kernel
flash-attn3 / flash-attn /mainloop_fwd_sm80.hpp
danieldk's picture
danieldk HF Staff
Convert FA3 to Kernel Hub format
eb8ddce
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cute/tensor.hpp"
#include "seqlen.h"
#include "block.h"
#include "mask.h"
#include "pack_gqa.h"
#include "paged_kv.h"
#include "rotary.h"
#include "utils.h"
namespace flash {
using namespace cute;
template <int kNWarps, int Stages, bool Q_in_regs, class TileShape_MNK_, int kHeadDimV, class Element_, class ElementAccum_, class ArchTag_,
bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool PagedKV_, bool AppendKV_,
bool PackGQA_, bool Split_>
struct CollectiveMainloopFwdSm80 {
static constexpr int kStages = Stages;
static_assert(kStages > 0, "kStages must be greater than 0");
using TileShape_MNK = TileShape_MNK_;
using TileShape_MNK_PV = Shape<decltype(get<0>(TileShape_MNK{})), Int<kHeadDimV>, decltype(get<1>(TileShape_MNK{}))>;
using Element = Element_;
using ElementAccum = ElementAccum_;
using ArchTag = ArchTag_;
static constexpr bool Is_FP8 = cute::is_same_v<Element, cutlass::float_e4m3_t> || cute::is_same_v<Element, cutlass::float_e5m2_t>;;
static constexpr bool Is_causal = Is_causal_;
static constexpr bool Is_local = Is_local_;
static constexpr bool Has_softcap = Has_softcap_;
static constexpr bool Varlen = Varlen_;
static constexpr bool PagedKV = PagedKV_;
static constexpr bool AppendKV = AppendKV_;
static constexpr bool PackGQA = PackGQA_;
static constexpr bool Split = Split_;
static constexpr bool Transpose_V = Is_FP8;
static_assert(ArchTag::kMinComputeCapability >= 80);
static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80;
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
using SeqlenInfo_t = flash::SeqlenInfoQKNewK<Varlen, AppendKV>;
using BlockMN_t = flash::BlockMN<SeqlenInfo_t, kBlockM, kBlockN, Is_causal, Is_local, PackGQA, Split>;
using MMA_Atom_Arch = std::conditional_t<
ArchTag::kMinComputeCapability >= 80,
std::conditional_t<
std::is_same_v<Element, cutlass::half_t>,
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
>,
MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>
>;
using TiledMma = TiledMMA<
MMA_Atom_Arch,
Layout<Shape<Int<kNWarps>,_1,_1>>, // 4x1x1 or 8x1x1 thread group
Tile<Int<16 * kNWarps>, _16, _16>>;
static constexpr int NumMmaThreads = size(TiledMma{});
static constexpr int NumProducerThreads = NumMmaThreads; // For compatibility with TileScheduler
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "Headdim must be a multiple of kGmemElemsPerLoad");
// We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). E.g. if hdim=128, we want each
// thread to have 4 loads in the M direction and 2 vectorized load in the K direction.
static constexpr int kBytePerRow = kHeadDim * sizeof(Element);
static constexpr int kBlockKGmem = (kBytePerRow % 128 == 0 ? 128 : (kBytePerRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kSwizzle = kBlockKGmem == 128 ? 4 : (kBlockKGmem == 64 ? 3 : (kBlockKGmem == 32 ? 2 : 1));
static constexpr int kSwizzleBase = sizeof(Element) == 4 ? 2 : (sizeof(Element) == 2 ? 3 : 4);
using SmemLayoutAtomQKV = decltype(
composition(Swizzle<kSwizzle, kSwizzleBase, kSwizzleBase>{},
Layout<Shape<_8, Int<kBlockKGmem>>,
Stride<Int<kBlockKGmem>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQKV{}, select<0, 2>(TileShape_MNK{})));
using SmemLayoutK = decltype(tile_to_shape(
SmemLayoutAtomQKV{},
make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutV = decltype(tile_to_shape(
SmemLayoutAtomQKV{},
make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutVt = decltype(
composition(SmemLayoutV{},
make_ordered_layout(make_shape(shape<2>(TileShape_MNK{}), shape<1>(TileShape_MNK{}), Int<kStages>{}),
Step<_2, _1, _3>{})));
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, Element>;
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, Element>;
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
// from the same address by the same threadblock. This is slightly faster.
using GmemCopyAtom = Copy_Atom<std::conditional_t<
Has_cp_async,
SM80_CP_ASYNC_CACHEGLOBAL_ZFILL<cute::uint128_t>,
AutoVectorizingCopyWithAssumedAlignment<128>
>, Element>;
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(NumMmaThreads % kGmemThreadsPerRow == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopyQKV = decltype(
make_tiled_copy(GmemCopyAtom{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per read
// So that we don't have to check if we overshot kBlockM when we load Q
static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0);
// For AppendKV, We want each thread to have at least 2 loads in the K direction since in the case of
// non-interleaved rotary (combining elements at indices 0 and rotary_dim/2, 1 and rotary_dim/2+1, etc),
// each thread will load twice from the same row.
static constexpr int kBytePerHalfRow = kHeadDim / 2 * sizeof(Element);
static constexpr int kBlockKGmemAppend = (kBytePerHalfRow % 128 == 0 ? 128 : (kBytePerHalfRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kGmemThreadsPerRowAppend = kBlockKGmemAppend / kGmemElemsPerLoad;
static_assert(NumMmaThreads % kGmemThreadsPerRowAppend == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRowAppend");
// We assume threads loading the same row are in the same warp. This is for an optimization in PagedKV where
// these threads share the same page table entry and share the work of computing pointers to paged K and paged V.
static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRowAppend == 0, "kGmemThreadsPerRowAppend must divide NumThreadsPerWarp");
using GmemLayoutAtomAppend = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRowAppend>, Int<kGmemThreadsPerRowAppend>>,
Stride<Int<kGmemThreadsPerRowAppend>, _1>>;
// If AppendKV, we'll be loading Q for rotary, and we assume divisibility to avoid predication
static_assert(!AppendKV || kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtomAppend{})) == 0, "kBlockM must be a multiple of NumMmaThreads / kGmemThreadsPerRowAppend");
using GmemTiledCopyAppendKV = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtomAppend{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per store
using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideQK = cute::Stride<int64_t, _1, int64_t, int64_t>;
using StrideV = StrideQK;
// ((qhead_per_khead, seqlen_q), d, nheads_kv, batch, num_splits)
using ShapeQPacked = std::conditional_t<!PackGQA, ShapeQKV, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t>>;
using StrideQPacked = std::conditional_t<!PackGQA, StrideQK, cute::Stride<cute::Stride<int64_t, int64_t>, _1, int64_t, int64_t>>;
using ShapePageTable = cute::Shape<int32_t, int32_t>; // (batch, max_num_pages_per_seq)
using StridePageTable = cute::Stride<int64_t, _1>;
using ShapeRotary = cute::Shape<int32_t, int32_t>; // (seqlen_ro, rotary_dim // 2)
using StrideRotary = cute::Stride<int64_t, _1>;
using StrideDescale = cute::Stride<int64_t, int64_t>;
static constexpr bool Share_QV_Smem = Q_in_regs;
struct TensorStorageSharedQV : cute::aligned_struct<128> {
union {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
};
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
};
struct TensorStorageSeparateQV : cute::aligned_struct<128> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>> smem_k;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>> smem_q;
};
using TensorStorage = std::conditional_t<Share_QV_Smem, TensorStorageSharedQV, TensorStorageSeparateQV>;
// Host side kernel arguments
struct Arguments {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
Element* const ptr_K; // Not Element const* since we might append to KV cache in-place
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_Qv;
StrideQK const stride_Qv;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
float const softmax_scale;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
int const window_size_left = -1, window_size_right = -1, attention_chunk = 0;
float const softcap_val;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const* const seqlens_rotary = nullptr;
};
// Device side kernel params
struct Params {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
ShapeQPacked const shape_Q_packed;
StrideQPacked const stride_Q_packed;
Element* const ptr_K;
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
cutlass::FastDivmod page_size_divmod;
cutlass::FastDivmod qhead_per_khead_divmod;
float const softmax_scale_log2;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
float const softcap_val;
int const window_size_left, window_size_right;
cutlass::FastDivmod attention_chunk_divmod;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const* const seqlens_rotary = nullptr;
};
static Params
to_underlying_arguments(Arguments const& args) {
// If PackGQA, reshape Q to be ((qhead_per_khead, seqlen_q), head_size, nhead_k, batch_size)
int const qhead_per_khead = !PackGQA ? 1 : cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K));
auto const shape_Q_packed = cute::conditional_return<!PackGQA>(
args.shape_Q,
make_shape(make_shape(qhead_per_khead, get<0>(args.shape_Q)), get<1>(args.shape_Q), get<2>(args.shape_K), get<3>(args.shape_Q))
);
auto const stride_Q_packed = cute::conditional_return<!PackGQA>(
args.stride_Q,
make_stride(make_stride(get<2>(args.stride_Q), get<0>(args.stride_Q)), get<1>(args.stride_Q), get<2>(args.stride_Q) * qhead_per_khead, get<3>(args.stride_Q))
);
if (get<1>(args.shape_rotary) > 0) {
assert(args.ptr_rotary_cos != nullptr && args.ptr_rotary_sin != nullptr);
}
assert(args.num_splits >= 1);
// Avoid dividing by zero
cutlass::FastDivmod attention_chunk_divmod(args.attention_chunk >= 1 ? args.attention_chunk : 1);
attention_chunk_divmod.divisor = args.attention_chunk;
// If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
// Right after this, we multiply by log2(e) before applying exp2.
// To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
// (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
// (assigning it to params.softmax_scale_log2).
return {args.ptr_Q, args.shape_Q, args.stride_Q, shape_Q_packed, stride_Q_packed,
args.ptr_K, args.shape_K, args.stride_K, args.ptr_V, args.headdim_v, args.stride_V,
args.ptr_K_new, args.shape_K_new, args.stride_K_new, args.ptr_V_new, args.stride_V_new,
args.ptr_rotary_cos, args.shape_rotary, args.stride_rotary_cos,
args.ptr_rotary_sin, args.stride_rotary_sin, args.is_rotary_interleaved,
args.ptr_pagetable, args.shape_pagetable, args.stride_pagetable,
cutlass::FastDivmod(int(get<0>(args.shape_K))),
cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
!Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
args.ptr_q_descale, args.ptr_k_descale, args.ptr_v_descale,
args.stride_q_descale, args.stride_k_descale, args.stride_v_descale,
!Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
args.window_size_left, args.window_size_right, attention_chunk_divmod,
!Split ? 1 : args.num_splits,
args.kv_batch_idx,
args.cu_seqlens_q, args.cu_seqlens_k, args.cu_seqlens_k_new,
args.seqused_q, args.seqused_k, args.leftpad_k, args.seqlens_rotary};
}
template <typename SharedStorage, typename FrgTensorO, typename Softmax>
CUTLASS_DEVICE bool
mma(Params const& params,
FrgTensorO& tOrO,
Softmax& softmax,
int const thread_idx,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
// can't use auto [m_block, ...] = block_coord since structured binding cannot be captured in lambda
int const m_block = get<0>(block_coord);
int const bidh = get<1>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
auto n_block_min_max = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
int const n_block_min = get<0>(n_block_min_max);
int const n_block_max = get<1>(n_block_min_max);
// It's possible to have n_block_max <= n_block_min. We don't want to load Q or change any barrier
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) { return false; }
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
Tensor sVt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVt{});
bool const is_varlen_q = Varlen && params.cu_seqlens_q;
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
Tensor mQ = make_tensor(make_gmem_ptr(params.ptr_Q + seqlen_info.offset_q * get<0>(params.stride_Q)), params.shape_Q_packed, params.stride_Q_packed)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor gQ = local_tile(mQ, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K + seqlen_info.offset_k * get<0>(params.stride_K)), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor gK = local_tile(mK, select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V + seqlen_info.offset_k * get<0>(params.stride_V)), params.shape_K, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor gV = local_tile(mV, select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
GmemTiledCopyQKV gmem_tiled_copy_QKV;
auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(thread_idx);
auto gmem_thr0_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(_0{}); // For index calculation
Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK); // (KCPY, KCPY_N, KCPY_K, nblocksN)
Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV); // (VCPY, VCPY_N, VCPY_K, nblocksN)
Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_slice(thread_idx);
// Allocate "fragments/descriptors"
Tensor tSrQ = thr_mma.partition_fragment_A(sQ);
// Copy Atom retiling
auto smem_tiled_copy_Q = make_tiled_copy_A(SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(thread_idx);
auto smem_tiled_copy_K = make_tiled_copy_B(SmemCopyAtom{}, tiled_mma);
auto smem_thr_copy_K = smem_tiled_copy_K.get_thread_slice(thread_idx);
auto smem_tiled_copy_V = make_tiled_copy_B(SmemCopyAtomTransposed{}, tiled_mma);
auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(thread_idx);
Tensor tSsQ = smem_thr_copy_Q.partition_S(sQ);
Tensor tSsK = smem_thr_copy_K.partition_S(sK);
Tensor tOsVt = smem_thr_copy_V.partition_S(sVt);
// Predicates
Tensor cKV = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{}));
Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);
Tensor t0KVcKV = gmem_thr0_copy_QKV.partition_S(cKV);
Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));
#pragma unroll
for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(_0{}, _0{}, k)) < get<1>(params.shape_K); }
int const seqlen_q = seqlen_info.seqlen_q;
int const seqlen_k = seqlen_info.seqlen_k;
int n_block = n_block_max - 1;
// Prologue: load Q, K, V
// If persistent, we don't need to wait for the previous work_idx to finish
// since we assume that all MMA threads sync in the epilogue before writing to smem_o.
// So any thread gets there, all threads must have finished the previous MMA and at least started
// writing to smem_o.
// If persistent, need to sync to make sure all threads have finished with smem_o before writing to smem_v
if constexpr (Share_QV_Smem) { __syncthreads(); }
if constexpr (!PackGQA) {
Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
Tensor cQ = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{}));
Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);
Tensor t0QcQ = gmem_thr0_copy_QKV.partition_S(cQ);
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
#pragma unroll
for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(_0{}, _0{}, k)) < get<1>(params.shape_Q); }
// Instead of passing in tQcQ, we pass in t0QcQ and subtract the offset from the limit
// (seqlen_q - m_block * kBlockM). This is because the entries of t0QcQ are known at compile time.
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_QKV, tQgQ, tQsQ, t0QcQ, tQpQ, seqlen_info.seqlen_q - m_block * kBlockM - get<0>(tQcQ(_0{}, _0{}, _0{}))
);
} else {
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumMmaThreads, Element>;
PackGQAt::load_Q(mQ, sQ, params.qhead_per_khead_divmod, thread_idx, seqlen_q, m_block);
}
cute::cp_async_fence();
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod,
params.page_size_divmod /*blockN_per_page_size_divmod, not used since we don't use TMA*/,
bidb_kv, bidh_kv, thread_idx, seqlen_info.seqlen_k, seqlen_info.leftpad_k,
0 /*bidb_kv_idx, not used since we don't use TMA for Sm8x*/
);
auto load_K = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
if constexpr (!PagedKV) {
// Do we need bound check to make sure the row doesn't go above kBlockN
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tKsK_cur = tKsK(_, _, _, smem_pipe_write);
// Instead of passing in tKVcKV, we pass in t0KVcKV and subtract the offset from the limit
// (seqlen_k - n_block * kBlockN). This is because the entries of t0KVcKV are known at compile time.
int const seqlenk_row_limit = -int(get<0>(tKVcKV(_0{}, _0{}, _0{}))) + (EvenN
? seqlen_info.seqlen_k - n_block * kBlockN
: (!Seqlenk_mask ? kBlockN : std::min(seqlen_info.seqlen_k - n_block * kBlockN, kBlockN)));
// We don't need to clear the sK smem tiles since we'll mask out the scores anyway.
flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_QKV, tKgK(_, _, _, n_block), tKsK_cur, t0KVcKV, tKVpKV, seqlenk_row_limit);
} else {
paged_kv_manager.template load_page_table<Seqlenk_mask>(n_block);
paged_kv_manager.template load_K<Seqlenk_mask>(n_block, sK(_, _, smem_pipe_write));
}
};
auto load_V = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
if constexpr (!PagedKV) {
// Do we need bound check to make sure the row doesn't go above kBlockN
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tVsV_cur = tVsV(_, _, _, smem_pipe_write);
// We don't call flash::copy since it doesn't support bound checking
// to not overshot kBlockN when writing to smem.
Tensor tVgV_cur = tVgV(_, _, _, n_block);
int const seqlenk_row_limit = seqlen_info.seqlen_k - n_block * kBlockN - get<0>(tKVcKV(_0{}, _0{}, _0{}));
#pragma unroll
for (int m = 0; m < size<1>(tVsV); ++m) {
// If kBlockN doesn't evenly divide the tiled copy, only the last `m` needs to be checked
if (EvenN || m < size<1>(tVsV) - 1 || get<0>(tKVcKV(_0{}, m, _0{})) < kBlockN) {
bool const predicate_n = !Seqlenk_mask || get<0>(t0KVcKV(_0{}, m, _0{})) < seqlenk_row_limit;
#pragma unroll
for (int k = 0; k < size<2>(tVsV); ++k) {
cute::copy(gmem_tiled_copy_QKV.with(tKVpKV(k) && predicate_n), tVgV_cur(_, m, k), tVsV_cur(_, m, k));
}
}
}
} else {
paged_kv_manager.template load_V<Seqlenk_mask>(n_block, sV(_, _, smem_pipe_write));
}
};
auto preprocess_Q = [&] {
if constexpr (!AppendKV) {
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
} else {
if (get<1>(params.shape_rotary) > 0) { // Apply rotary to Q
using Rotary_t = Rotary<kBlockM, kHeadDim, NumMmaThreads, Element, !(Is_causal || Is_local) /*FixedPosition*/>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_q,
seqlen_info.seqlen_rotary);
int const qhead_per_khead = !PackGQA ? 1 : params.qhead_per_khead_divmod.divisor;
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<true /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<true /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
__syncthreads();
rotary.apply_Q_interleaved(sQ, tRrCos, tRrSin, m_block, qhead_per_khead);
} else {
auto [tRrCosCont, tRrSinCont] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<false /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<false /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
__syncthreads();
rotary.apply_Q_contiguous(sQ, tRrCosCont, tRrSinCont, m_block, qhead_per_khead);
}
} else {
flash::cp_async_wait<Share_QV_Smem ? 1 : kStages * 2 - 1>();
}
}
if constexpr (Q_in_regs) {
__syncthreads();
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
Tensor tSsQ_copy_view = smem_thr_copy_Q.partition_S(sQ);
cute::copy(smem_tiled_copy_Q, tSsQ_copy_view, tSrQ_copy_view);
}
};
// If Share_QV_Smem, we load Q, then load 1 stage of K, then (optionally) rotate Q and
// read from smem_q to registers, then load V.
// If !Share_QV, Smem, we load Q, load all stages of K & V, then (optionally) rotate Q.
if constexpr (Share_QV_Smem) {
load_K(n_block, 0, cute::true_type{} /*Seqlenk_mask*/);
cute::cp_async_fence();
preprocess_Q();
__syncthreads(); // Make sure all threads have read smem_q before loading V
}
// For persistent, make sure all threads have finished reading smem_o
if constexpr (!Share_QV_Smem) { __syncthreads(); }
// Note, using the for_each() function here to ensure `stage` is of type Int<x>.
for_each(make_int_sequence<kStages>{}, [&] (auto stage) {
static constexpr bool Is_first_stage = CUTE_STATIC_V(stage) == 0;
static constexpr bool Is_last_stage = CUTE_STATIC_V(stage) == kStages - 1;
if constexpr (!Share_QV_Smem || !Is_first_stage) {
if (Is_first_stage || n_block - stage >= n_block_min) {
load_K(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
// We want the fence outside the if statement to have a fixed number of cp.async commits.
// so that we can wait with the correct number of outstanding commits.
cute::cp_async_fence();
}
if constexpr (!Is_last_stage) {
if (Is_first_stage || n_block - stage >= n_block_min) {
load_V(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
}
});
if constexpr (!Share_QV_Smem) { preprocess_Q(); }
flash::Mask<kBlockM, kBlockN, PackGQA, TiledMma> mask(
thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, 0 /*sink_token_length*/,
params.attention_chunk_divmod, params.qhead_per_khead_divmod
);
float softcap_val = params.softcap_val;
if constexpr (Has_softcap && Is_FP8) {
float const q_descale = params.ptr_q_descale == nullptr ? 1.0f : params.ptr_q_descale[bidb * get<0>(params.stride_q_descale) + bidh_kv * get<1>(params.stride_q_descale)];
float const k_descale = params.ptr_k_descale == nullptr ? 1.0f : params.ptr_k_descale[bidb * get<0>(params.stride_k_descale) + bidh_kv * get<1>(params.stride_k_descale)];
softcap_val *= q_descale * k_descale;
}
// Softcapping needs to happen before masking since if we apply after masking, softcapping can turn
// -inf to e.g. -50.0, which can affect the attention softmax.
auto scoremod_premask_fn = [&](auto& tSrS) {
if constexpr (Has_softcap) { flash::apply_softcap(tSrS, softcap_val); }
};
int smem_pipe_read = 0, smem_pipe_write = kStages - 1;
auto load_K_next = [&] {
if (n_block - kStages >= n_block_min) {
load_K(n_block - kStages, kStages > 1 ? smem_pipe_write : 0, cute::false_type{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
};
auto sync = [&] {
flash::cp_async_wait<kStages * 2 - 2>();
__syncthreads();
};
clear(tOrO);
auto fwd_step = [&](int const n_block, auto mask_fn, auto is_first_iter_type, auto check_inf_type) {
static constexpr bool Is_first_iter = decltype(is_first_iter_type)::value;
static constexpr bool Check_inf = decltype(check_inf_type)::value;
Tensor tSrS = partition_fragment_C(tiled_mma, select<0, 1>(TileShape_MNK{}));
clear(tSrS);
sync();
auto load_V_next = [&] {
if (n_block - kStages + 1 >= n_block_min) {
load_V(n_block - kStages + 1, kStages > 1 ? smem_pipe_write : 0, cute::bool_constant<Is_first_iter && kStages == 1>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
};
Tensor tSrQ_cur = cute::conditional_return<Q_in_regs>(tSrQ, thr_mma.partition_fragment_A(sQ));
Tensor tSrK = thr_mma.partition_fragment_B(sK(_, _, _0{}));
flash::gemm_sm80<Q_in_regs>(
tSrS, tSrQ_cur, tSrK, tSsQ, tSsK(_, _, _, kStages > 1 ? smem_pipe_read : 0),
tiled_mma, smem_tiled_copy_Q, smem_tiled_copy_K, smem_thr_copy_Q, smem_thr_copy_K, load_V_next
);
smem_pipe_write = smem_pipe_write < kStages - 1 ? smem_pipe_write + 1 : 0;
scoremod_premask_fn(tSrS);
// Faster to load_K before gemm if we only have 1 stage
if constexpr (kStages == 1) { sync(); load_K_next(); }
mask_fn(tSrS, n_block);
Tensor scores_scale = softmax.template max_get_scale</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
softmax.template online_softmax</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
if constexpr (Is_FP8) { flash::permute_Cregs_fp8(tSrS); }
Tensor tOrP_acc = make_tensor(tSrS.data(), flash::convert_layout_acc_Aregs<TiledMma>(tSrS.layout()));
Tensor tOrP = make_tensor_like<Element>(tOrP_acc);
convert_type_out(tOrP_acc, tOrP);
if constexpr (!Is_first_iter) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (kStages > 1) { sync(); }
Tensor tOrV = thr_mma.partition_fragment_B(sVt(_, _, _0{}));
flash::gemm_rs_sm80(tOrO, tOrP, tOrV, tOsVt(_, _, _, kStages > 1 ? smem_pipe_read : 0), tiled_mma, smem_tiled_copy_V, smem_thr_copy_V);
if constexpr (kStages > 1) { load_K_next(); }
smem_pipe_read = smem_pipe_read < kStages - 1 ? smem_pipe_read + 1 : 0;
};
auto first_iter_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
fwd_step(n_block, first_iter_mask_fn, cute::true_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
--n_block;
if constexpr (Is_causal || Is_local) { // Separate iterations with causal or local masking
auto mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
int const n_block_min_causal_local_mask = BlockMN_t::get_n_block_min_causal_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_right,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
#pragma unroll 1
for (; n_block >= n_block_min_causal_local_mask; --n_block) {
fwd_step(n_block, mask_fn, cute::false_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
}
}
int const n_block_min_before_local_mask = BlockMN_t::get_n_block_min_before_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_left,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
auto no_mask_fn = [](auto& tSrS, int n_block) { };
#pragma unroll 1
for (; n_block >= n_block_min_before_local_mask; --n_block) {
fwd_step(n_block, no_mask_fn, cute::false_type{} /*is_first_iter*/, cute::false_type{} /*check_inf*/);
}
// Separate masking iterations on the left for local attention
if constexpr (Is_local) {
auto local_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
fwd_step(n_block, local_mask_fn, cute::false_type{} /*is_first_iter*/, cute::bool_constant<Is_local>{} /*check_inf*/);
}
}
float const v_descale = !Is_FP8 || params.ptr_v_descale == nullptr ? 1.0f : params.ptr_v_descale[bidb * get<0>(params.stride_v_descale) + bidh_kv * get<1>(params.stride_v_descale)];
Tensor scores_scale = softmax.finalize(v_descale);
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8) { flash::permute_output_fp8(tOrO); }
return true;
}
template <typename SharedStorage>
CUTLASS_DEVICE bool
store_kv_new(Params const& params,
int const thread_idx,
SharedStorage &shared_storage,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord
) {
auto [m_block, bidh, bidb, split_idx] = block_coord;
auto n_block_new_min_max = BlockMN_t::get_n_block_k_new_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
int const n_block_new_min = get<0>(n_block_new_min_max);
int const n_block_new_max = get<1>(n_block_new_min_max);
if (n_block_new_max <= n_block_new_min) { return false; }
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
bool const is_varlen_k_new = Varlen && params.cu_seqlens_k_new;
Tensor mKnew = make_tensor(make_gmem_ptr(params.ptr_K_new), params.shape_K_new, params.stride_K_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
Tensor mVnew = make_tensor(make_gmem_ptr(params.ptr_V_new), params.shape_K_new, params.stride_V_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V), params.shape_K, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
Tensor gKnew = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mKnew), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gVnew = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mVnew), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
int const offset_k = seqlen_info.offset_k + seqlen_info.seqlen_k_og;
Tensor gK = local_tile(domain_offset(make_coord(offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gV = local_tile(domain_offset(make_coord(offset_k, _0{}), mV), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
int const seqlen_k_new = seqlen_info.seqlen_k_new;
using Rotary_t = Rotary<kBlockN, kHeadDim, NumMmaThreads, Element>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_k_new,
seqlen_info.seqlen_rotary);
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/, 2 /*LoadsPerRow_LB*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod,
params.page_size_divmod /*blockN_per_page_size_divmod, not used since we don't use TMA*/,
bidb_kv, bidh_kv, thread_idx, seqlen_k_new, offset_k,
// passing offset_k instead of leftpad_k will move the PageTable pointer to the right position
0 /*bidb_kv_idx, not used since we don't use TMA for Sm8x*/
);
static_assert(std::is_same_v<GmemLayoutAtomAppend, typename Rotary_t::LayoutAtom>);
static_assert(!PagedKV || std::is_same_v<GmemLayoutAtomAppend, typename PagedKVManager_t::GmemLayoutAtomKVCpAsync>);
GmemTiledCopyQKV gmem_tiled_copy_kv_g2s;
auto gmem_thr_copy_kv_g2s = gmem_tiled_copy_kv_g2s.get_thread_slice(thread_idx);
auto gmem_thr0_copy_kv_g2s = gmem_tiled_copy_kv_g2s.get_thread_slice(_0{}); // Only for index calculation
GmemTiledCopyAppendKV gmem_tiled_copy_kv_s2g;
auto gmem_thr_copy_kv_s2g = gmem_tiled_copy_kv_s2g.get_thread_slice(thread_idx);
auto gmem_thr0_copy_kv_s2g = gmem_tiled_copy_kv_s2g.get_thread_slice(_0{}); // Only for index calculation
Tensor tKgKnew = gmem_thr_copy_kv_g2s.partition_S(gKnew);
Tensor tKsKg2s = gmem_thr_copy_kv_g2s.partition_S(sK);
Tensor tKsKs2g = gmem_thr_copy_kv_s2g.partition_S(sK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tKgK = gmem_thr_copy_kv_s2g.partition_D(gK);
Tensor tVgVnew = gmem_thr_copy_kv_g2s.partition_S(gVnew); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVsVg2s = gmem_thr_copy_kv_g2s.partition_S(sV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVsVs2g = gmem_thr_copy_kv_s2g.partition_S(sV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVgV = gmem_thr_copy_kv_s2g.partition_D(gV);
Tensor cK = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{})); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tKcKg2s = gmem_thr_copy_kv_g2s.partition_D(cK);
Tensor t0KcKg2s = gmem_thr0_copy_kv_g2s.partition_D(cK);
Tensor tKpKg2s = make_tensor<bool>(make_shape(size<2>(tKsKg2s)));
Tensor tKcKs2g = gmem_thr_copy_kv_s2g.partition_D(cK);
Tensor t0KcKs2g = gmem_thr0_copy_kv_s2g.partition_D(cK);
Tensor tKpKs2g = make_tensor<bool>(make_shape(size<2>(tKsKs2g)));
#pragma unroll
for (int k = 0; k < size(tKpKg2s); ++k) { tKpKg2s(k) = get<1>(tKcKg2s(_0{}, _0{}, k)) < get<1>(params.shape_K); }
#pragma unroll
for (int k = 0; k < size(tKpKs2g); ++k) { tKpKs2g(k) = get<1>(tKcKs2g(_0{}, _0{}, k)) < get<1>(params.shape_K); }
auto load_K_new = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tKsK_cur = tKsKg2s(_, _, _, smem_pipe_write);
int const seqlenk_row_limit = -int(get<0>(tKcKg2s(_0{}, _0{}, _0{}))) + (EvenN
? seqlen_k_new - n_block * kBlockN
: (!Seqlenk_mask ? kBlockN : std::min(seqlen_k_new - n_block * kBlockN, kBlockN)));
// We don't need to clear the sK smem tiles since we won't write them out
flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_kv_g2s, tKgKnew(_, _, _, n_block), tKsK_cur, t0KcKg2s, tKpKg2s, seqlenk_row_limit);
};
auto load_V_new = [&] (int const n_block, int const smem_pipe_write, auto need_seqlenk_masking_type) {
static constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
static constexpr bool EvenN = kBlockN % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0;
Tensor tVsV_cur = tVsVg2s(_, _, _, smem_pipe_write);
int const seqlenk_row_limit = -int(get<0>(tKcKg2s(_0{}, _0{}, _0{}))) + (EvenN
? seqlen_k_new - n_block * kBlockN
: (!Seqlenk_mask ? kBlockN : std::min(seqlen_k_new - n_block * kBlockN, kBlockN)));
// We don't need to clear the sV smem tiles since we won't write them out
flash::copy</*Is_even_MN=*/!Seqlenk_mask && EvenN, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/true>(
gmem_tiled_copy_kv_g2s, tVgVnew(_, _, _, n_block), tVsV_cur, t0KcKg2s, tKpKg2s, seqlenk_row_limit);
};
auto store_K = [&] (int const n_block, int const smem_pipe_read) {
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
if (get<1>(params.shape_rotary) <= 0) {
Tensor tKsK_cur = tKsKs2g(_, _, _, smem_pipe_read);
if constexpr (!PagedKV) {
Tensor tKgK_cur = tKgK(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv_s2g, tKsK_cur, tKgK_cur, tKcKs2g, tKpKs2g, std::min(seqlen_k_new - n_block * kBlockN, kBlockN)
);
} else {
paged_kv_manager.store_K(n_block, tKsK_cur);
}
} else {
Tensor gK_cur = gK(_, _, n_block);
auto tPrKPtr = cute::conditional_return<PagedKV>(paged_kv_manager.compute_K_ptr(), nullptr);
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = rotary.template load_cos_sin<true /*kInterleaved*/>(n_block);
rotary.template apply_K_interleaved<PagedKV>(sK(_, _, smem_pipe_read), gK_cur, tKpKs2g, tRrCos, tRrSin, tPrKPtr, n_block);
} else {
auto [tRrCosCont, tRrSinCont] = rotary.template load_cos_sin<false /*kInterleaved*/>(n_block);
rotary.template apply_K_contiguous<PagedKV>(sK(_, _, smem_pipe_read), gK_cur, tKpKs2g, tRrCosCont, tRrSinCont, tPrKPtr, n_block, get<1>(params.shape_K));
}
}
};
auto store_V = [&] (int const n_block, int const smem_pipe_read) {
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
Tensor tVsV_cur = tVsVs2g(_, _, _, smem_pipe_read);
if constexpr (!PagedKV) {
Tensor tVgV_cur = tVgV(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv_s2g, tVsV_cur, tVgV_cur, tKcKs2g, tKpKs2g, n_limit);
} else {
paged_kv_manager.store_V(n_block, tVsV_cur);
}
};
int n_block = n_block_new_max - 1;
// Note, using the for_each() function here to ensure `stage` is of type Int<x>.
for_each(make_int_sequence<kStages>{}, [&] (auto stage) {
static constexpr bool Is_first_stage = CUTE_STATIC_V(stage) == 0;
static constexpr bool Is_last_stage = CUTE_STATIC_V(stage) == kStages - 1;
if (Is_first_stage || n_block - stage >= n_block_new_min) {
load_K_new(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
// If persistent, need to sync to make sure all threads have finished with smem_o before writing to smem_v
if constexpr (Is_first_stage) { __syncthreads(); }
if constexpr (!Is_last_stage) {
if (Is_first_stage || n_block - stage >= n_block_new_min) {
load_V_new(n_block - stage, stage, cute::bool_constant<Is_first_stage>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
}
});
int smem_pipe_read = 0, smem_pipe_write = kStages - 1;
#pragma unroll 1
for (; n_block >= n_block_new_min; --n_block) {
if constexpr (PagedKV) { paged_kv_manager.template load_page_table<true /*Seqlenk_mask*/>(n_block); }
flash::cp_async_wait<kStages * 2 - 2>();
__syncthreads();
store_K(n_block, kStages > 1 ? smem_pipe_read : 0);
if (n_block - kStages + 1 >= n_block_new_min) {
load_V_new(n_block - kStages + 1, kStages > 1 ? smem_pipe_write : 0, cute::bool_constant<kStages == 1>{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
smem_pipe_write = smem_pipe_write < kStages - 1 ? smem_pipe_write + 1 : 0;
flash::cp_async_wait<kStages * 2 - 2>();
__syncthreads();
store_V(n_block, kStages > 1 ? smem_pipe_read : 0);
smem_pipe_read = smem_pipe_read < kStages - 1 ? smem_pipe_read + 1 : 0;
if (n_block - kStages >= n_block_new_min) {
load_K_new(n_block - kStages, kStages > 1 ? smem_pipe_write : 0, cute::false_type{} /*Seqlenk_mask*/);
}
cute::cp_async_fence();
}
return true;
}
};
} // namespace flash