kernel
flash-attn3 / flash-attn /mainloop_bwd_sm80.hpp
danieldk's picture
danieldk HF Staff
Convert FA3 to Kernel Hub format
eb8ddce
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cute/tensor.hpp"
#include "seqlen.h"
#include "mask.h"
#include "mask.h"
#include "softmax.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <int Stages, int Stages_dO, class TileShape_MNK_, class Element_, class ElementAccum_, class ArchTag_,
bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool Deterministic,
bool SdP_swapAB_, bool dKV_swapAB_, bool dQ_swapAB_,
int NumMmaWarpGroups=2, int AtomLayoutMSdP=1, int AtomLayoutNdKV=8, int AtomLayoutMdQ=1,
bool V_in_regs=false>
struct CollectiveMainloopBwdSm80 {
static constexpr int kStages = Stages;
static constexpr int kStages_dO = Stages_dO;
static_assert(kStages >= kStages_dO);
using TileShape_MNK = TileShape_MNK_;
using Element = Element_;
using ElementAccum = ElementAccum_;
using ArchTag = ArchTag_;
static constexpr bool Is_causal = Is_causal_;
static constexpr bool Is_local = Is_local_;
static constexpr bool Has_softcap = Has_softcap_;
static constexpr bool Varlen = Varlen_;
static constexpr int NumMmaWarps = NumMmaWarpGroups * cutlass::NumWarpsPerWarpGroup;
static constexpr bool SdP_swapAB = SdP_swapAB_;
static constexpr bool dKV_swapAB = dKV_swapAB_;
static constexpr bool dQ_swapAB = dQ_swapAB_;
static constexpr bool Q_dO_same_stages = kStages == kStages_dO;
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
using SeqlenInfo_t = flash::SeqlenInfoQK<Varlen, kBlockM>;
using BlockMN_t = flash::BlockMN<SeqlenInfo_t, kBlockM, kBlockN, Is_causal, Is_local>;
static_assert(ArchTag::kMinComputeCapability >= 80);
static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80;
static constexpr int NumMmaThreads = NumMmaWarps * cutlass::NumThreadsPerWarp;
static constexpr int NumProducerThreads = NumMmaThreads; // For compatibility with TileScheduler
using MMA_Atom_Arch = std::conditional_t<
ArchTag::kMinComputeCapability >= 80,
std::conditional_t<
std::is_same_v<Element, cutlass::half_t>,
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
>,
MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>
>;
static_assert(NumMmaWarps % AtomLayoutMSdP == 0);
static_assert(NumMmaWarps % AtomLayoutNdKV == 0);
static_assert(NumMmaWarps % AtomLayoutMdQ == 0);
static constexpr bool Mma_dKV_is_RS = AtomLayoutMSdP == 1 && AtomLayoutNdKV == NumMmaWarps && SdP_swapAB && !dKV_swapAB;
static constexpr bool Mma_dQ_is_RS = AtomLayoutMSdP == NumMmaWarps && AtomLayoutMdQ == NumMmaWarps && !SdP_swapAB && !dQ_swapAB; // If dQ_swapAB we can't use RS
using AtomLayoutSdP = std::conditional_t<
!SdP_swapAB,
Layout<Shape<Int<AtomLayoutMSdP>, Int<NumMmaWarps / AtomLayoutMSdP>, _1>>,
Layout<Shape<Int<NumMmaWarps / AtomLayoutMSdP>, Int<AtomLayoutMSdP>, _1>>
>;
static constexpr bool MmaSdPEvenN = ((!SdP_swapAB ? kBlockN : kBlockM) / size<1>(AtomLayoutSdP{})) % 16 == 0;
using TiledMmaSdP = TiledMMA<
MMA_Atom_Arch,
AtomLayoutSdP,
Tile<Int<16 * CUTE_STATIC_V(size<0>(AtomLayoutSdP{}))>, Int<(MmaSdPEvenN ? 16 : 8) * CUTE_STATIC_V(size<1>(AtomLayoutSdP{}))>, _16>>;
using AtomLayoutdKV = std::conditional_t<
!dKV_swapAB,
Layout<Shape<Int<AtomLayoutNdKV>, Int<NumMmaWarps / AtomLayoutNdKV>, _1>>,
Layout<Shape<Int<NumMmaWarps / AtomLayoutNdKV>, Int<AtomLayoutNdKV>, _1>>
>;
static constexpr bool MmadKVEvenN = ((!dKV_swapAB ? kHeadDim : kBlockN) / size<1>(AtomLayoutdKV{})) % 16 == 0;
using TiledMmadKV = TiledMMA<
MMA_Atom_Arch,
AtomLayoutdKV,
Tile<Int<16 * CUTE_STATIC_V(size<0>(AtomLayoutdKV{}))>, Int<(MmadKVEvenN ? 16 : 8) * CUTE_STATIC_V(size<1>(AtomLayoutdKV{}))>, _16>>;
using AtomLayoutdQ = std::conditional_t<
!dQ_swapAB,
Layout<Shape<Int<AtomLayoutMdQ>, Int<NumMmaWarps / AtomLayoutMdQ>, _1>>,
Layout<Shape<Int<NumMmaWarps / AtomLayoutMdQ>, Int<AtomLayoutMdQ>, _1>>
>;
static constexpr bool MmadQEvenN = ((!dQ_swapAB ? kHeadDim : kBlockM) / size<1>(AtomLayoutdQ{})) % 16 == 0;
using TiledMmadQ = TiledMMA<
MMA_Atom_Arch,
AtomLayoutdQ,
Tile<Int<16 * CUTE_STATIC_V(size<0>(AtomLayoutdQ{}))>, Int<(MmadQEvenN ? 16 : 8) * CUTE_STATIC_V(size<1>(AtomLayoutdQ{}))>, _16>>;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
// We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). E.g. if hdim=128, we want each
// thread to have 4 loads in the M direction and 2 vectorized load in the K direction.
static constexpr int kBytePerRow = kHeadDim * sizeof(Element);
static constexpr int kBlockKGmem = (kBytePerRow % 128 == 0 ? 128 : (kBytePerRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kSwizzle = kBlockKGmem == 128 ? 4 : (kBlockKGmem == 64 ? 3 : (kBlockKGmem == 32 ? 2 : 1));
static constexpr int kSwizzleBase = sizeof(Element) == 4 ? 2 : (sizeof(Element) == 2 ? 3 : 4);
// We need to accommodate both Q and Q^T (and dO and dO^T) in shared memory.
// Q & dO are used in the SdP Mma and Q^T and dO^T are used in the dKV Mma.
// Since this is GMMA::Major::K, the M dimension (kBlockM) doesn't matter for the layout, only the K dimension
// changes the layout.
using SmemLayoutAtomQdO = decltype(
composition(Swizzle<kSwizzle, kSwizzleBase, kSwizzleBase>{},
Layout<Shape<_8, Int<kBlockKGmem>>,
Stride<Int<kBlockKGmem>, _1>>{}));
using SmemLayoutQ =
decltype(tile_to_shape(SmemLayoutAtomQdO{},
make_shape(shape<0>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutdO =
decltype(tile_to_shape(SmemLayoutAtomQdO{},
make_shape(shape<0>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages_dO>{})));
using SmemLayoutAtomKV = decltype(
composition(Swizzle<kSwizzle, kSwizzleBase, kSwizzleBase>{},
// TODO: FA2 has a slightly different layout, does it matter?
Layout<Shape<_8, Int<kBlockKGmem>>,
Stride<Int<kBlockKGmem>, _1>>{}));
using SmemLayoutK = decltype(tile_to_shape(SmemLayoutAtomKV{}, select<1, 2>(TileShape_MNK{})));
using SmemLayoutV = decltype(tile_to_shape(SmemLayoutAtomKV{}, select<1, 2>(TileShape_MNK{})));
// TD [2023-03-19]: Idk why kPBlockN = 16 and kSwizzlePdS=3 is the fastest.
static constexpr int kPBlockN = kBlockN % 64 == 0 ? 64 : (kBlockN % 32 == 0 ? 32 : 16);
static_assert(kPBlockN == 16 || kPBlockN == 32 || kPBlockN == 64);
// static constexpr int kSwizzlePdS = kPBlockN == 16 ? 1 : (kPBlockN == 32 ? 2 : 3);
static constexpr int kSwizzlePdS = 3;
using SmemLayoutAtomPdS = decltype(
composition(Swizzle<kSwizzlePdS, kSwizzleBase, kSwizzleBase>{},
Layout<Shape<Int<kBlockM>, Int<kPBlockN>>,
Stride<Int<kPBlockN>, _1>>{}));
using SmemLayoutPdS = decltype(tile_to_shape(
SmemLayoutAtomPdS{},
make_shape(Int<kBlockM>{}, Int<kBlockN>{})));
// We set stride to be multiple of 64 so that if ShuffleLSE, even if threads read from sLSE but out of bounds,
// it's still a valid smem address.
using SmemLayoutLSE = cute::Layout<cute::Shape<Int<kBlockM>, Int<kStages>>, cute::Stride<_1, Int<cute::round_up(kBlockM, 64)>>>;
using SmemLayoutLSEMma = std::conditional_t<
SdP_swapAB,
cute::Layout<cute::Shape<Int<kBlockN>, Int<kBlockM>, Int<kStages>>, cute::Stride<_0, _1, Int<cute::round_up(kBlockM, 64)>>>,
cute::Layout<cute::Shape<Int<kBlockM>, Int<kBlockN>, Int<kStages>>, cute::Stride<_1, _0, Int<cute::round_up(kBlockM, 64)>>>
>;
// Note this is the transpose in terms of the view, not in terms of memory.
using SmemLayoutQt =
decltype(cute::composition(SmemLayoutQ{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
using SmemLayoutdOt =
decltype(cute::composition(SmemLayoutdO{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages_dO>{}),
make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
using SmemLayoutKt =
decltype(cute::composition(SmemLayoutK{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{})),
make_stride(Int<kBlockN>{}, _1{}))));
using SmemLayoutPdSt =
decltype(cute::composition(SmemLayoutPdS{},
make_layout(make_shape(Int<kBlockN>{}, Int<kBlockM>{}),
make_stride(Int<kBlockM>{}, _1{}))));
// Thread layout, 256 or 384 threads per row
using R2SLayoutAtomdQaccum = Layout<Shape<Int<NumMmaThreads>>>;
using R2STiledCopydQaccum = decltype(make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{}, R2SLayoutAtomdQaccum{},
Layout<Shape < _1>>{})); // Val layout, 1 vals per store
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, Element>;
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, Element>;
// For the case where the N dimension of MmaSdP is divisible by 8 but not by 16
using SmemCopyAtomHalf = Copy_Atom<SM75_U32x2_LDSM_N, Element>;
// For the case where the N dimension of MmadQ is divisible by 8 but not by 16
using SmemCopyAtomTransposedHalf = Copy_Atom<SM75_U16x4_LDSM_T, Element>;
// If !SdP_swapAB, the accum registers hold P / dS, otherwise they hold Pt / dSt.
// If PdS_major is MN, then we need to "transpose" the write.
// TODO: check this write
using R2SCopyAtomPdS = Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using GmemCopyStruct = std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL_ZFILL<cute::uint128_t>,
AutoVectorizingCopyWithAssumedAlignment<128>
>;
using GmemCopyAtom = Copy_Atom<GmemCopyStruct, Element>;
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(NumMmaThreads % kGmemThreadsPerRow == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(GmemCopyAtom{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per read
using GmemCopyAtomLSE = Copy_Atom<GmemCopyStruct, float>;
using GmemLayoutAtomLSE = Layout<Shape<Int<NumMmaThreads>>>;
using GmemTiledCopyLSE = decltype(make_tiled_copy(GmemCopyAtomLSE{}, GmemLayoutAtomLSE{},
Layout<Shape<_4>>{})); // Val layout, 4 vals per store
// So that we don't have to check if we overshot kBlockM when we load Q
// static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0);
using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideQKV = cute::Stride<int64_t, _1, int64_t, int64_t>;
using ShapeLSE = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen, head, batch)
using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen, head, batch)
using ShapedQaccum = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen_q * d, head, batch)
using StridedQaccum = cute::Stride<_1, int64_t, int64_t>;
// These are tuned for speed. They don't affect correctness.
// We have separate iterations with causal masking. Not necessary for hdim 128 but for hdim 64
// this helps quite a bit to not have to do causal masking for most of the iterations.
// For hdim 192, separating masking iterations results in register spills.
// static constexpr bool SeparateMaskingIterations = kHeadDim <= 64;
static constexpr bool SeparateMaskingIterations = false;
// Do we keep the LSE and dPsum in each thread, or split them across 8 threads that share them and then
// shuffle to get the value whenever we need? This can reduce register pressure when SdP_swapAB, where each
// thread needs to keep statistics for (kBlockM / 4) rows. If !SdP_swapAB, each thread only needs to keep
// statistic for 2 rows.
// static constexpr bool ShuffleLSE = SdP_swapAB && kHeadDim <= 64;
// static constexpr bool ShuffledPsum = SdP_swapAB && kHeadDim <= 64;
static constexpr bool ShuffleLSE = SdP_swapAB && false;
static constexpr bool ShuffledPsum = SdP_swapAB && false;
static constexpr bool Share_QV_Smem = V_in_regs;
using SmemP_t = std::conditional_t<Mma_dKV_is_RS, cute::array<Element, 0>, cute::array_aligned<Element, cute::cosize_v<SmemLayoutPdS>>>;
struct TensorStorageSharedQV : cute::aligned_struct<128> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
union {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
};
cute::array_aligned<Element, cute::cosize_v<SmemLayoutdO>> smem_do;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_lse;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_dpsum;
SmemP_t smem_p;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutPdS>> smem_ds;
};
struct TensorStorageSeparateQV : cute::aligned_struct<128> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutdO>> smem_do;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_lse;
cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_dpsum;
SmemP_t smem_p;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutPdS>> smem_ds;
};
using TensorStorage = std::conditional_t<Share_QV_Smem, TensorStorageSharedQV, TensorStorageSeparateQV>;
// Host side kernel arguments
struct Arguments {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQKV const stride_Q;
Element const* const ptr_K;
ShapeQKV const shape_K;
StrideQKV const stride_K;
Element const* const ptr_V;
ShapeQKV const shape_V;
StrideQKV const stride_V;
Element const* const ptr_dO;
ShapeQKV const shape_dO;
StrideQKV const stride_dO;
ElementAccum* const ptr_dQaccum;
ShapedQaccum const shape_dQaccum;
StridedQaccum const stride_dQaccum;
float const* const ptr_LSE_log2;
ShapeLSE const shape_LSE;
StrideLSE const stride_LSE_log2;
float const* const ptr_dPsum;
StrideLSE const stride_dPsum;
float const softmax_scale;
int const window_size_left, window_size_right, attention_chunk;
float const softcap_val;
int const num_batch;
int* const dq_semaphore;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
};
// Device side kernel params
struct Params {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQKV const stride_Q;
Element const* const ptr_K;
ShapeQKV const shape_K;
StrideQKV const stride_K;
Element const* const ptr_V;
ShapeQKV const shape_V;
StrideQKV const stride_V;
Element const* const ptr_dO;
ShapeQKV const shape_dO;
StrideQKV const stride_dO;
ElementAccum* const ptr_dQaccum;
ShapedQaccum const shape_dQaccum;
StridedQaccum stride_dQaccum;
cutlass::FastDivmod qhead_per_khead_divmod;
float const* const ptr_LSE_log2;
ShapeLSE const shape_LSE;
StrideLSE const stride_LSE_log2;
float const* const ptr_dPsum;
StrideLSE const stride_dPsum;
float const softmax_scale, softmax_scale_log2;
int const window_size_left, window_size_right;
cutlass::FastDivmod attention_chunk_divmod;
float const softcap_val;
int const num_batch;
int *const dq_semaphore;
int const *const cu_seqlens_q = nullptr;
int const *const cu_seqlens_k = nullptr;
int const *const seqused_q = nullptr;
int const *const seqused_k = nullptr;
};
static Params
to_underlying_arguments(Arguments const& args) {
if constexpr (Deterministic) { assert(args.dq_semaphore != nullptr); }
// Avoid dividing by zero
cutlass::FastDivmod attention_chunk_divmod(args.attention_chunk >= 1 ? args.attention_chunk : 1);
attention_chunk_divmod.divisor = args.attention_chunk;
// If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
// Right after this, we multiply by log2(e) before applying exp2.
// To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
// (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
// (assigning it to params.softmax_scale_log2).
// In the backward, we need to multiply by
// (1 - tanh^2) * softmax_scale / softcap_val * softcap_val = (1 - tanh^2) * softmax_scale.
// Instead we multiply by (1 - tanh^2) and multiply dK and dV by params.softmax_scale
// (the original softmax_scale) at the end.
return {args.ptr_Q, args.shape_Q, args.stride_Q,
args.ptr_K, args.shape_K, args.stride_K,
args.ptr_V, args.shape_V, args.stride_V,
args.ptr_dO, args.shape_dO, args.stride_dO,
args.ptr_dQaccum, args.shape_dQaccum, args.stride_dQaccum,
cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
args.ptr_LSE_log2, args.shape_LSE, args.stride_LSE_log2, args.ptr_dPsum, args.stride_dPsum,
args.softmax_scale,
!Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
args.window_size_left, args.window_size_right, attention_chunk_divmod,
!Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
args.num_batch, args.dq_semaphore,
args.cu_seqlens_q, args.cu_seqlens_k, args.seqused_q, args.seqused_k};
}
template <typename SharedStorage, typename FrgTensordKV>
CUTLASS_DEVICE bool
mma(Params const& params,
FrgTensordKV& tdKrdK,
FrgTensordKV& tdVrdV,
int thread_idx,
cute::tuple<int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensordKV>::value, "dK and dV tensor must be rmem resident.");
int n_block = get<0>(block_coord);
int bidh = get<1>(block_coord);
int bidb = get<2>(block_coord);
SeqlenInfo_t seqlen_info{
bidb, get<0>(params.shape_Q), size<0>(params.shape_K),
params.cu_seqlens_q, params.cu_seqlens_k, params.seqused_q, params.seqused_k
};
auto m_block_min_max = BlockMN_t::get_m_block_min_max(
seqlen_info, n_block, bidb,
params.window_size_left, params.window_size_right, 0 /*sink_token_length*/);
int const m_block_min = get<0>(m_block_min_max);
int const m_block_max = get<1>(m_block_min_max);
// It's possible to have m_block_max <= m_block_min. Exit early
if constexpr (Is_causal || Is_local || Varlen) {
if (m_block_max <= m_block_min) { return false; }
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sdO = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdO{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
Tensor sQt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQt{});
Tensor sdOt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdOt{});
Tensor sKt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutKt{});
Tensor sP = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutPdS{});
Tensor sPt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutPdSt{});
Tensor sdS = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_ds.data()), SmemLayoutPdS{});
Tensor sdSt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_ds.data()), SmemLayoutPdSt{});
Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_lse.data()), SmemLayoutLSE{});
Tensor sdPsum = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dpsum.data()), SmemLayoutLSE{});
Tensor sLSEMma = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_lse.data()), SmemLayoutLSEMma{});
Tensor sdPsumMma = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dpsum.data()), SmemLayoutLSEMma{});
bool const is_varlen_q = Varlen && params.cu_seqlens_q;
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
int bidh_kv = params.qhead_per_khead_divmod.divide(bidh);
Tensor mQ = make_tensor(make_gmem_ptr(params.ptr_Q), params.shape_Q, params.stride_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mdO = make_tensor(make_gmem_ptr(params.ptr_dO), params.shape_dO, params.stride_dO)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V), params.shape_V, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE_log2), params.shape_LSE, params.stride_LSE_log2)(_, bidh, !is_varlen_q ? bidb : 0);
Tensor mdPsum = make_tensor(make_gmem_ptr(params.ptr_dPsum), params.shape_LSE, params.stride_dPsum)(_, bidh, !is_varlen_q ? bidb : 0);
Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.ptr_dQaccum)),
params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen_q ? bidb : 0);
Tensor gQ = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mQ), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
Tensor gdO = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mdO), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
Tensor gK = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
Tensor gV = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}), mV), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
Tensor gLSE = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded), mLSE), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
Tensor gdPsum = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded), mdPsum), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
Tensor gdQaccum = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded * kHeadDim), mdQaccum), Shape<Int<kBlockM * kHeadDim>>{}, make_coord(_)); // (M * K, _)
GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(thread_idx);
auto gmem_thr0_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(_0{}); // For index calculation
GmemTiledCopyLSE gmem_tiled_copy_lse;
auto gmem_thr_copy_lse = gmem_tiled_copy_lse.get_thread_slice(thread_idx);
R2STiledCopydQaccum r2s_tiled_copy_dQaccum;
auto r2s_thr_copy_dQaccum = r2s_tiled_copy_dQaccum.get_thread_slice(thread_idx);
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor tdOgdO = gmem_thr_copy_QKV.partition_S(gdO);
Tensor tdOsdO = gmem_thr_copy_QKV.partition_D(sdO);
Tensor tLSEgLSE = gmem_thr_copy_lse.partition_S(gLSE);
Tensor tLSEsLSE = gmem_thr_copy_lse.partition_D(sLSE);
Tensor tLSEgdPsum = gmem_thr_copy_lse.partition_S(gdPsum);
Tensor tLSEsdPsum = gmem_thr_copy_lse.partition_D(sdPsum);
// We can reuse r2s_thr_copy_dQaccum for this partitioning
Tensor tdQgdQaccum = r2s_thr_copy_dQaccum.partition_D(gdQaccum);
// if (blockIdx.x == 0 && threadIdx.x == 128) { print(mdQaccum); printf("\n"); print(gdQaccum_); printf("\n"); print(gdQaccum); printf("\n"); print(tdQgdQaccum); printf("\n"); }
TiledMmaSdP tiled_mma_SdP;
TiledMmadKV tiled_mma_dKV;
TiledMmadQ tiled_mma_dQ;
auto thr_mma_SdP = tiled_mma_SdP.get_thread_slice(thread_idx);
auto thr_mma_dKV = tiled_mma_dKV.get_thread_slice(thread_idx);
auto thr_mma_dQ = tiled_mma_dQ.get_thread_slice(thread_idx);
// Allocate "fragments/descriptors"
// We have to use the templated mma_partition_fragment_AB instead of cute::conditional_return or lambda,
// because some partition_fragment_A/B don't compile.
// https://stackoverflow.com/questions/50051473/if-constexpr-in-c17-does-not-work-in-a-non-templated-function
Tensor tdPrV = mma_partition_fragment_AB</*A=*/SdP_swapAB>(thr_mma_SdP, sV);
// Copy Atom retiling
auto smem_copy_atom_SdP_B = cute::conditional_return<MmaSdPEvenN>(SmemCopyAtom{}, SmemCopyAtomHalf{});
auto smem_tiled_copy_QdO = cute::conditional_return<!SdP_swapAB>(make_tiled_copy_A(SmemCopyAtom{}, tiled_mma_SdP), make_tiled_copy_B(smem_copy_atom_SdP_B, tiled_mma_SdP));
auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(thread_idx);
Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);
auto smem_tiled_copy_KV = cute::conditional_return<!SdP_swapAB>(make_tiled_copy_B(smem_copy_atom_SdP_B, tiled_mma_SdP), make_tiled_copy_A(SmemCopyAtom{}, tiled_mma_SdP));
auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(thread_idx);
Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);
auto r2s_tiled_copy_PdS = make_tiled_copy_C(R2SCopyAtomPdS{}, tiled_mma_SdP);
auto r2s_thr_copy_PdS = r2s_tiled_copy_PdS.get_thread_slice(thread_idx);
Tensor tPsP = r2s_thr_copy_PdS.partition_D(cute::conditional_return<!SdP_swapAB>(sP, sPt)); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor tdSsdS = r2s_thr_copy_PdS.partition_D(cute::conditional_return<!SdP_swapAB>(sdS, sdSt)); // ((Atom,AtomNum),PIPE_M,PIPE_N)
// if (blockIdx.x == 0 && threadIdx.x == 128) { print(r2s_thr_copy_PdS); print(sP); printf("\n"); print(sPt); printf("\n"); print(tPsP); printf("\n"); print(tdSsdS); printf("\n"); }
auto smem_copy_atom_dKV_B = cute::conditional_return<MmadKVEvenN>(SmemCopyAtomTransposed{}, SmemCopyAtomTransposedHalf{});
auto smem_tiled_copy_PdSt = cute::conditional_return<!dKV_swapAB>(make_tiled_copy_A(SmemCopyAtomTransposed{}, tiled_mma_dKV), make_tiled_copy_B(smem_copy_atom_dKV_B, tiled_mma_dKV));
auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(thread_idx);
Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);
auto smem_tiled_copy_QdOt = cute::conditional_return<!dKV_swapAB>(make_tiled_copy_B(smem_copy_atom_dKV_B, tiled_mma_dKV), make_tiled_copy_A(SmemCopyAtomTransposed{}, tiled_mma_dKV));
auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(thread_idx);
Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);
auto smem_tiled_copy_dS = cute::conditional_return<!dQ_swapAB>(
make_tiled_copy_A(SmemCopyAtom{}, tiled_mma_dQ),
make_tiled_copy_B(cute::conditional_return<MmadQEvenN>(SmemCopyAtom{}, SmemCopyAtomHalf{}), tiled_mma_dQ));
auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(thread_idx);
Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);
auto smem_tiled_copy_Kt = cute::conditional_return<!dQ_swapAB>(
make_tiled_copy_B(cute::conditional_return<MmadQEvenN>(SmemCopyAtomTransposed{}, SmemCopyAtomTransposedHalf{}), tiled_mma_dQ),
make_tiled_copy_A(SmemCopyAtomTransposed{}, tiled_mma_dQ));
auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(thread_idx);
Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);
// thr_mma_SdP.partition_C(sLSEMma) has shape (MMA=4, MMA_M, MMA_N, PIPE), we only take the col indices
// or row indices, depending on whether SdP_swapAB.
Tensor tSsLSEMma = logical_divide(thr_mma_SdP.partition_C(sLSEMma), Shape<_2>{}); // (2, 2, MMA_M, MMA_N, PIPE)
Tensor tSsLSE = group_modes<0, 2>(cute::conditional_return<!SdP_swapAB>(
tSsLSEMma(make_coord(_0{}, _), _, _0{}, _), // (2, MMA_M, PIPE)
tSsLSEMma(make_coord(_, _0{}), _0{}, _, _))); // (2, MMA_N, PIPE)
Tensor tSsdPsumMma = logical_divide(thr_mma_SdP.partition_C(sdPsumMma), Shape<_2>{});
Tensor tSsdPsum = group_modes<0, 2>(cute::conditional_return<!SdP_swapAB>(
tSsdPsumMma(make_coord(_0{}, _), _, _0{}, _), // (2, MMA_M, PIPE)
tSsdPsumMma(make_coord(_, _0{}), _0{}, _, _))); // (2, MMA_N, PIPE)
// if (blockIdx.x == 0 && threadIdx.x == 128) { print(sLSEMma); printf("\n"); print(tLSEsLSE); printf("\n"); }
// If we want to split the stats among the 8 threads that share the same rows.
static constexpr int kStatsPerThread = cute::ceil_div(decltype(size(tSsLSE))::value, 8);
// Predicates
Tensor cQ = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{}));
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);
Tensor t0QcQ = gmem_thr0_copy_QKV.partition_S(cQ);
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(_0{}, _0{}, k)) < get<1>(params.shape_Q); }
Tensor cLSE = cute::make_identity_tensor(select<0>(TileShape_MNK{}));
Tensor tLSEcLSE = gmem_thr_copy_lse.partition_S(cLSE);
Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOsdO)));
#pragma unroll
for (int k = 0; k < size(tdOpdO); ++k) { tdOpdO(k) = get<1>(tQcQ(_0{}, _0{}, k)) < get<1>(params.shape_dO); }
int const seqlen_q = seqlen_info.seqlen_q;
int const seqlen_k = seqlen_info.seqlen_k;
flash::Mask<kBlockM, kBlockN, false /*PackGQA*/, TiledMmaSdP, SdP_swapAB> mask(
thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, 0 /*sink_token_length*/,
params.attention_chunk_divmod, params.qhead_per_khead_divmod
);
{
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K, nblocksN)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K, nblocksN)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
// Predicates
Tensor cKV = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{}));
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);
Tensor t0KVcKV = gmem_thr0_copy_QKV.partition_S(cKV);
Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));
Tensor tVpV = make_tensor<bool>(make_shape(size<2>(tVsV)));
#pragma unroll
for (int k = 0; k < size(tKpK); ++k) { tKpK(k) = get<1>(tKVcKV(_0{}, _0{}, k)) < get<1>(params.shape_K); }
#pragma unroll
for (int k = 0; k < size(tVpV); ++k) { tVpV(k) = get<1>(tKVcKV(_0{}, _0{}, k)) < get<1>(params.shape_V); }
// Do we need bound check to make sure the row doesn't go above kBlockN
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
// static_assert(EvenN); // It simplifies the loading of K and V
// Instead of passing in tKVcKV, we pass in t0KVcKV and subtract the offset from the limit
// (seqlen_k - n_block * kBlockN). This is because the entries of t0KVcKV are known at compile time.
// int const seqlenk_row_limit = -int(get<0>(tKVcKV(_0{}, _0{}, _0{}))) + (EvenN
// ? seqlen_info.seqlen_k - n_block * kBlockN
// : std::min(seqlen_info.seqlen_k - n_block * kBlockN, kBlockN));
// // Need Clear_OOB_MN to be true here since the gemm will sum over the kBlockN dimension
// flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clear_OOB_K=*/true>(
// gmem_tiled_copy_QKV, tVgV, tVsV, t0KVcKV, tKVpKV, seqlenk_row_limit);
int const seqlenk_row_limit = seqlen_k - n_block * kBlockN - get<0>(tKVcKV(_0{}, _0{}, _0{}));
#pragma unroll
for (int m = 0; m < size<1>(tVsV); ++m) {
// If kBlockN doesn't evenly divide the tiled copy, only the last `m` needs to be checked
if (EvenN || m < size<1>(tVsV) - 1 || get<0>(tKVcKV(_0{}, m, _0{})) < kBlockN) {
bool const predicate_n = get<0>(t0KVcKV(_0{}, m, _0{})) < seqlenk_row_limit;
#pragma unroll
for (int k = 0; k < size<2>(tVsV); ++k) {
cute::copy(gmem_tiled_copy_QKV.with(tVpV(k) && predicate_n), tVgV(_, m, k), tVsV(_, m, k));
}
}
}
if constexpr (V_in_regs) { flash::cp_async_fence(); }
// flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clear_OOB_K=*/true>(
// gmem_tiled_copy_QKV, tKgK, tKsK, t0KVcKV, tKVpKV, seqlenk_row_limit);
#pragma unroll
for (int m = 0; m < size<1>(tKsK); ++m) {
if (EvenN || m < size<1>(tKsK) - 1 || get<0>(tKVcKV(_0{}, m, _0{})) < kBlockN) {
bool const predicate_n = get<0>(t0KVcKV(_0{}, m, _0{})) < seqlenk_row_limit;
#pragma unroll
for (int k = 0; k < size<2>(tKsK); ++k) {
cute::copy(gmem_tiled_copy_QKV.with(tKpK(k) && predicate_n), tKgK(_, m, k), tKsK(_, m, k));
}
}
}
flash::cp_async_fence();
}
if constexpr (V_in_regs) {
flash::cp_async_wait<1>();
__syncthreads();
Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
Tensor tdPsV_copy_view = smem_thr_copy_KV.partition_S(sV);
cute::copy(smem_tiled_copy_KV, tdPsV_copy_view, tdPrV_copy_view);
__syncthreads(); // Sync to avoid loading Q to smem_q, which overlaps with smem_v
}
// Do we need bound check to make sure the row doesn't go above kBlockM
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr bool EvenM = kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
auto load_Q_LSE = [&] (int const m_block, int const smem_pipe_write) {
// if (cute::thread0()) { printf("Inside load_Q_LSE, m_block = %d, smem_pipe_write = %d\n", m_block, smem_pipe_write); }
Tensor tQsQ_cur = tQsQ(_, _, _, smem_pipe_write);
Tensor tQgQ_cur = tQgQ(_, _, _, m_block);
// Instead of passing in tQcQ, we pass in t0QcQ and subtract the offset from the limit
// (seqlen_q - m_block * kBlockM). This is because the entries of t0QcQ are known at compile time.
// int const seqlenq_row_limit = -int(get<0>(tQcQ(_0{}, _0{}, _0{}))) + (EvenM
// ? seqlen_info.seqlen_q - m_block * kBlockM
// : std::min(seqlen_info.seqlen_q - m_block * kBlockM, kBlockM));
// Need Clear_OOB_MN to be true here since the gemm will sum over the kBlockM dimension
// flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clear_OOB_K=*/true>(
// gmem_tiled_copy_QKV, tQgQ(_, _, _, m_block), tQsQ_cur, t0QcQ, tQpQ, seqlenq_row_limit);
int const seqlenq_row_limit = seqlen_info.seqlen_q - m_block * kBlockM - get<0>(tQcQ(_0{}, _0{}, _0{}));
#pragma unroll
for (int m = 0; m < size<1>(tQsQ); ++m) {
// If kBlockM doesn't evenly divide the tiled copy, only the last `m` needs to be checked
if (EvenM || m < size<1>(tQsQ) - 1 || get<0>(tQcQ(_0{}, m, _0{})) < kBlockM) {
bool const predicate_m = get<0>(t0QcQ(_0{}, m, _0{})) < seqlenq_row_limit;
#pragma unroll
for (int k = 0; k < size<2>(tQsQ); ++k) {
cute::copy(gmem_tiled_copy_QKV.with(tQpQ(k) && predicate_m), tQgQ_cur(_, m, k), tQsQ_cur(_, m, k));
}
}
}
Tensor tLSEgLSE_cur = tLSEgLSE(_, _, m_block);
Tensor tLSEsLSE_cur = tLSEsLSE(_, _, smem_pipe_write);
// We made sure LSE length is padded so we read `kBlockM` elements so that all
// elements in sLSE are filled. Without this we might have uninitialized sLSE values.
#pragma unroll
for (int m = 0; m < size<1>(tLSEsLSE); ++m) {
if (get<0>(tLSEcLSE(_0{}, m)) < kBlockM) {
cute::copy(gmem_tiled_copy_lse, tLSEgLSE_cur(_, m), tLSEsLSE_cur(_, m));
}
}
};
auto load_dO_dPsum = [&] (int const m_block, int const smem_pipe_write) {
// if (cute::thread0()) { printf("Inside load_dO_dPsum, m_block = %d, smem_pipe_write = %d\n", m_block, smem_pipe_write); }
Tensor tdOsdO_cur = tdOsdO(_, _, _, smem_pipe_write);
Tensor tdOgdO_cur = tdOgdO(_, _, _, m_block);
// int const seqlenq_row_limit = -int(get<0>(tQcQ(_0{}, _0{}, _0{}))) + (EvenM
// ? seqlen_info.seqlen_q - m_block * kBlockM
// : std::min(seqlen_info.seqlen_q - m_block * kBlockM, kBlockM));
// flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true, /*Clear_OOB_K=*/true>(
// gmem_tiled_copy_QKV, tdOgdO(_, _, _, m_block), tdOsdO_cur, t0QcQ, tQpQ, seqlenq_row_limit);
int const seqlenq_row_limit = seqlen_info.seqlen_q - m_block * kBlockM - get<0>(tQcQ(_0{}, _0{}, _0{}));
#pragma unroll
for (int m = 0; m < size<1>(tdOsdO); ++m) {
// If kBlockM doesn't evenly divide the tiled copy, only the last `m` needs to be checked
if (EvenM || m < size<1>(tdOsdO) - 1 || get<0>(tQcQ(_0{}, m, _0{})) < kBlockM) {
bool const predicate_m = get<0>(t0QcQ(_0{}, m, _0{})) < seqlenq_row_limit;
#pragma unroll
for (int k = 0; k < size<2>(tdOsdO); ++k) {
cute::copy(gmem_tiled_copy_QKV.with(tdOpdO(k) && predicate_m), tdOgdO_cur(_, m, k), tdOsdO_cur(_, m, k));
}
}
}
Tensor tLSEgdPsum_cur = tLSEgdPsum(_, _, m_block);
Tensor tLSEsdPsum_cur = tLSEsdPsum(_, _, smem_pipe_write);
#pragma unroll
for (int m = 0; m < size<1>(tLSEsdPsum); ++m) {
if (get<0>(tLSEcLSE(_0{}, m)) < kBlockM) {
cute::copy(gmem_tiled_copy_lse, tLSEgdPsum_cur(_, m), tLSEsdPsum_cur(_, m));
}
}
};
int m_block = m_block_min;
// Note, using the for_each() function here to ensure `stage` is of type Int<x>.
for_each(make_int_sequence<kStages>{}, [&] (auto stage) {
static constexpr bool Is_first_stage = CUTE_STATIC_V(stage) == 0;
static constexpr bool Is_last_stage = CUTE_STATIC_V(stage) == kStages - 1;
if constexpr (!Is_last_stage || kStages == 1) {
if (Is_first_stage || m_block + stage < m_block_max) {
load_Q_LSE(m_block + stage, stage);
}
}
// We want the fence outside the if statement to have a fixed number of cp.async commits.
// so that we can wait with the correct number of outstanding commits.
cute::cp_async_fence();
if constexpr (stage < kStages_dO) {
if (Is_first_stage || m_block + stage < m_block_max) {
load_dO_dPsum(m_block + stage, stage);
}
cute::cp_async_fence();
}
});
int smem_pipe_read = 0, smem_pipe_read_do = 0, smem_pipe_write = kStages - 1, smem_pipe_write_do = 0;
auto load_Q_next = [&] {
// if (cute::thread0()) { printf("m_block = %d, m_block_max = %d, smem_pipe_write = %d\n", m_block, m_block_max, smem_pipe_write); }
if (m_block + (kStages > 1 ? kStages - 1 : 1) < m_block_max) {
load_Q_LSE(m_block + (kStages > 1 ? kStages - 1 : 1), kStages > 1 ? smem_pipe_write : 0);
}
cute::cp_async_fence();
};
auto load_dO_next = [&] {
// int smem_pipe_write_do_cur = Q_dO_same_stages ? smem_pipe_write : smem_pipe_write_do;
if (m_block + kStages_dO < m_block_max) {
// load_dO_dPsum(m_block + kStages_dO, kStages_dO > 1 ? smem_pipe_write_do_cur : 0);
load_dO_dPsum(m_block + kStages_dO, kStages_dO > 1 ? smem_pipe_write_do : 0);
}
cute::cp_async_fence();
};
clear(tdKrdK);
clear(tdVrdV);
auto bwd_step = [&](int m_block, auto mask_fn) {
Tensor tSrS = partition_fragment_C(tiled_mma_SdP, select<!SdP_swapAB ? 0 : 1, !SdP_swapAB ? 1 : 0>(TileShape_MNK{}));
clear(tSrS);
flash::cp_async_wait<(kStages > 1) ? 1 : 0>();
__syncthreads();
Tensor tSrQ = mma_partition_fragment_AB</*A=*/!SdP_swapAB>(thr_mma_SdP, sQ(_, _, _0{}));
Tensor tSrK = mma_partition_fragment_AB</*A=*/SdP_swapAB>(thr_mma_SdP, sK);
// if (cute::thread0()) { print(tiled_mma_SdP); print(tSrS); printf("\n"); print(tSrQ); printf("\n"); print(tSrK); printf("\n"); print(tSsQ); printf("\n"); print(tSsK); printf("\n"); }
flash::gemm_sm80<false /*A_in_regs*/, false /*B_in_regs*/, SdP_swapAB>(
tSrS, tSrQ, tSrK, tSsQ(_, _, _, kStages > 1 ? smem_pipe_read : 0), tSsK,
tiled_mma_SdP, smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV, nullptr /*hook*/);
Tensor tLSErLSE = cute::conditional_return<!ShuffleLSE>(make_fragment_like(tSsLSE(_, _0{})), make_tensor<ElementAccum>(Int<kStatsPerThread>{}));
if constexpr (!ShuffleLSE) {
cute::copy(tSsLSE(_, kStages > 1 ? smem_pipe_read : 0), tLSErLSE);
} else {
#pragma unroll
for (int i = 0; i < kStatsPerThread; ++i) {
// It's ok to read OOB, since we made sure sLSE is large enough and we won't use the OOB values
tLSErLSE(i) = tSsLSE((thread_idx % 32) / 4 + i * 8, kStages > 1 ? smem_pipe_read : 0);
}
}
if constexpr (Has_softcap) { flash::apply_softcap(tSrS, params.softcap_val); }
// Reshape tSrS from (4, MMA_N, MMA_M) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_rowcol</*Transposed=*/SdP_swapAB>(tSrS.layout()));
// dtanh needs to happen before masking, otherwise we get 1 - (-inf)^2 = NaN in the dtanh
// if (cute::thread0()) { print_tensor(scores); }
auto dtanh = [&] { if constexpr (Has_softcap) return flash::calculate_dtanh(scores); else return nullptr; }();
mask_fn(tSrS, m_block);
#pragma unroll
for (int mi = 0; mi < size<0>(scores); ++mi) {
float const lse_scaled = [&] {
if constexpr (!ShuffleLSE) return tLSErLSE(mi);
else return __shfl_sync(0xffffffff, tLSErLSE(mi / 8), (mi % 8) * 4 + (thread_idx % 4));
}();
#pragma unroll
for (int ni = 0; ni < size<1>(scores); ++ni) {
scores(mi, ni) = exp2f(scores(mi, ni) * params.softmax_scale_log2 - lse_scaled);
}
}
Tensor tdPrdP = partition_fragment_C(tiled_mma_SdP, select<!SdP_swapAB ? 0 : 1, !SdP_swapAB ? 1 : 0>(TileShape_MNK{}));
clear(tdPrdP);
int smem_pipe_read_do_cur = Q_dO_same_stages ? smem_pipe_read : smem_pipe_read_do;
flash::cp_async_wait<(kStages_dO > 1) ? 1 : 0>();
__syncthreads();
auto hook = cute::conditional_return<(kStages > 1)>(load_Q_next, nullptr);
Tensor tdPrdO = mma_partition_fragment_AB</*A=*/!SdP_swapAB>(thr_mma_SdP, sdO(_, _, _0{}));
Tensor tdPrV_cur = cute::conditional_return<V_in_regs>(tdPrV, mma_partition_fragment_AB</*A=*/SdP_swapAB>(thr_mma_SdP, sV));
flash::gemm_sm80<false /*A_in_regs*/, V_in_regs, SdP_swapAB>(
tdPrdP, tdPrdO, tdPrV_cur, tdPsdO(_, _, _, kStages_dO > 1 ? smem_pipe_read_do_cur : 0), tdPsV,
tiled_mma_SdP, smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV, hook);
Tensor tLSErdPsum = cute::conditional_return<!ShuffledPsum>(make_fragment_like(tSsdPsum(_, _0{})), make_tensor<ElementAccum>(Int<kStatsPerThread>{}));
if constexpr (!ShuffledPsum) {
cute::copy(tSsdPsum(_, kStages_dO > 1 ? smem_pipe_read_do_cur : 0), tLSErdPsum);
} else {
#pragma unroll
for (int i = 0; i < kStatsPerThread; ++i) {
tLSErdPsum(i) = tSsdPsum((thread_idx % 32) / 4 + i * 8, kStages_dO > 1 ? smem_pipe_read_do_cur : 0);
}
}
// Reshape tdPrdP from (4, MMA_N, MMA_M) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
#pragma unroll
for (int mi = 0; mi < size<0>(dS); ++mi) {
float const dP_sum_cur = [&] {
if constexpr (!ShuffledPsum) return tLSErdPsum(mi);
else return __shfl_sync(0xffffffff, tLSErdPsum(mi / 8), (mi % 8) * 4 + (thread_idx % 4));
}();
#pragma unroll
for (int ni = 0; ni < size<1>(dS); ++ni) {
dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum_cur);
if constexpr (Has_softcap) { dS(mi, ni) *= dtanh(mi, ni); }
}
}
// if (cute::thread0()) { print_tensor(dS); }
// Convert scores from fp32 to fp16/bf16
Tensor rP = make_tensor_like<Element>(tSrS);
flash::convert_type_out(tSrS, rP);
if constexpr (!Mma_dKV_is_RS) {
Tensor tPaP = r2s_thr_copy_PdS.retile_S(rP); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(r2s_tiled_copy_PdS, tPaP, tPsP);
}
Tensor rdS = make_tensor_like<Element>(tdPrdP);
flash::convert_type_out(tdPrdP, rdS);
if constexpr (!Mma_dKV_is_RS) { __syncthreads(); } // Make sure P is written
// For hdim 64, It's faster to write to smem_dS first before the dV gemm
Tensor tdSadS = r2s_thr_copy_PdS.retile_S(rdS); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(r2s_tiled_copy_PdS, tdSadS, tdSsdS);
Tensor tdVrdO = mma_partition_fragment_AB</*A=*/dKV_swapAB>(thr_mma_dKV, sdOt(_, _, _0{}));
Tensor tdVsdO_cur = tdVsdOt(_, _, _, kStages_dO > 1 ? smem_pipe_read_do_cur : 0);
if constexpr (Mma_dKV_is_RS) {
Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<TiledMmadKV>(tSrS.layout()));
flash::gemm_rs_sm80(tdVrdV, tdVrP, tdVrdO, tdVsdO_cur, tiled_mma_dKV, smem_tiled_copy_QdOt, smem_thr_copy_QdOt);
} else {
Tensor tdVrP = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(thr_mma_dKV, sPt);
flash::gemm_sm80<false /*A_in_regs*/, false /*B_in_regs*/, /*SwapAB=*/dKV_swapAB>(
tdVrdV, tdVrP, tdVrdO, tdVsPt, tdVsdO_cur,
tiled_mma_dKV, smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt, nullptr);
}
// if (cute::thread0()) { print_tensor(tdVrdV); }
__syncthreads(); // make sure sdS is written
auto do_mma_dQ = [&] (auto hook) {
Tensor tdQrdQ = partition_fragment_C(tiled_mma_dQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
clear(tdQrdQ);
Tensor tdQrdS = mma_partition_fragment_AB</*A=*/!dQ_swapAB>(thr_mma_dQ, sdS);
Tensor tdQrK = mma_partition_fragment_AB</*A=*/dQ_swapAB>(thr_mma_dQ, sKt);
flash::gemm_sm80<false /*A_in_regs*/, false /*B_in_regs*/, /*SwapAB=*/dQ_swapAB>(
tdQrdQ, tdQrdS, tdQrK, tdQsdS, tdQsKt, tiled_mma_dQ,
// smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt, load_dO_next);
smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt, hook);
// if (cute::thread0()) { print_tensor(tdQrdQ); }
// We can reuse r2s_thr_copy_dQaccum for this partitioning
Tensor tdQrdQ_atomic = r2s_thr_copy_dQaccum.retile_S(tdQrdQ);
Tensor tdQgdQaccum_atomic = tdQgdQaccum(_, _, m_block);
static_assert(CUTE_STATIC_V(size(tdQrdQ_atomic)) == CUTE_STATIC_V(size(tdQgdQaccum_atomic)));
#pragma unroll
for (int i = 0; i < size(tdQrdQ_atomic); ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
};
// If kStages == 1, we want to do Mma_dK first so we can start loading Q for the next iteration
if constexpr (kStages > 1) { do_mma_dQ(load_dO_next); }
Tensor tdKrQ = mma_partition_fragment_AB</*A=*/dKV_swapAB>(thr_mma_dKV, sQt(_, _, _0{}));
Tensor tdKsQ_cur = tdKsQt(_, _, _, kStages > 1 ? smem_pipe_read : 0);
if constexpr (Mma_dKV_is_RS) {
Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<TiledMmadKV>(tdPrdP.layout()));
flash::gemm_rs_sm80(tdKrdK, tdKrdS, tdKrQ, tdKsQ_cur, tiled_mma_dKV, smem_tiled_copy_QdOt, smem_thr_copy_QdOt);
} else {
Tensor tdKrdS = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(thr_mma_dKV, sdSt);
flash::gemm_sm80<false /*A_in_regs*/, false /*B_in_regs*/, /*SwapAB=*/dKV_swapAB>(
tdKrdK, tdKrdS, tdKrQ, tdKsdSt, tdKsQ_cur,
tiled_mma_dKV, smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt, cute::conditional_return<(kStages > 1)>(nullptr, load_dO_next));
}
if constexpr (kStages == 1) {
__syncthreads();
do_mma_dQ(load_Q_next);
}
// if (cute::thread0()) { print_tensor(tdKrdK); }
smem_pipe_read = smem_pipe_read < kStages - 1 ? smem_pipe_read + 1 : 0;
smem_pipe_read_do = smem_pipe_read_do < kStages_dO - 1 ? smem_pipe_read_do + 1 : 0;
smem_pipe_write = smem_pipe_write < kStages - 1 ? smem_pipe_write + 1 : 0;
smem_pipe_write_do = smem_pipe_write_do < kStages_dO - 1 ? smem_pipe_write_do + 1 : 0;
};
// We have separate iterations with causal masking. Not necessary for hdim 128 but for hdim 64
// this helps quite a bit to not have to do causal masking for most of the iterations.
if constexpr ((Is_causal || Is_local) && SeparateMaskingIterations) {
auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
int const m_block_masking_max = ((n_block + 1) * kBlockN - 1 + seqlen_q - seqlen_k - params.window_size_right) / kBlockM + 1;
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < std::min(m_block_max, m_block_masking_max); ++m_block) {
bwd_step(m_block, mask_fn);
}
}
static constexpr int kBlockN = get<1>(TileShape_MNK{});
int const m_block_max_before_local_mask = !Is_local || !SeparateMaskingIterations
? m_block_max
: std::min(m_block_max, (n_block * kBlockN + seqlen_q - seqlen_k + params.window_size_left) / kBlockM);
auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal && !SeparateMaskingIterations, Is_local && !SeparateMaskingIterations>(tSrS, m_block, n_block); };
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < m_block_max_before_local_mask; ++m_block) {
bwd_step(m_block, mask_fn);
}
if constexpr (Is_local && SeparateMaskingIterations) {
auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
CUTLASS_PRAGMA_NO_UNROLL
for (; m_block < m_block_max; ++m_block) {
bwd_step(m_block, mask_fn);
}
}
// if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(tdVrdV); }
#pragma unroll
for (int i = 0; i < size(tdKrdK); ++i) { tdKrdK(i) *= params.softmax_scale; }
return true;
}
};
} // namespace flash