File size: 32,910 Bytes
eb8ddce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include "cutlass/fast_math.h"
#include "cutlass/arch/barrier.h"
#include "named_barrier.hpp"
#include "utils.h"
namespace flash {
///////////////////////////////////////////////////////////////////////////////
// Host side kernel arguments
struct TileSchedulerArguments {
// num_head is num_head_q if not PackGQA, else num_head_k
int const num_blocks, num_head, num_batch, num_splits;
int const qhead_per_khead;
int const seqlen; // Only used if Varlen and cu_seqlens == nullptr and seqused == nullptr
int const seqlen_k, headdim, headdim_v, element_size; // Used to calculate L2 swizzling
int* const tile_count_semaphore = nullptr;
int const* const cu_seqlens = nullptr;
int const* const seqused = nullptr;
// int const* const num_m_blocks_ptr = nullptr;
int const* const num_splits_dynamic_ptr = nullptr;
};
///////////////////////////////////////////////////////////////////////////////
template<bool Varlen=false, bool Split=false, bool PackGQA=false, int kBlock=128>
class SingleTileScheduler {
public:
using SharedStorage = int;
// Device side kernel params
struct Params {
int const num_blocks, num_head, num_batch, num_splits;
int const qhead_per_khead;
int const seqlen;
cutlass::FastDivmod nsplits_divmod;
int const* const cu_seqlens;
int const* const seqused;
int const* const num_splits_dynamic_ptr = nullptr;
};
static Params
to_underlying_arguments(TileSchedulerArguments const& args) {
assert(!Split || !Varlen || args.num_splits_dynamic_ptr != nullptr);
assert(!Split || !Varlen || args.num_splits < (1 << 16)); // We use the top 16 bits to store num_splits
return {args.num_blocks, args.num_head, args.num_batch, !Split ? 1 : args.num_splits,
args.qhead_per_khead, args.seqlen,
cutlass::FastDivmod(!Split ? 1 : args.num_splits),
!Varlen ? nullptr : args.cu_seqlens, !Varlen ? nullptr : args.seqused,
args.num_splits_dynamic_ptr};
}
static dim3
get_grid_shape(Params const& params, int num_sm) {
return {uint32_t(params.num_blocks), uint32_t((!Split ? 1 : params.num_splits) * params.num_head), uint32_t(params.num_batch)};
}
struct WorkTileInfo {
int block_idx = 0;
int bidh = 0;
int bidb = 0;
int split_idx = 0;
CUTLASS_DEVICE
bool
is_valid(Params const& params) const {
return bidb >= 0;
}
CUTLASS_DEVICE
cute::tuple<int32_t, int32_t, int32_t, int32_t>
get_block_coord(Params const& params) const {
return {block_idx, bidh, bidb, !Split ? 0 : split_idx};
}
};
CUTLASS_DEVICE
SingleTileScheduler(SharedStorage* const smem_scheduler) { }
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_initial_work(Params const& params) const {
WorkTileInfo work_info {int(blockIdx.x), int(blockIdx.y), int(blockIdx.z), 0};
if constexpr (Split) {
int split_idx;
work_info.bidh = params.nsplits_divmod.divmod(split_idx, work_info.bidh);
work_info.split_idx = split_idx;
}
bool is_valid_tile = true;
if constexpr (Varlen) {
int seqlen = params.seqused
? params.seqused[work_info.bidb]
: (params.cu_seqlens ? params.cu_seqlens[work_info.bidb + 1] - params.cu_seqlens[work_info.bidb] : params.seqlen);
if constexpr (PackGQA) { seqlen *= params.qhead_per_khead; }
is_valid_tile = work_info.block_idx * kBlock < seqlen;
}
if constexpr (Varlen && Split) {
int num_splits_dynamic = params.num_splits_dynamic_ptr ? params.num_splits_dynamic_ptr[work_info.bidb] : params.num_splits;
is_valid_tile &= work_info.split_idx < num_splits_dynamic;
// Use the top 16 bits to store num_splits
work_info.split_idx |= (num_splits_dynamic << 16);
}
work_info.bidb = is_valid_tile ? work_info.bidb : -1;
return work_info;
}
CUTLASS_DEVICE
void
init_consumer() const {}
CUTLASS_DEVICE
void
prefetch_next_work(Params const& params, WorkTileInfo& current_work) const {}
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_next_work(Params const& params, WorkTileInfo const& current_work) const {
return {0, 0, -1, 0};
}
};
///////////////////////////////////////////////////////////////////////////////
template<bool Split=false>
class StaticPersistentTileScheduler {
public:
using SharedStorage = int;
// Device side kernel params
struct Params {
int total_blocks;
cutlass::FastDivmod m_block_divmod, head_divmod;
cutlass::FastDivmod nsplits_divmod;
};
static Params
to_underlying_arguments(TileSchedulerArguments const& args) {
return {args.num_blocks * args.num_head * args.num_batch * (!Split ? 1 : args.num_splits),
cutlass::FastDivmod(args.num_blocks), cutlass::FastDivmod(args.num_head * (!Split ? 1 : args.num_splits)),
cutlass::FastDivmod(!Split ? 1 : args.num_splits)};
}
static dim3
get_grid_shape(Params const& params, int num_sm) {
return {uint32_t(num_sm)};
}
struct WorkTileInfo {
int tile_idx;
CUTLASS_DEVICE
bool
is_valid(Params const& params) const {
return tile_idx < params.total_blocks;
}
CUTLASS_DEVICE
cute::tuple<int32_t, int32_t, int32_t, int32_t>
get_block_coord(Params const& params) const {
int block, bidh, bidb;
bidb = params.head_divmod.divmod(bidh, params.m_block_divmod.divmod(block, tile_idx));
int split_idx = 0;
if constexpr (Split) {
bidh = params.nsplits_divmod.divmod(split_idx, bidh);
}
return {block, bidh, bidb, split_idx};
}
};
CUTLASS_DEVICE
StaticPersistentTileScheduler(SharedStorage* const smem_scheduler) {};
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_initial_work(Params const& params) const {
return {int(blockIdx.x)};
}
CUTLASS_DEVICE
void
init_consumer() const {}
CUTLASS_DEVICE
void
prefetch_next_work(Params const& params, WorkTileInfo& current_work) const {}
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_next_work(Params const& params, WorkTileInfo const& current_work) const {
return {current_work.tile_idx + int(gridDim.x)};
}
};
///////////////////////////////////////////////////////////////////////////////
template<int NumMmaThreads=2 * cutlass::NumThreadsPerWarpGroup, int NumProducerThreads=cutlass::NumThreadsPerWarp,
bool Split=false, bool PackGQA=false, bool WarpSpecialized=true>
class DynamicPersistentTileScheduler {
// This scheduler targets the causal (or local) case where each tile takes different
// amount of time. We use longest-processing-time-first scheduling:
// the longest remaining tile is assigned to the first SM that's free.
// SM indicates they are free by incrementing a semaphore.
// However, we have to make sure K & V still fit into L2 cache, so we perform scheduling
// on "sections" of the head & batch dimension, each section consisting of e.g. 8 heads.
// This is the L2 swizzling part. The size of each section is precomputed based on the
// size of K & V and the L2 cache size.
static_assert(WarpSpecialized || NumProducerThreads == NumMmaThreads);
static constexpr int NumThreads = WarpSpecialized ? NumMmaThreads + NumProducerThreads : NumMmaThreads;
public:
using SharedStorage = int;
protected:
SharedStorage* const tile_count_smem;
public:
// Device side kernel params
struct Params {
int const total_blocks;
cutlass::FastDivmod const m_block_divmod, head_divmod;
cutlass::FastDivmod const l2_minor_divmod, l2_major_divmod;
cutlass::FastDivmod const l2_minor_residual_divmod;
int const num_hb_quotient;
int* const tile_count_semaphore;
};
static Params
to_underlying_arguments(TileSchedulerArguments const& args) {
int const size_one_kv_head = args.seqlen_k * (args.headdim + args.headdim_v) * args.element_size;
int const size_l2 = 32 * 1024 * 1024; // 32 MB for K & V
// Swizzle is the size of each "section". Round swizzle to a power of 2
// If not PackGQA already, the size of each section can increase by qhead_per_khead
// Need to be careful about the case where only one head will fit
auto find_log2_floor = [&](int n) { return 31 - cutlass::clz(n); };
// Seems faster if swizzle if a power of 2
int const swizzle = (size_l2 < size_one_kv_head ? 1 : (1 << find_log2_floor(size_l2 / size_one_kv_head))) * (PackGQA ? 1 : args.qhead_per_khead);
// If we're in the last section (called residual), we don't want to divide by
// swizzle. Instead we want to divide by the remainder.
int const num_hb_remainder = (args.num_head * args.num_batch) % swizzle;
int const num_split_blocks = args.num_blocks * (!Split ? 1 : args.num_splits);
// printf("num_split_blocks = %d, num_head = %d, num_batch = %d, swizzle = %d, PackGQA = %d, qhead_per_khead = %d, num_hb_remainder = %d\n", num_split_blocks, args.num_head, args.num_batch, swizzle, int(PackGQA), args.qhead_per_khead, num_hb_remainder);
assert(args.tile_count_semaphore != nullptr);
return {num_split_blocks * args.num_head * args.num_batch,
cutlass::FastDivmod(args.num_blocks), cutlass::FastDivmod(args.num_head),
cutlass::FastDivmod(swizzle), cutlass::FastDivmod(swizzle * num_split_blocks),
// don't divide by 0
cutlass::FastDivmod(num_hb_remainder > 0 ? num_hb_remainder : 1),
(args.num_head * args.num_batch) / swizzle,
args.tile_count_semaphore};
}
static dim3
get_grid_shape(Params const& params, int num_sm) {
return {uint32_t(num_sm)};
}
struct WorkTileInfo {
int tile_idx;
CUTLASS_DEVICE
bool
is_valid(Params const& params) const {
return tile_idx < params.total_blocks;
}
CUTLASS_DEVICE
cute::tuple<int32_t, int32_t, int32_t, int32_t>
get_block_coord(Params const& params) const {
int block, bidh, bidb;
int l2_mod, bidhb, bidhb_residual;
bidhb = params.l2_major_divmod.divmod(l2_mod, tile_idx);
// If we're in the last section (called residual), we don't want to divide by
// swizzle. Instead we want to divide by the remainder.
if (bidhb < params.num_hb_quotient) {
block = params.l2_minor_divmod.divmod(bidhb_residual, l2_mod);
} else {
block = params.l2_minor_residual_divmod.divmod(bidhb_residual, l2_mod);
}
bidb = params.head_divmod.divmod(bidh, bidhb * params.l2_minor_divmod.divisor + bidhb_residual);
int split_idx = 0;
if constexpr (Split) {
split_idx = params.m_block_divmod.divmod(block, block);
}
// Longest-processing-time-first
block = params.m_block_divmod.divisor - 1 - block;
return {block, bidh, bidb, split_idx};
}
};
CUTLASS_DEVICE
DynamicPersistentTileScheduler(SharedStorage* const smem_scheduler) : tile_count_smem(smem_scheduler) {};
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_initial_work(Params const& params) const {
return {int(blockIdx.x)};
}
CUTLASS_DEVICE
void
init_consumer() const {
if (WarpSpecialized || cutlass::canonical_warp_idx_sync() > 0) {
flash::named_barrier_arrive(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier0 /*id*/); // TileCountSmemEmpty
}
}
CUTLASS_DEVICE
void
prefetch_next_work(Params const& params, WorkTileInfo& current_work) const {
if (threadIdx.x % NumProducerThreads == 0) {
current_work.tile_idx = atomicAdd(params.tile_count_semaphore, 1) + int(gridDim.x);
}
}
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_next_work(Params const& params, WorkTileInfo const& current_work) const {
if constexpr (IsProducerWarp) {
// thread 0 already has the right tile_idx, just need to broadcast to the rest of warp 0
int new_tile_idx = __shfl_sync(0xffffffff, current_work.tile_idx, 0 /*lane*/);
flash::named_barrier_sync(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier0 /*id*/); // TileCountSmemEmpty
if (threadIdx.x % NumProducerThreads == 0) {
*tile_count_smem = current_work.tile_idx;
}
flash::named_barrier_arrive(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier1 /*id*/); // TileCountSmemFull
return {new_tile_idx};
} else {
flash::named_barrier_sync(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier1 /*id*/); // TileCountSmemFull
int tile_idx = *tile_count_smem;
flash::named_barrier_arrive(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier0 /*id*/); // TileCountSmemEmpty
return {tile_idx};
}
}
};
///////////////////////////////////////////////////////////////////////////////
class SingleTileBwdLPTScheduler {
public:
using SharedStorage = int;
// Device side kernel params
struct Params {
int const total_blocks;
cutlass::FastDivmod const m_block_divmod, head_divmod;
cutlass::FastDivmod const l2_minor_divmod, l2_major_divmod;
cutlass::FastDivmod const l2_minor_residual_divmod;
int const num_hb_quotient;
};
static Params
to_underlying_arguments(TileSchedulerArguments const& args) {
// Since it's the bwd pass, seqlen_k get passed to args.seqlen and seqlen_q is passed to args.seqlen_k
int const size_one_qdo_head = args.seqlen_k * (args.headdim + args.headdim_v) * args.element_size;
int const size_one_dqaccum_head = args.seqlen_k * args.headdim * sizeof(float);
int const size_one_head = size_one_qdo_head + size_one_dqaccum_head;
int const size_l2 = 40 * 1024 * 1024; // 40 MB for Q, dO, and dQaccum
// Swizzle is the size of each "section". Round swizzle to a power of 2
// Need to be careful about the case where only one head will fit
auto find_log2_floor = [&](int n) { return 31 - cutlass::clz(n); };
// Seems faster if swizzle if a power of 2
int const swizzle = size_l2 < size_one_head ? 1 : (1 << find_log2_floor(size_l2 / size_one_head));
// If we're in the last section (called residual), we don't want to divide by
// swizzle. Instead we want to divide by the remainder.
int const num_hb_remainder = (args.num_head * args.num_batch) % swizzle;
// printf("num_blocks = %d, num_head = %d, num_batch = %d, size_one_head = %d, ratio = %d, swizzle = %d, num_hb_remainder = %d\n", args.num_blocks, args.num_head, args.num_batch, size_one_head, size_l2 / size_one_head, swizzle, num_hb_remainder);
assert(args.tile_count_semaphore != nullptr);
return {args.num_blocks * args.num_head * args.num_batch,
cutlass::FastDivmod(args.num_blocks), cutlass::FastDivmod(args.num_head),
cutlass::FastDivmod(swizzle), cutlass::FastDivmod(swizzle * args.num_blocks),
// don't divide by 0
cutlass::FastDivmod(num_hb_remainder > 0 ? num_hb_remainder : 1),
(args.num_head * args.num_batch) / swizzle};
}
static dim3
get_grid_shape(Params const& params, int num_sm) {
return {uint32_t(params.total_blocks)};
}
struct WorkTileInfo {
int tile_idx;
CUTLASS_DEVICE
bool
is_valid(Params const& params) const {
return tile_idx < params.total_blocks;
}
CUTLASS_DEVICE
cute::tuple<int32_t, int32_t, int32_t, int32_t>
get_block_coord(Params const& params) const {
int block, bidh, bidb;
int l2_mod, bidhb, bidhb_residual;
bidhb = params.l2_major_divmod.divmod(l2_mod, tile_idx);
// If we're in the last section (called residual), we don't want to divide by
// swizzle. Instead we want to divide by the remainder.
if (bidhb < params.num_hb_quotient) {
block = params.l2_minor_divmod.divmod(bidhb_residual, l2_mod);
} else {
block = params.l2_minor_residual_divmod.divmod(bidhb_residual, l2_mod);
}
bidb = params.head_divmod.divmod(bidh, bidhb * params.l2_minor_divmod.divisor + bidhb_residual);
return {block, bidh, bidb, 0 /*split_idx*/};
}
};
CUTLASS_DEVICE
SingleTileBwdLPTScheduler(SharedStorage* const smem_scheduler) { }
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_initial_work(Params const& params) const {
return {int(blockIdx.x)};
}
CUTLASS_DEVICE
void
init_consumer() const {}
CUTLASS_DEVICE
void
prefetch_next_work(Params const& params, WorkTileInfo& current_work) const {}
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_next_work(Params const& params, WorkTileInfo const& current_work) const {
return {params.total_blocks};
}
};
///////////////////////////////////////////////////////////////////////////////
template<int kBlock, int NumMmaThreads=2 * cutlass::NumThreadsPerWarpGroup, int NumProducerThreads=cutlass::NumThreadsPerWarp, bool Split=false, bool PackGQA=false, bool WarpSpecialized=true>
class VarlenDynamicPersistentTileScheduler {
static_assert(WarpSpecialized || NumProducerThreads == NumMmaThreads);
static constexpr int NumThreads = WarpSpecialized ? NumMmaThreads + NumProducerThreads : NumMmaThreads;
public:
using SharedStorage = int4;
protected:
SharedStorage* const work_info_smem;
public:
// Device side kernel params
struct Params {
int num_head, num_batch;
int const qhead_per_khead;
int const seqlen;
cutlass::FastDivmod head_divmod;
cutlass::FastDivmod nsplits_divmod;
int* const tile_count_semaphore;
int const* const cu_seqlens;
int const* const seqused;
// int* const num_m_blocks_ptr;
int const* const num_splits_dynamic_ptr;
};
static Params
to_underlying_arguments(TileSchedulerArguments const& args) {
// If Split, for the purpose of scheduling, we pretend that instead there are
// (args.num_splits * args.num_head) number of heads.
assert(args.tile_count_semaphore != nullptr);
assert(args.num_head < (1 << 16)); // We use the top 16 bits to store num_splits & split_idx
assert(!Split || args.num_splits < (1 << 8)); // We use the top 8 bits to store num_splits
return {args.num_head, args.num_batch,
args.qhead_per_khead, args.seqlen,
cutlass::FastDivmod(args.num_head),
cutlass::FastDivmod(!Split ? 1 : args.num_splits),
args.tile_count_semaphore, args.cu_seqlens, args.seqused,
// args.num_m_blocks_ptr,
args.num_splits_dynamic_ptr};
}
static dim3
get_grid_shape(Params const& params, int num_sm) {
return {uint32_t(num_sm)};
}
struct WorkTileInfo {
int tile_idx, block, bidh, bidb;
CUTLASS_DEVICE
bool
is_valid(Params const& params) const {
// if (blockIdx.x >= 0 && (threadIdx.x == 128 || threadIdx.x == 0)) { printf("blockIdx.x = %d, threadIdx.x = %d, checking valid, bidb = %d, params.num_batch = %d\n", blockIdx.x, threadIdx.x, bidb, params.num_batch); }
return bidb < params.num_batch;
}
CUTLASS_DEVICE
cute::tuple<int32_t, int32_t, int32_t, int32_t>
get_block_coord(Params const& params) const {
if constexpr (!Split) {
return {block, bidh, bidb, 0 /*split_idx*/};
} else {
// the top 8 bits of bidh store num_splits and the next 8 bits store split_idx
// reinterpret_cast to uint32_t to make sure we're not doing sign extension when we shift
uint32_t bidh_packed = reinterpret_cast<uint32_t const&>(bidh);
uint32_t bidh_actual_u = bidh_packed & 0x0000FFFF;
int bidh_actual = reinterpret_cast<int&>(bidh_actual_u);
// Use the top 16 bits of split_idx to store num_splits and the next 16 bits to store split_idx
uint32_t split_idx_u = ((bidh_packed & 0x00FF0000) >> 16) + ((bidh_packed & 0xFF000000) >> 8);
int split_idx = reinterpret_cast<int&>(split_idx_u);
// int bidh_actual = params.nsplits_divmod.divmod(split_idx, bidh);
// if (threadIdx.x == 128) {
// printf("blockIdx.x = %d, bidb = %d, bidh = %d, bidh_actual = %d, split_idx = %d\n", blockIdx.x, bidb, bidh, bidh_actual, split_idx);
// }
return {block, bidh_actual, bidb, split_idx};
}
}
};
CUTLASS_DEVICE
VarlenDynamicPersistentTileScheduler(SharedStorage* const smem_scheduler) : work_info_smem(smem_scheduler) {};
CUTLASS_DEVICE
WorkTileInfo
tile_idx_to_work_tile(Params const& params, int next_tile_idx, WorkTileInfo const& current_work) const {
int lane = threadIdx.x % cutlass::NumThreadsPerWarp;
auto get_num_m_blocks = [&] (int bidb_start) {
int batch_idx = lane + bidb_start;
int seqlen = params.seqlen * (!PackGQA ? 1 : params.qhead_per_khead);
if (seqlen > kBlock) {
if (params.seqused) {
seqlen = batch_idx < params.num_batch ? params.seqused[batch_idx] : 0;
} else if (params.cu_seqlens) {
int cur_cu_seqlen = batch_idx <= params.num_batch ? params.cu_seqlens[batch_idx] : 0;
int next_cu_seqlen = __shfl_down_sync(0xffffffff, cur_cu_seqlen, 1);
seqlen = next_cu_seqlen - cur_cu_seqlen;
} else {
seqlen = params.seqlen;
}
if constexpr (PackGQA) { seqlen *= params.qhead_per_khead; }
}
return batch_idx < params.num_batch && lane < cutlass::NumThreadsPerWarp - 1
? cute::ceil_div(seqlen, kBlock) : 0;
// ? params.num_m_blocks_ptr[batch_idx] : 0;
};
auto get_num_splits = [&] (int bidb_start) {
int batch_idx = lane + bidb_start;
return batch_idx < params.num_batch && lane < cutlass::NumThreadsPerWarp - 1
? (!Split ? 1 : (params.num_splits_dynamic_ptr
? params.num_splits_dynamic_ptr[batch_idx]
: params.nsplits_divmod.divisor))
: 0;
};
int num_m_blocks = get_num_m_blocks(current_work.bidb); // Different for each lane
int num_splits = get_num_splits(current_work.bidb);
int num_split_m_blocks = !Split ? num_m_blocks : num_m_blocks * num_splits;
// Cumulative number of blocks for the next 31 batches
int num_m_blocks_cumulative = warp_prefix_sum(num_split_m_blocks);
// Total number of blocks for the next 31 batches
int m_blocks_in_group = __shfl_sync(0xffffffff, num_m_blocks_cumulative, cutlass::NumThreadsPerWarp - 1);
// Only the lower 16 bits are the actual bidh
int current_bidh = !Split ? current_work.bidh : (current_work.bidh & 0x0000FFFF);
int group_end_tile = current_work.tile_idx - current_work.block - current_bidh * __shfl_sync(0xffffffff, num_split_m_blocks, 0 /*lane*/) + m_blocks_in_group * params.num_head; // Same for all lanes
if constexpr (Split) {
int current_split_idx = (current_work.bidh & 0x00FF0000) >> 16;
group_end_tile -= current_split_idx * __shfl_sync(0xffffffff, num_m_blocks, 0 /*lane*/);
}
int bidb = current_work.bidb;
// if (blockIdx.x <= 9 && threadIdx.x == 0) {
// printf("Before while, blockIdx.x = %d, threadIdx.x = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, cur tile_idx = %d, cur block = %d, cur bidh = %d, num_split_m_blocks = %d, group_end_tile = %d, m_blocks_in_group = %d\n", blockIdx.x, threadIdx.x, current_work.bidb, num_m_blocks, next_tile_idx, current_work.tile_idx, current_work.block, current_bidh, num_split_m_blocks, group_end_tile, m_blocks_in_group);
// }
// if (threadIdx.x == 0 && blockIdx.x == 0) { printf("tile_idx = %d, group_end_tile = %d, num_m_blocks_cumulative = %d, m_blocks_in_group = %d\n", current_work.tile_idx, group_end_tile, num_m_blocks_cumulative, m_blocks_in_group); }
while (group_end_tile <= next_tile_idx) {
bidb += cutlass::NumThreadsPerWarp - 1;
if (bidb >= params.num_batch) {
// if (blockIdx.x <= 9 && threadIdx.x == 0) {
// printf("Returning early, blockIdx.x = %d, threadIdx.x = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, group_end_tile = %d, m_blocks_in_group = %d\n", blockIdx.x, threadIdx.x, bidb, num_m_blocks, next_tile_idx, group_end_tile, m_blocks_in_group);
// }
return {next_tile_idx, 0, 0, params.num_batch};
}
num_m_blocks = get_num_m_blocks(bidb);
num_splits = get_num_splits(bidb);
num_split_m_blocks = !Split ? num_m_blocks : num_m_blocks * num_splits;
num_m_blocks_cumulative = warp_prefix_sum(num_split_m_blocks);
m_blocks_in_group = __shfl_sync(0xffffffff, num_m_blocks_cumulative, cutlass::NumThreadsPerWarp - 1);
group_end_tile += m_blocks_in_group * params.num_head;
// if (blockIdx.x <= 9 && threadIdx.x == 0) {
// printf("Bottom of while, blockIdx.x = %d, threadIdx.x = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, group_end_tile = %d, m_blocks_in_group = %d\n", blockIdx.x, threadIdx.x, bidb, num_m_blocks, next_tile_idx, group_end_tile, m_blocks_in_group);
// }
}
int group_start_tile = group_end_tile - m_blocks_in_group * params.num_head;
// The next problem to process is the first one that does not have ending tile position
// that is greater than or equal to tile index.
int batch_idx_in_group = __popc(__ballot_sync(0xffffffff, group_start_tile + num_m_blocks_cumulative * params.num_head <= next_tile_idx));
// if (threadIdx.x == 31 || threadIdx.x == 0) { printf("blockIdx.x = %d, tidx %d, group_start_tile = %d, num_m_blocks_cumulative = %d, num_head = %d, next_tile_idx = %d, ballot = %x, batch_idx_in_group = %d\n", blockIdx.x, threadIdx.x, group_start_tile, num_m_blocks_cumulative, params.num_head, next_tile_idx, tmp, batch_idx_in_group); }
bidb += batch_idx_in_group;
num_m_blocks = __shfl_sync(0xffffffff, num_m_blocks, batch_idx_in_group);
if constexpr (Split) { num_splits = __shfl_sync(0xffffffff, num_splits, batch_idx_in_group); }
int mh_block = next_tile_idx - group_start_tile - (batch_idx_in_group == 0 ? 0 : __shfl_sync(0xffffffff, num_m_blocks_cumulative, batch_idx_in_group - 1)) * params.num_head;
int bidh = mh_block / num_m_blocks;
int block = mh_block - bidh * num_m_blocks;
if constexpr (Split) {
int bidh_actual = bidh / num_splits;
int split_idx = bidh - bidh_actual * num_splits;
// TODO: idk why this gives wrong answer nondeterministically
// int bidh_actual, split_idx;
// split_idx = params.head_divmod.divmod(bidh_actual, bidh);
// Use the top 8 bits to store num_splits and the next 8 bits to store split_idx
// reinterpret_cast to uint32_t to make sure we're not doing sign extension when we shift
uint32_t bidh_packed = reinterpret_cast<uint32_t&>(bidh_actual) + (reinterpret_cast<uint32_t&>(split_idx) << 16) + (reinterpret_cast<uint32_t&>(num_splits) << 24);
// if (threadIdx.x == 0) {
// printf("blockIdx.x = %d, group_start_tiled = %d, bidb = %d, batch_idx_in_group = %d, mh_block = %d, num_m_blocks = %d, bidh = %d, bidh_actual = %d, split_idx = %d, num_splits = %d, bidh_packed = %d\n", blockIdx.x, group_start_tile, bidb, batch_idx_in_group, mh_block, num_m_blocks, bidh, bidh_actual, split_idx, num_splits, bidh_packed);
// }
bidh = reinterpret_cast<int&>(bidh_packed);
}
// if (blockIdx.x <= 9 && threadIdx.x == 0) {
// printf("Before returning, blockIdx.x = %d, threadIdx.x = %d, group_start_tile = %d, batch_idx_in_group = %d, bidb = %d, num_m_blocks = %d, next_tile_idx = %d, group_end_tile = %d, m_blocks_in_group = %d, mh_block = %d, bidh = %d, block = %d\n", blockIdx.x, threadIdx.x, group_start_tile, batch_idx_in_group, bidb, num_m_blocks, next_tile_idx, group_end_tile, m_blocks_in_group, mh_block, bidh, block);
// }
return {next_tile_idx, block, bidh, bidb};
}
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_initial_work(Params const& params) const {
if constexpr (IsProducerWarp) {
WorkTileInfo work_info = tile_idx_to_work_tile(params, int(blockIdx.x), {0, 0, 0, 0});
if (threadIdx.x % cutlass::NumThreadsPerWarp == 0) {
*work_info_smem = make_int4(work_info.tile_idx, work_info.block, work_info.bidh, work_info.bidb);
}
flash::named_barrier_arrive(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier1 /*id*/); // TileCountSmemFull
return work_info;
} else {
return get_next_work<false>(params, {0, 0, 0, 0});
}
}
CUTLASS_DEVICE
void
init_consumer() const {
// Don't arrive at the TileCountSmemEmpty barrier here, because get_initial_work will do that
}
CUTLASS_DEVICE
void
prefetch_next_work(Params const& params, WorkTileInfo& current_work) const {
if (threadIdx.x % NumProducerThreads == 0) {
current_work.tile_idx = atomicAdd(params.tile_count_semaphore, 1) + int(gridDim.x);
}
}
template<bool IsProducerWarp=false>
CUTLASS_DEVICE
WorkTileInfo
get_next_work(Params const& params, WorkTileInfo const& current_work) const {
if constexpr (IsProducerWarp) {
// thread 0 has the next tile_idx, just need to broadcast to the rest of warp 0
int new_tile_idx = __shfl_sync(0xffffffff, current_work.tile_idx, 0 /*lane*/);
WorkTileInfo work_info = {__shfl_sync(0xffffffff, current_work.tile_idx, 1 /*lane*/), current_work.block, current_work.bidh, current_work.bidb};
work_info = tile_idx_to_work_tile(params, new_tile_idx, work_info);
flash::named_barrier_sync(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier0 /*id*/); // TileCountSmemEmpty
if (threadIdx.x % cutlass::NumThreadsPerWarp == 0) {
*work_info_smem = make_int4(work_info.tile_idx, work_info.block, work_info.bidh, work_info.bidb);
}
flash::named_barrier_arrive(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier1 /*id*/); // TileCountSmemFull
return work_info;
} else {
flash::named_barrier_sync(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier1 /*id*/); // TileCountSmemFull
int4 work_info = *work_info_smem;
flash::named_barrier_arrive(NumThreads, cutlass::arch::ReservedNamedBarriers::StreamkBarrier0 /*id*/); // TileCountSmemEmpty
return WorkTileInfo{work_info.x, work_info.y, work_info.z, work_info.w};
}
}
};
///////////////////////////////////////////////////////////////////////////////
} // flash
|