kernel
flash-attn3 / flash-attn /flash_bwd_preprocess_kernel.h
danieldk's picture
danieldk HF Staff
Convert FA3 to Kernel Hub format
eb8ddce
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include "cute/tensor.hpp"
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "seqlen.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <class TileShape_MK_, class Element, class ElementAccum, class ArchTag_, bool Clear_dQaccum, bool Varlen>
class FlashAttnBwdPreprocess {
public:
// Type Aliases
using TileShape_MK = TileShape_MK_;
using ArchTag = ArchTag_;
static_assert(std::is_same_v<Element, cutlass::half_t> && ArchTag::kMinComputeCapability >= 75 ||
std::is_same_v<Element, cutlass::bfloat16_t> && ArchTag::kMinComputeCapability >= 80 ||
std::is_same_v<Element, cutlass::float_e4m3_t> && ArchTag::kMinComputeCapability >= 89);
static constexpr uint32_t MaxThreadsPerBlock = 256;
static constexpr uint32_t MinBlocksPerMultiprocessor = 2;
static constexpr int SharedStorageSize = 0;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(get<1>(TileShape_MK{}) % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
static constexpr int kBlockM = get<0>(TileShape_MK{});
static constexpr int kHeadDim = get<1>(TileShape_MK{});
// We want kBlockKGmem to be a power of 2 so that when we do the summing,
// it's just between threads in the same warp
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(MaxThreadsPerBlock % kGmemThreadsPerRow == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopy = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per load
static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
static_assert((kBlockM * kHeadDim / kGmemElemsPerLoadAccum) % MaxThreadsPerBlock == 0, "MaxThreadsPerBlock must divide kBlockM * kHeadDim / kGmemElemsPerLoadAccum");
using GmemLayoutAtomAccum = Layout<Shape<Int<MaxThreadsPerBlock>>>;
using GmemTiledCopyAccum = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
GmemLayoutAtomAccum{},
Layout<Shape<Int<kGmemElemsPerLoadAccum>>>{})); // Val layout, 4 vals per store
using ShapeO = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen_q, d, head, batch)
using StrideO = cute::Stride<int64_t, _1, int64_t, int64_t>;
using ShapedPsum = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen_q, head, batch)
using StridedPsum = cute::Stride<_1, int64_t, int64_t>;
using ShapedQaccum = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen_q * d, head, batch)
using StridedQaccum = cute::Stride<_1, int64_t, int64_t>;
// Device side arguments
struct Arguments {
Element const* ptr_O;
ShapeO const shape_O;
StrideO const stride_O;
Element const* ptr_dO;
StrideO const stride_dO;
float* ptr_dPsum;
ShapedPsum const shape_dPsum;
StridedPsum const stride_dPsum;
float const* ptr_LSE;
StridedPsum const stride_LSE;
float *ptr_LSE_log2;
StridedPsum const stride_LSE_log2;
ElementAccum* ptr_dQaccum;
ShapedQaccum const shape_dQaccum;
StridedQaccum const stride_dQaccum;
int num_batch; // We need this to know the size of dq_semaphore in case of varlen
int* dq_semaphore;
int const* cu_seqlens = nullptr;
int const* seqused = nullptr;
};
// Kernel entry point API
struct Params {
Element const* ptr_O;
ShapeO const shape_O;
StrideO const stride_O;
Element const* ptr_dO;
StrideO const stride_dO;
float* ptr_dPsum;
ShapedPsum const shape_dPsum;
StridedPsum const stride_dPsum;
float const* ptr_LSE;
StridedPsum const stride_LSE;
float* ptr_LSE_log2;
StridedPsum const stride_LSE_log2;
ElementAccum* ptr_dQaccum;
ShapedQaccum const shape_dQaccum;
StridedQaccum const stride_dQaccum;
int num_batch;
int* dq_semaphore;
int const* cu_seqlens = nullptr;
int const* seqused = nullptr;
};
// Convert to underlying arguments. In this case, a simple copy for the aliased type.
static
Params
to_underlying_arguments(Arguments const& args) {
return {
args.ptr_O,
args.shape_O,
args.stride_O,
args.ptr_dO,
args.stride_dO,
args.ptr_dPsum,
args.shape_dPsum,
args.stride_dPsum,
args.ptr_LSE,
args.stride_LSE,
args.ptr_LSE_log2,
args.stride_LSE_log2,
args.ptr_dQaccum,
args.shape_dQaccum,
args.stride_dQaccum,
args.num_batch,
args.dq_semaphore,
args.cu_seqlens,
args.seqused
};
}
CUTLASS_DEVICE
void
operator()(Params const& params, [[maybe_unused]] char* smem_buf) {
static constexpr int kBlockM = get<0>(TileShape_MK{});
int const thread_idx = threadIdx.x;
int const m_block = blockIdx.x;
int const bidh = blockIdx.y;
int const bidb = blockIdx.z;
flash::SeqlenInfo<Varlen, kBlockM> seqlen_info(bidb, size<0>(params.shape_O), params.cu_seqlens, params.seqused);
bool const is_varlen = Varlen && params.cu_seqlens;
int const seqlen_o = seqlen_info.seqlen;
if (is_varlen && m_block * kBlockM >= seqlen_o) { return; }
Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O), params.shape_O, params.stride_O)(_, _, bidh, !is_varlen ? bidb : 0);
Tensor gO = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mO), TileShape_MK{}, make_coord(m_block, _0{})); // (M, K)
Tensor mdO = make_tensor(make_gmem_ptr(params.ptr_dO), params.shape_O, params.stride_dO)(_, _, bidh, !is_varlen ? bidb : 0);
Tensor gdO = local_tile(cute::domain_offset(make_coord(seqlen_info.offset, _0{}), mdO), TileShape_MK{}, make_coord(m_block, _0{})); // (M, K)
auto shape_LSE = select<0, 2, 3>(params.shape_O);
Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE), shape_LSE, params.stride_LSE)(_, bidh, !is_varlen ? bidb : 0);
Tensor gLSE = local_tile(cute::domain_offset(make_coord(seqlen_info.offset), mLSE), Shape<Int<kBlockM>>{}, make_coord(m_block));
static_assert(kBlockM <= MaxThreadsPerBlock);
float lse = thread_idx < seqlen_o - m_block * kBlockM && thread_idx < kBlockM ? gLSE(thread_idx) : INFINITY;
GmemTiledCopy gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOgO = gmem_thr_copy_O.partition_S(gO);
Tensor tOgdO = gmem_thr_copy_O.partition_S(gdO);
// Construct identity layout for gO
Tensor cO = cute::make_identity_tensor(TileShape_MK{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_O.partition_D(cO);
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgO)));
#pragma unroll
for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O); }
// (8, kBlockM / 32, kHeadDim / 64) or (8, kBlockM / 16, kHeadDim / 128)
Tensor tOrO = make_fragment_like(tOgO);
Tensor tOrdO = make_fragment_like(tOgdO);
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clearn_OOB_K=*/true>(
gmem_tiled_copy_O, tOgO, tOrO, tOcO, tOpO, seqlen_o - m_block * kBlockM
);
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clearn_OOB_K=*/true>(
gmem_tiled_copy_O, tOgdO, tOrdO, tOcO, tOpO, seqlen_o - m_block * kBlockM
);
// if (threadIdx.x == 222) { printf("bidx = %d, bidy = %d, bidz = %d, seqlen_o = %d, m_block = %d, seqlen_o - m_block * kBlockM = %d, tOgO addr = %p\n", blockIdx.x, blockIdx.y, blockIdx.z, seqlen_o, m_block, seqlen_o - m_block * kBlockM, &tOgO(0));}
// Reshape from e.g. (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, (8, kHeadDim / 64))
Layout l = make_layout(get<1>(tOrO.layout()), make_layout(get<0>(tOrO.layout()), get<2>(tOrO.layout())));
Tensor tOrO_l = make_tensor(tOrO.data(), l);
Tensor o_fp32 = make_tensor_like<float>(tOrO_l);
flash::convert_type_out(tOrO_l, o_fp32);
Tensor tOrdO_l = make_tensor(tOrdO.data(), l);
Tensor do_fp32 = make_tensor_like<float>(tOrdO_l);
flash::convert_type_out(tOrdO_l, do_fp32);
// Sum across the last dimension
Tensor dP_sum = make_tensor<float>(make_shape(size<0>(o_fp32)));
#pragma unroll
for (int mi = 0; mi < size<0>(o_fp32); ++mi) {
float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
#pragma unroll
for (int ni = 1; ni < size<1>(o_fp32); ni++) {
dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
}
flash::SumOp<float> sum_op;
dP_sum(mi) = flash::Allreduce<kGmemThreadsPerRow>::run(dP_sum_cur, sum_op);
}
Tensor mdPsum = make_tensor(make_gmem_ptr(params.ptr_dPsum), params.shape_dPsum, params.stride_dPsum)(_, bidh, !is_varlen ? bidb : 0);
Tensor gdPsum = local_tile(cute::domain_offset(make_coord(seqlen_info.offset_padded), mdPsum), Shape<Int<kBlockM>>{}, make_coord(m_block));
if (get<1>(tOcO(_0{}, _0{}, _0{})) == 0) {
#pragma unroll
for (int mi = 0; mi < size(dP_sum); ++mi) {
int const row = get<0>(tOcO(_0{}, mi, _0{}));
gdPsum(row) = row < seqlen_o - m_block * kBlockM ? dP_sum(mi) : 0;
}
}
int const seqlen_rounded = cute::round_up(seqlen_o, kBlockM);
Tensor mLSElog2 = make_tensor(make_gmem_ptr(params.ptr_LSE_log2), params.shape_dPsum, params.stride_LSE_log2)(_, bidh, !is_varlen ? bidb : 0);
Tensor gLSElog2 = local_tile(cute::domain_offset(make_coord(seqlen_info.offset_padded), mLSElog2), Shape<Int<kBlockM>>{}, make_coord(m_block));
if (thread_idx < seqlen_rounded - m_block * kBlockM && thread_idx < kBlockM) {
gLSElog2(thread_idx) = lse == -INFINITY ? 0.f : lse * float(M_LOG2E);
}
if constexpr (Clear_dQaccum) {
Tensor mdQaccum = make_tensor(make_gmem_ptr(params.ptr_dQaccum), params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen ? bidb : 0);
Tensor gdQaccum = local_tile(cute::domain_offset(make_coord(seqlen_info.offset_padded * kHeadDim), mdQaccum), Shape<Int<kBlockM * kHeadDim>>{}, make_coord(m_block));
GmemTiledCopyAccum gmem_tiled_copy_dQaccum;
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(thread_idx);
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tensor zero = make_fragment_like(tdQgdQaccum);
clear(zero);
cute::copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{}, zero, tdQgdQaccum);
}
if (params.dq_semaphore != nullptr && thread_idx == 0) {
int const num_batch = params.num_batch;
int const num_head = get<2>(params.shape_O);
params.dq_semaphore[bidh + bidb * num_head + m_block * num_head * num_batch] = 0;
}
}
};
} // namespace flash