File size: 17,763 Bytes
23d26f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# Copyright (c) 2024, Tri Dao.
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
# This backward pass is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
import math
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
from einops import rearrange
def rms_norm_ref(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True, upcast=True):
dtype = x.dtype
N = x.shape[-1]
weight = weight.float()
bias = bias.float() if bias is not None else None
if upcast:
x = x.float()
z = z.float() if z is not None else z
if z is not None and not norm_before_gate:
x = x * F.silu(z)
if group_size is None:
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
else:
x_group = rearrange(x, "... (g d) -> ... g d", d=group_size)
rstd = 1 / torch.sqrt((x_group.square()).mean(dim=-1, keepdim=True) + eps)
out = rearrange(x_group * rstd, "... g d -> ... (g d)") * weight
if bias is not None:
out = out + bias
if z is not None and norm_before_gate:
out *= F.silu(z)
return out.to(dtype)
@triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["Z"] is not None})
@triton.jit
def _layer_norm_fwd_1pass_kernel(
X, # pointer to the input
Y, # pointer to the output
W, # pointer to the weights
B, # pointer to the biases
Z, # pointer to the other branch
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_y_row,
stride_z_row,
M, # number of rows in X
N, # number of columns in X
eps, # epsilon to avoid division by zero
BLOCK_N: tl.constexpr,
HAS_BIAS: tl.constexpr,
HAS_Z: tl.constexpr,
NORM_BEFORE_GATE: tl.constexpr,
IS_RMS_NORM: tl.constexpr,
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
group = tl.program_id(1)
X += row * stride_x_row + group * N
Y += row * stride_y_row + group * N
if HAS_Z:
Z += row * stride_z_row + group * N
if not IS_RMS_NORM:
Mean += group * M
Rstd += group * M
W += group * N
if HAS_BIAS:
B += group * N
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
if HAS_Z and not NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=cols < N).to(tl.float32)
x *= z * tl.sigmoid(z)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
w = tl.load(W + cols, mask=mask).to(tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask).to(tl.float32)
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
y = x_hat * w + b if HAS_BIAS else x_hat * w
if HAS_Z and NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask).to(tl.float32)
y *= z * tl.sigmoid(z)
# Write output
tl.store(Y + cols, y, mask=mask)
def _layer_norm_fwd(x, weight, bias, eps, z=None, out=None, group_size=None, norm_before_gate=True, is_rms_norm=False):
M, N = x.shape
if group_size is None:
group_size = N
assert N % group_size == 0
ngroups = N // group_size
assert x.stride(-1) == 1
if z is not None:
assert z.stride(-1) == 1
assert z.shape == (M, N)
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
if out is not None:
assert out.shape == x.shape
else:
out = torch.empty_like(x)
assert out.stride(-1) == 1
mean = torch.empty((ngroups * M, ), dtype=torch.float32, device=x.device) if not is_rms_norm else None
rstd = torch.empty((ngroups * M, ), dtype=torch.float32, device=x.device)
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size))
if group_size > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_N // 256, 1), 8)
grid = (M, ngroups)
with torch.cuda.device(x.device.index):
_layer_norm_fwd_1pass_kernel[grid](x, out, weight, bias, z, mean, rstd,
x.stride(0), out.stride(0), z.stride(0) if z is not None else 0,
M, group_size, eps,
BLOCK_N=BLOCK_N,
NORM_BEFORE_GATE=norm_before_gate,
IS_RMS_NORM=is_rms_norm,
num_warps=num_warps)
return out, mean, rstd
@triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["Z"] is not None})
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
@triton.jit
def _layer_norm_bwd_kernel(
X, # pointer to the input
W, # pointer to the weights
B, # pointer to the biases
Z, # pointer to the other branch
Y, # pointer to the output to be recomputed
DY, # pointer to the output gradient
DX, # pointer to the input gradient
DW, # pointer to the partial sum of weights gradient
DB, # pointer to the partial sum of biases gradient
DZ, # pointer to the other branch
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_z_row,
stride_y_row,
stride_dy_row,
stride_dx_row,
stride_dz_row,
stride_dw_row,
stride_db_row,
M, # number of rows in X
N, # number of columns in X
eps, # epsilon to avoid division by zero
rows_per_program,
NORM_BEFORE_GATE: tl.constexpr,
IS_RMS_NORM: tl.constexpr,
HAS_BIAS: tl.constexpr,
HAS_Z: tl.constexpr,
RECOMPUTE_OUTPUT: tl.constexpr,
BLOCK_N: tl.constexpr,
):
# Map the program id to the elements of X, DX, and DY it should compute.
row_block_id = tl.program_id(0)
group = tl.program_id(1)
row_start = row_block_id * rows_per_program
cols = tl.arange(0, BLOCK_N)
mask = cols < N
X += row_start * stride_x_row + group * N
if HAS_Z:
Z += row_start * stride_z_row + group * N
DZ += row_start * stride_dz_row + group * N
DY += row_start * stride_dy_row + group * N
DX += row_start * stride_dx_row + group * N
if RECOMPUTE_OUTPUT:
Y += row_start * stride_y_row + group * N
if not IS_RMS_NORM:
Mean += group * M
Rstd += group * M
W += group * N
w = tl.load(W + cols, mask=mask).to(tl.float32)
if (RECOMPUTE_OUTPUT or HAS_Z) and HAS_BIAS:
B += group * N
b = tl.load(B + cols, mask=mask, other=0.).to(tl.float32)
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
if HAS_BIAS:
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
row_end = min((row_block_id + 1) * rows_per_program, M)
for row in range(row_start, row_end):
# Load data to SRAM
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
if not IS_RMS_NORM:
mean = tl.load(Mean + row)
if HAS_Z and not NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask, other=0.).to(tl.float32)
x_og = x
x = x_og * z * tl.sigmoid(z)
rstd = tl.load(Rstd + row)
# Compute dx
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
xhat = tl.where(mask, xhat, 0.)
if HAS_Z and NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask, other=0.).to(tl.float32)
z_sigmoid = tl.sigmoid(z)
y = xhat * w + b if HAS_BIAS else xhat * w
if RECOMPUTE_OUTPUT:
tl.store(Y + cols, y * z * z_sigmoid, mask=mask)
dz = dy * y * z_sigmoid * (1 + z * (1 - z_sigmoid))
tl.store(DZ + cols, dz, mask=mask)
dy *= z * z_sigmoid
else:
if RECOMPUTE_OUTPUT:
y = xhat * w + b if HAS_BIAS else xhat * w
tl.store(Y + cols, y, mask=mask)
wdy = w * dy
c1 = tl.sum(xhat * wdy, axis=0) / N
if not IS_RMS_NORM:
c2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat * c1 + c2)) * rstd
else:
dx = (wdy - xhat * c1) * rstd
dw += dy * xhat
if HAS_BIAS:
db += dy
if HAS_Z and not NORM_BEFORE_GATE:
z_sigmoid = tl.sigmoid(z)
dz = dx * x_og * z_sigmoid * (1 + z * (1 - z_sigmoid))
tl.store(DZ + cols, dz, mask=mask)
dx *= z * z_sigmoid
# Write dx
tl.store(DX + cols, dx, mask=mask)
X += stride_x_row
if HAS_Z:
Z += stride_z_row
DZ += stride_dz_row
if RECOMPUTE_OUTPUT:
Y += stride_y_row
DY += stride_dy_row
DX += stride_dx_row
tl.store(DW + row_block_id * stride_dw_row + group * N + cols, dw, mask=mask)
if HAS_BIAS:
tl.store(DB + row_block_id * stride_db_row + group * N + cols, db, mask=mask)
def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, z=None, group_size=None,
norm_before_gate=True, is_rms_norm=False, recompute_output=False, dz=None, out=None):
M, N = x.shape
if group_size is None:
group_size = N
assert N % group_size == 0
ngroups = N // group_size
assert x.stride(-1) == 1
assert dy.stride(-1) == 1
assert dy.shape == (M, N)
if z is not None:
assert z.stride(-1) == 1
assert z.shape == (M, N)
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
dx = torch.empty_like(x)
if dz is not None:
assert z is not None
assert dz.shape == z.shape
assert dz.stride(-1) == 1
else:
dz = torch.empty_like(z) if z is not None else None
if recompute_output:
if out is None:
out = torch.empty_like(x)
assert out.shape == x.shape
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size))
if group_size > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_N // 256, 1), 8)
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
# If group size is small (e.g., 64), we're only using 1 warp. So having just 108 programs
# would limit the occupancy.
nrow_groups = math.ceil(sm_count * math.ceil(4 / num_warps) / ngroups)
_dw = torch.empty((nrow_groups, N), dtype=torch.float32, device=weight.device)
_db = torch.empty((nrow_groups, N), dtype=torch.float32, device=bias.device) if bias is not None else None
rows_per_program = math.ceil(M / nrow_groups)
grid = (nrow_groups, ngroups)
with torch.cuda.device(x.device.index):
_layer_norm_bwd_kernel[grid](x, weight, bias, z, out if recompute_output else None,
dy, dx, _dw, _db, dz, mean, rstd,
x.stride(0),
z.stride(0) if z is not None else 0,
0 if not recompute_output else out.stride(0),
dy.stride(0), dx.stride(0),
dz.stride(0) if dz is not None else 0,
_dw.stride(0),
_db.stride(0) if _db is not None else 0,
M, group_size, eps,
rows_per_program,
BLOCK_N=BLOCK_N,
NORM_BEFORE_GATE=norm_before_gate,
IS_RMS_NORM=is_rms_norm,
num_warps=num_warps)
dw = _dw.sum(0).to(weight.dtype)
db = _db.sum(0).to(bias.dtype) if bias is not None else None
return (dx, dw, db, dz) if not recompute_output else (dx, dw, db, dz, out)
class LayerNormFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True,
is_rms_norm=False):
"""If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z))
"""
x_shape_og = x.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
if x.stride(-1) != 1:
x = x.contiguous()
if z is not None:
assert z.shape == x_shape_og
z = z.reshape(-1, z.shape[-1])
if z.stride(-1) != 1:
z = z.contiguous()
weight = weight.contiguous()
if bias is not None:
bias = bias.contiguous()
y, mean, rstd = _layer_norm_fwd(x, weight, bias, eps, z=z, group_size=group_size, norm_before_gate=norm_before_gate, is_rms_norm=is_rms_norm)
ctx.save_for_backward(x, weight, bias, mean, rstd, z)
ctx.x_shape_og = x_shape_og
ctx.eps = eps
ctx.group_size = group_size
ctx.norm_before_gate = norm_before_gate
ctx.is_rms_norm = is_rms_norm
return y.reshape(x_shape_og)
@staticmethod
def backward(ctx, dy):
x, weight, bias, mean, rstd, z = ctx.saved_tensors
dy = dy.reshape(-1, dy.shape[-1])
if dy.stride(-1) != 1:
dy = dy.contiguous()
assert dy.shape == x.shape
dx, dw, db, dz = _layer_norm_bwd(dy, x, weight, bias, ctx.eps, mean, rstd, z, ctx.group_size,
ctx.norm_before_gate, ctx.is_rms_norm)
return dx.reshape(ctx.x_shape_og), dw, db, dz.reshape(ctx.x_shape_og) if dz is not None else None, None, None, None, None
def layernorm_fn(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True, is_rms_norm=False):
return LayerNormFn.apply(x, weight, bias, z, eps, group_size, norm_before_gate, is_rms_norm)
def rmsnorm_fn(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True):
return LayerNormFn.apply(x, weight, bias, z, eps, group_size, norm_before_gate, True)
class LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, group_size=None, norm_before_gate=True, device=None, dtype=None):
"""If group_size is not None, we do GroupNorm with each group having group_size elements.
group_size=None is equivalent to group_size=hidden_size (i.e. there's only 1 group).
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.group_size = group_size
self.norm_before_gate = norm_before_gate
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.ones_(self.weight)
torch.nn.init.zeros_(self.bias)
def forward(self, x, z=None):
"""If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z))
"""
return layernorm_fn(x, self.weight, self.bias, z=z, group_size=self.group_size, eps=self.eps,
norm_before_gate=self.norm_before_gate)
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, group_size=None, norm_before_gate=True, device=None, dtype=None):
"""If group_size is not None, we do GroupNorm with each group having group_size elements.
group_size=None is equivalent to group_size=hidden_size (i.e. there's only 1 group).
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.register_parameter("bias", None)
self.group_size = group_size
self.norm_before_gate = norm_before_gate
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.ones_(self.weight)
def forward(self, x, z=None):
"""If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z))
"""
return rmsnorm_fn(x, self.weight, self.bias, z=z, eps=self.eps, group_size=self.group_size,
norm_before_gate=self.norm_before_gate)
|