
convert_type_out(tOrP_acc, tOrP);
if constexpr (Is_FP8 && V_colmajor) { flash::permute_Aregs_fp8(tOrP); }
if constexpr (!MmaPV_is_RS) { write_P_to_smem(tOrP); }
if constexpr (!MmaPV_is_RS) { arrive_on_P_write_barrier(); }
--n_block;
// Need to initialize tOrO in the case of RescaleOBeforeGemm where we will scale tOrO even in the 1st iter
clear(tOrO);
// tiled_mma_pv.accumulate_ = GMMA::ScaleOut::Zero;
// Each step does gemm0 for iter n_block, gemm1 for iter n_block + 1, and softmax for iter n_block.
auto fwd_step = [&](int const n_block, auto mask_fn, auto check_inf_type) {
static constexpr bool Check_inf = decltype(check_inf_type)::value;
PipelineState smem_pipe_read_v(smem_pipe_read.index(), smem_pipe_read.phase(), smem_pipe_read.count());
++smem_pipe_read;
Tensor tSrS = partition_fragment_C(tiled_mma_qk, select<0, 1>(TileShape_MNK{}));
if (!UseSchedulerBarrier || warp_group_idx == 0) { consumer_wait(pipeline_k, smem_pipe_read); }
warp_scheduler_barrier_sync();
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_qk, tSrQ, tSrK(_, _, _, smem_pipe_read.index()), tSrS);
if constexpr (RescaleOBeforeGemm) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr(!HasQv) {
if (!UseSchedulerBarrier || warp_group_idx == 0) { consumer_wait(pipeline_v, smem_pipe_read_v); }
}
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_pv, cute::conditional_return<MmaPV_is_RS>(tOrP, tOsP), tOrV(_, _, _, smem_pipe_read_v.index()), tOrO);
warp_scheduler_barrier_arrive();
warpgroup_wait<1>();
pipeline_k.consumer_release(smem_pipe_read); // release K
if constexpr (HasQv) {
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read_v); // release V
consumer_wait(pipeline_v, smem_pipe_read);
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_qv, tSrQv, tSrV(_, _, _, smem_pipe_read.index()), tSrS);
}
scoremod_premask_fn(tSrS);
mask_fn(tSrS, n_block);
cute::copy(softmax.template max_get_scale</*Is_first=*/false, Check_inf>(tSrS), scores_scale);
if constexpr (LargeHeadDimV) { store_scales(scores_scale, smem_pipe_read_v.index()); }
softmax.template online_softmax</*Is_first=*/false, Check_inf>(tSrS);
if constexpr (!HasQv) {
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read_v); // release V
}
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_Cregs_fp8(tSrS); }
convert_type_out(make_tensor(tSrS.data(), tOrP.layout()), tOrP);
if constexpr (Is_FP8 && V_colmajor) { flash::permute_Aregs_fp8(tOrP); }
if constexpr (!MmaPV_is_RS) { write_P_to_smem(tOrP); }
if constexpr (!RescaleOBeforeGemm) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (!MmaPV_is_RS) { arrive_on_P_write_barrier(); }
};
if constexpr (Is_causal || Is_local) { // Separate iterations with causal or local masking
auto mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
int const n_block_min_causal_local_mask = BlockMN_t::get_n_block_min_causal_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_right,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
#pragma unroll 1
for (; n_block >= n_block_min_causal_local_mask; --n_block) {
fwd_step(n_block, mask_fn, cute::true_type{} /*check_inf*/);
}
}
int const n_block_min_before_local_mask = BlockMN_t::get_n_block_min_before_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_left,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
auto no_mask_fn = [](auto& tSrS, int n_block) { };
#pragma unroll 1
for (; n_block >= n_block_min_before_local_mask; --n_block) {
fwd_step(n_block, no_mask_fn, cute::false_type{} /*check_inf*/);
}
// Separate masking iterations on the left for local attention
if constexpr (Is_local) {
auto local_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
fwd_step(n_block, local_mask_fn, cute::bool_constant<Is_local>{} /*check_inf*/);
}
}
// Tell producers that smem_q is ready
cutlass::arch::NamedBarrier::arrive(NumMmaThreadsQK + (Use_TMA_Q ? cutlass::NumThreadsPerWarp : NumProducerThreads), static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
if constexpr (RescaleOBeforeGemm) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (!HasQv) { consumer_wait(pipeline_v, smem_pipe_read); }
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_pv, cute::conditional_return<MmaPV_is_RS>(tOrP, tOsP), tOrV(_, _, _, smem_pipe_read.index()), tOrO);
float const v_descale = !Is_FP8 || params.ptr_v_descale == nullptr ? 1.0f : params.ptr_v_descale[bidb * get<0>(params.stride_v_descale) + bidh_kv * get<1>(params.stride_v_descale)];
cute::copy(softmax.finalize(v_descale), scores_scale);
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
store_scales(scores_scale, smem_pipe_read.index());
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
}
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read); // release V, otherwise producers will hang
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_output_fp8(tOrO); }
++smem_pipe_read;
} else { // No intra-WG overlap
warp_scheduler_barrier_sync();
auto fwd_step = [&](int const n_block, auto mask_fn, auto is_first_iter_type, auto check_inf_type) {
static constexpr bool Is_first_iter = decltype(is_first_iter_type)::value;
static constexpr bool Check_inf = decltype(check_inf_type)::value;
auto smem_pipe_read_prev = smem_pipe_read;
if constexpr (!Is_first_iter) { ++smem_pipe_read; }
Tensor tSrS = partition_fragment_C(tiled_mma_qk, select<0, 1>(TileShape_MNK{}));
consumer_wait(pipeline_k, smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_qk, tSrQ, tSrK(_, _, _, smem_pipe_read.index()), tSrS);
if constexpr (!HasQv) {
warp_scheduler_barrier_arrive();
warpgroup_wait<0>();
pipeline_k.consumer_release(smem_pipe_read); // release K
} else {
if constexpr (Is_first_iter) {
shared_storage.pipelines.barrier_Qv.wait(work_idx % 2);
}
consumer_wait(pipeline_v, smem_pipe_read);
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_qv, tSrQv, tSrV(_, _, _, smem_pipe_read.index()), tSrS);
warp_scheduler_barrier_arrive();
warpgroup_wait<1>();
pipeline_k.consumer_release(smem_pipe_read); // release K
warpgroup_wait<0>();
}
scoremod_premask_fn(tSrS);
mask_fn(tSrS, n_block);
Tensor scores_scale = softmax.template max_get_scale</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
if constexpr (LargeHeadDimV && !Is_first_iter) { store_scales(scores_scale, smem_pipe_read_prev.index()); }
softmax.template online_softmax</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_Cregs_fp8(tSrS); }
Tensor tOrP_acc = make_tensor(tSrS.data(), flash::convert_layout_acc_Aregs<TiledMmaPV>(tSrS.layout()));
Tensor tOrP = make_tensor_like<Element>(tOrP_acc);
convert_type_out(tOrP_acc, tOrP);
if constexpr (Is_FP8 && V_colmajor) { flash::permute_Aregs_fp8(tOrP); }
if constexpr (!MmaPV_is_RS) { write_P_to_smem(tOrP); }
if constexpr (!Is_first_iter) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (!MmaPV_is_RS && !MmaPV_use_RS_WG1) { arrive_on_P_write_barrier(); }
if constexpr (!HasQv) { consumer_wait(pipeline_v, smem_pipe_read); }
warp_scheduler_barrier_sync();
if constexpr (!MmaPV_use_RS_WG1) {
flash::gemm</*zero_init=*/Is_first_iter, /*wg_wait=*/-1>(tiled_mma_pv, cute::conditional_return<MmaPV_is_RS>(tOrP, tOsP), tOrV(_, _, _, smem_pipe_read.index()), tOrO);
} else {
TiledMmaPV_RS tiled_mma_pv_rs;
flash::gemm</*zero_init=*/Is_first_iter, /*wg_wait=*/-1>(tiled_mma_pv_rs, tOrP, tOrV(_, _, _, smem_pipe_read.index()), tOrO);
}
if constexpr (!MmaPV_is_RS && MmaPV_use_RS_WG1) { arrive_on_P_write_barrier(); }
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read); // release V
};
auto first_iter_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
fwd_step(n_block, first_iter_mask_fn, cute::true_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
--n_block;
if constexpr (Is_causal || Is_local) { // Separate iterations with causal or local masking
auto mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
int const n_block_min_causal_local_mask = BlockMN_t::get_n_block_min_causal_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_right,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
#pragma unroll 1
for (; n_block >= n_block_min_causal_local_mask; --n_block) {
fwd_step(n_block, mask_fn, cute::false_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
}
}
int const n_block_min_before_local_mask = BlockMN_t::get_n_block_min_before_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_left,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
auto no_mask_fn = [](auto& tSrS, int n_block) { };
#pragma unroll 1
for (; n_block >= n_block_min_before_local_mask; --n_block) {
fwd_step(n_block, no_mask_fn, cute::false_type{} /*is_first_iter*/, cute::false_type{} /*check_inf*/);
}
// Separate masking iterations on the left for local attention
if constexpr (Is_local) {
auto local_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
fwd_step(n_block, local_mask_fn, cute::false_type{} /*is_first_iter*/, cute::bool_constant<Is_local>{} /*check_inf*/);
}
}
warp_scheduler_barrier_arrive();
// Tell producers that smem_q is ready
cutlass::arch::NamedBarrier::arrive(NumMmaThreadsQK + (Use_TMA_Q ? cutlass::NumThreadsPerWarp : NumProducerThreads), static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
float const v_descale = !Is_FP8 || params.ptr_v_descale == nullptr ? 1.0f : params.ptr_v_descale[bidb * get<0>(params.stride_v_descale) + bidh_kv * get<1>(params.stride_v_descale)];
Tensor scores_scale = softmax.finalize(v_descale);
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
store_scales(scores_scale, smem_pipe_read.index());
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
}
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_output_fp8(tOrO); }
++smem_pipe_read;
}
++work_idx;
return true;
}
template <typename SharedStorage, typename FrgTensorO, typename Softmax>
CUTLASS_DEVICE bool
mma_pv(Params const& params,
MainloopPipelineV pipeline_v,
PipelineState& smem_pipe_read,
FrgTensorO& tOrO,
Softmax& softmax,
int const thread_idx,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
// can't use auto [m_block, ...] = block_coord since structured binding cannot be captured in lambda
int const m_block = get<0>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
auto [n_block_min, n_block_max] = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
// It's possible to have n_block_max <= n_block_min. We don't want to load Q or change any barrier
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) { return false; }
}
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVtMma{});
Tensor sP = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutP{});
Tensor sScale = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_scale.data()), SmemLayoutScale{});
static constexpr int MmaWarpGroups = size(TiledMmaPV{}) / cutlass::NumThreadsPerWarpGroup;
Layout warp_group_thread_layout = make_layout(make_shape(Int<MmaWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / cutlass::NumThreadsPerWarpGroup, 0);
TiledMmaPV tiled_mma_pv;
auto wg_mma_pv = tiled_mma_pv.get_slice(warp_group_thread_layout(warp_group_idx));
// Allocate "fragments/descriptors"
Tensor tOrV = wg_mma_pv.partition_fragment_B(sV);
Tensor tOsP = wg_mma_pv.partition_fragment_A(sP);
// For load scales to smem, pretend thread_idx is thread_idx % 128
auto thread_mma_pv = tiled_mma_pv.get_thread_slice(thread_idx % cutlass::NumThreadsPerWarpGroup);
Tensor taccOcO = thread_mma_pv.partition_C(cute::make_identity_tensor(select<0, 1>(TileShape_MNK_PV{})));
Tensor taccOcO_rowcol = make_tensor(taccOcO.data(), flash::convert_layout_acc_rowcol(taccOcO.layout()));
Tensor taccOcO_row = taccOcO_rowcol(_, _0{});
auto load_scales = [&](auto& scales, int stage) {
static_assert(CUTE_STATIC_V(size(scales)) == CUTE_STATIC_V(size(taccOcO_row)));
#pragma unroll
for (int mi = 0; mi < size(taccOcO_row); ++mi) {
scales(mi) = sScale(get<0>(taccOcO_row(mi)), stage);
}
};
// clear(tOrO);
// tiled_mma_pv.accumulate_ = GMMA::ScaleOut::Zero;
typename Softmax::TensorT scores_scale;
int n_block = n_block_max - 1;
// If HasQv, then by the time P is ready, V must have been ready as well
if constexpr (!HasQv) { pipeline_v.consumer_wait(smem_pipe_read); }
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiled_mma_pv, tOsP, tOrV(_, _, _, smem_pipe_read.index()), tOrO);
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
pipeline_v.consumer_release(smem_pipe_read); // release V
--n_block;
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
load_scales(scores_scale, smem_pipe_read.index());
softmax.rescale_o(tOrO, scores_scale);
++smem_pipe_read;
if constexpr (!HasQv) {
auto barrier_token = pipeline_v.consumer_try_wait(smem_pipe_read);
pipeline_v.consumer_wait(smem_pipe_read, barrier_token);
}
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_pv, tOsP, tOrV(_, _, _, smem_pipe_read.index()), tOrO);
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
pipeline_v.consumer_release(smem_pipe_read); // release V
};
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
load_scales(scores_scale, smem_pipe_read.index());
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_output_fp8(tOrO); }
++smem_pipe_read;
return true;
}
template <typename SharedStorage>
CUTLASS_DEVICE bool
load_kv_new(Params const& params,
MainloopPipelineKVNew pipeline_k_new,
MainloopPipelineKVNew pipeline_v_new,
PipelineState& smem_pipe_write,
SharedStorage &shared_storage,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
int const work_idx
) {
auto [m_block, bidh, bidb, split_idx] = block_coord;
auto [n_block_new_min, n_block_new_max] = BlockMN_t::get_n_block_k_new_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
if (n_block_new_max <= n_block_new_min) { return false; }
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sVt = [&] {
if constexpr (!Transpose_V) {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVt{});
} else {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVt{});
}
}();
// int const thread_idx = threadIdx.x % NumProducerThreads;
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
// Prepare the TMA loads
uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
bool const is_varlen_k_new = Varlen && params.cu_seqlens_k_new;
Tensor mKnew_TMA = params.tma_load_K_new.get_tma_tensor(params.shape_K_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
auto shape_Vnew = make_shape(params.headdim_v, get<0>(params.shape_K_new), get<2>(params.shape_K_new), get<3>(params.shape_K_new));
Tensor mVnewt_TMA = params.tma_load_V_new.get_tma_tensor(shape_Vnew)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
Tensor gKnew_TMA = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mKnew_TMA), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gVnewt_TMA = local_tile(domain_offset(make_coord(_0{}, seqlen_info.offset_k_new), mVnewt_TMA), select<1, 2>(TileShape_MNK_PV{}), make_coord(_0{}, _)); // (K, N, _)
auto block_tma_K_new = params.tma_load_K_new.get_slice(cluster_local_block_id.x);
Tensor tKgKnew_TMA = group_modes<0, 3>(block_tma_K_new.partition_S(gKnew_TMA)); // (TMA, k)
Tensor tKsK_TMA = group_modes<0, 3>(block_tma_K_new.partition_D(sK)); // (TMA, PIPE)
auto block_tma_V_new = params.tma_load_V_new.get_slice(cluster_local_block_id.x);
Tensor tVgVnewt_TMA = group_modes<0, 3>(block_tma_V_new.partition_S(gVnewt_TMA)); // (TMA, k)
Tensor tVsVt_TMA = group_modes<0, 3>(block_tma_V_new.partition_D(sVt)); // (TMA, PIPE)
uint16_t mcast_mask_kv = 0;
if constexpr (cute::is_same_v<GmemTiledCopyKV, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
for (int m = 0; m < size<0>(block_layout); ++m) {
mcast_mask_kv |= (uint16_t(1) << block_layout(m, cluster_local_block_id.y, _0{}));
}
}
auto load_K_new = [&] (int const n_block, auto const& smem_pipe_write) {
pipeline_k_new.producer_acquire(smem_pipe_write);
copy(params.tma_load_K_new.with(*pipeline_k_new.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_FIRST),
tKgKnew_TMA(_, n_block), tKsK_TMA(_, smem_pipe_write.index()));
};
auto load_V_new = [&] (int const n_block, auto const& smem_pipe_write) {
pipeline_v_new.producer_acquire(smem_pipe_write);
copy(params.tma_load_V_new.with(*pipeline_v_new.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_FIRST),
tVgVnewt_TMA(_, n_block), tVsVt_TMA(_, smem_pipe_write.index()));
};
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
// If this is true, we're guaranteed that only the first warp will execute this function
static constexpr bool SingleProducerWarp = NumProducerThreads == cutlass::NumThreadsPerWarp;
bool should_load_KV = (SingleProducerWarp || warp_idx_in_warpgroup == 0) && cute::elect_one_sync();
int n_block = n_block_new_max - 1;
// Need to wait for barrier_O even before load_K_new since the pipelines for AppendKV
// and the main attention are not the same. We want to make sure the consumers
// have finished reading all smem_k and smem_v for the previous iteration.
shared_storage.pipelines.barrier_O.wait((work_idx + 1) % 2);
if (should_load_KV) { load_K_new(n_block, smem_pipe_write); }
// if (thread_idx == 0) { printf("Producer: Done loading K, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
if (should_load_KV) { load_V_new(n_block, smem_pipe_write); }
// if (thread_idx == 0) { printf("Producer: Done loading V, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
++smem_pipe_write;
--n_block;
// if (thread_idx == 0) { printf("Producer: before for loop\n"); }
#pragma unroll 1
for (; n_block >= n_block_new_min; --n_block) {
if (should_load_KV) {
load_K_new(n_block, smem_pipe_write);
// if (thread_idx == 0) { printf("Producer: Done loading K, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
load_V_new(n_block, smem_pipe_write);
// if (thread_idx == 0) { printf("Producer: Done loading V, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
}
++smem_pipe_write;
}
// if (thread_idx == 0) { printf("Producer: after for loop\n"); }
// At the end, all threads have the correct smem_pipe_write.
return true;
}
template <typename SharedStorage>
CUTLASS_DEVICE bool
store_kv_new(Params const& params,
MainloopPipelineKVNew pipeline_k_new,
MainloopPipelineKVNew pipeline_v_new,
PipelineState& smem_pipe_read,
int const thread_idx,
SharedStorage &shared_storage,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord
) {
auto [m_block, bidh, bidb, split_idx] = block_coord;
auto [n_block_new_min, n_block_new_max] = BlockMN_t::get_n_block_k_new_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
if (n_block_new_max <= n_block_new_min) { return false; }
// as_position_independent_swizzle_tensor makes address calculation easier
Tensor sK = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{}));
// We want to use SmemLayoutVCpAsync to have shape (kBlockN, kHeadDim) instead of (kHeadDim, kBlockN)
Tensor sV = [&] {
if constexpr (!Transpose_V) {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVCpAsync{}));
} else {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVCpAsync{}));
}
}();
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
auto shape_V = make_shape(params.headdim_v, get<0>(params.shape_K), get<2>(params.shape_K), get<3>(params.shape_K));
Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V), shape_V, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
int const offset_k = seqlen_info.offset_k + seqlen_info.seqlen_k_og;
Tensor gK = local_tile(domain_offset(make_coord(offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gV = local_tile(domain_offset(make_coord(offset_k, _0{}), mV), select<2, 1>(TileShape_MNK_PV{}), make_coord(_, _0{})); // (N, K_v, _)
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
int const seqlen_k_new = seqlen_info.seqlen_k_new;
using Rotary_t = Rotary<kBlockN, kHeadDim, NumMmaThreads, Element>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_k_new,
seqlen_info.seqlen_rotary);
// This is used to index into the batch dimension of mK and mV
int const bidb_kv_idx = !is_varlen_k && !params.ptr_pagetable ? bidb_kv : 0;
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/, 2 /*LoadsPerRow_LB*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod, params.blockN_per_page_size_divmod,
bidb_kv, bidh_kv, thread_idx, seqlen_k_new, offset_k, bidb_kv_idx
// passing offset_k instead of leftpad_k will move the PageTable pointer to the right position
);
if constexpr (UseSchedulerBarrier) {
// WG1 already got the very first signal from mma_init(), but we'll be using the same NamedBarrier.
// So we'll need to "cancel it out" here and then re-signal it at the end.
if (flash::canonical_warp_group_idx_nosync() == 1) {
cutlass::arch::NamedBarrier::sync(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) /*id*/);
}
}
static_assert(std::is_same_v<GmemLayoutAtom, typename Rotary_t::LayoutAtom>);
static_assert(!PagedKVNonTMA || std::is_same_v<GmemLayoutAtom, typename PagedKVManager_t::GmemLayoutAtomKVCpAsync>);
GmemTiledCopyAppendKV gmem_tiled_copy_kv;
auto gmem_thr_copy_kv = gmem_tiled_copy_kv.get_thread_slice(thread_idx);
Tensor tKsK = gmem_thr_copy_kv.partition_S(sK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tKgK = gmem_thr_copy_kv.partition_D(gK);
Tensor tVsV = gmem_thr_copy_kv.partition_S(sV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVgV = gmem_thr_copy_kv.partition_D(gV);
Tensor cK = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{})); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tKcK = gmem_thr_copy_kv.partition_D(cK);
Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));
#pragma unroll
for (int k = 0; k < size(tKpK); ++k) { tKpK(k) = get<1>(tKcK(_0{}, _0{}, k)) < get<1>(params.shape_K); }
Tensor cV = cute::make_identity_tensor(select<2, 1>(TileShape_MNK_PV{})); // (BLK_N,BLK_K_V) -> (blk_n,blk_k_v)
Tensor tVcV = cute::conditional_return<SameHeadDim>(tKcK, gmem_thr_copy_kv.partition_D(cV));
Tensor tVpV_ = make_tensor<bool>(make_shape(size<2>(tVsV)));
#pragma unroll
for (int k = 0; k < size(tVpV_); ++k) { tVpV_(k) = get<1>(tVcV(_0{}, _0{}, k)) < params.headdim_v; }
Tensor tVpV = cute::conditional_return<SameHeadDim>(tKpK, tVpV_);
auto store_K = [&] (int const n_block, auto const& smem_pipe_read) {
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
if (get<1>(params.shape_rotary) <= 0) {
pipeline_k_new.consumer_wait(smem_pipe_read);
Tensor tKsK_cur = tKsK(_, _, _, smem_pipe_read.index());
if constexpr (!PagedKVNonTMA) {
Tensor tKgK_cur = tKgK(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv, tKsK_cur, tKgK_cur, tKcK, tKpK, std::min(seqlen_k_new - n_block * kBlockN, kBlockN)
);
} else {
paged_kv_manager.store_K(n_block, tKsK_cur);
}
} else {
Tensor gK_cur = gK(_, _, n_block);
auto tPrKPtr = cute::conditional_return<PagedKVNonTMA>(paged_kv_manager.compute_K_ptr(), nullptr);
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = rotary.template load_cos_sin<true /*kInterleaved*/>(n_block);
pipeline_k_new.consumer_wait(smem_pipe_read);
rotary.template apply_K_interleaved<PagedKVNonTMA>(sK(_, _, smem_pipe_read.index()), gK_cur, tKpK, tRrCos, tRrSin, tPrKPtr, n_block);
} else {
auto [tRrCosCont, tRrSinCont] = rotary.template load_cos_sin<false /*kInterleaved*/>(n_block);
pipeline_k_new.consumer_wait(smem_pipe_read);
rotary.template apply_K_contiguous<PagedKVNonTMA>(sK(_, _, smem_pipe_read.index()), gK_cur, tKpK, tRrCosCont, tRrSinCont, tPrKPtr, n_block, get<1>(params.shape_K));
}
}
// Without this fence I'm getting race condition when seqlen_k is large
cutlass::arch::fence_view_async_shared();
// Very important: PipelineTmaAsync::consumer_release assumes that the warpgroup is synchronized
// before calling.
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/);
pipeline_k_new.consumer_release(smem_pipe_read);
// if (thread_idx == 0) { print_tensor(tKpK); printf("\n"); printf("seqlen_limit = %d\n", seqlen_k_new - n_block * kBlockN);}
};
auto store_V = [&] (int const n_block, auto const& smem_pipe_read) {
pipeline_v_new.consumer_wait(smem_pipe_read);
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
Tensor tVsV_cur = tVsV(_, _, _, smem_pipe_read.index());
if constexpr (!PagedKVNonTMA) {
Tensor tVgV_cur = tVgV(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv, tVsV_cur, tVgV_cur, tVcV, tVpV, n_limit);
} else {
paged_kv_manager.store_V(n_block, tVsV_cur);
}
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/);
pipeline_v_new.consumer_release(smem_pipe_read);
};
#pragma unroll 1
for (int n_block = n_block_new_max - 1; n_block >= n_block_new_min; --n_block) {
if constexpr (PagedKVNonTMA) { paged_kv_manager.template load_page_table<true /*Seqlenk_mask*/>(n_block); }
store_K(n_block, smem_pipe_read);
// if (thread_idx == 0) { printf("Done storing K, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
store_V(n_block, smem_pipe_read);
// if (thread_idx == 0) { printf("Done storing V, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
++smem_pipe_read;
}
// if (thread_idx == 0) { printf("After for loop\n"); }
// Re-signaling the NamedBarrier that we "canceled out"
if constexpr (UseSchedulerBarrier) {
if (flash::canonical_warp_group_idx_nosync() == 1) {
cutlass::arch::NamedBarrier::arrive(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) /*id*/);
}
}
return true;
}
};
} // namespace flash
|