File size: 13,637 Bytes
23d26f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Copyright (c) 2024, Tri Dao, Albert Gu.
"""We want triton==2.1.0 or 2.2.0 for this
"""
import math
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
from einops import rearrange, repeat
def init_to_zero(names):
return lambda nargs: [nargs[name].zero_() for name in names if nargs[name] is not None]
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=2),
],
key=['chunk_size', 'K', 'IS_CAUSAL'],
)
@triton.jit
def _bmm_chunk_fwd_kernel(
# Pointers to matrices
a_ptr, b_ptr, out_ptr, seq_idx_ptr,
# Matrix dimensions
seqlen, chunk_size, K, ngroups,
stride_a_batch, stride_a_seqlen, stride_a_head, stride_ak,
stride_b_batch, stride_b_seqlen, stride_b_head, stride_bk,
stride_out_batch, stride_out_chunk, stride_out_head, stride_outm, stride_outn,
stride_seq_idx_batch, stride_seq_idx_seqlen,
# Meta-parameters
IS_CAUSAL: tl.constexpr,
dot_dtype: tl.constexpr,
HAS_SEQ_IDX: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
):
pid_b = tl.program_id(axis=1)
pid_ch = tl.program_id(axis=2)
pid_c = pid_ch // ngroups
pid_h = pid_ch - pid_c * ngroups
num_pid_n = tl.cdiv(chunk_size, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
if IS_CAUSAL:
if pid_n * BLOCK_SIZE_N >= (pid_m + 1) * BLOCK_SIZE_M:
return
a_ptr += pid_b * stride_a_batch + pid_c * chunk_size * stride_a_seqlen + pid_h * stride_a_head
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + pid_h * stride_b_head
if HAS_SEQ_IDX:
seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_m[:, None] * stride_a_seqlen + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_b_seqlen)
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_k[None, :] < K - k * BLOCK_SIZE_K), other=0.0).to(dot_dtype)
b = tl.load(b_ptrs, mask=(offs_k[:, None] < K - k * BLOCK_SIZE_K) & (offs_n[None, :] < chunk_size_limit), other=0.0).to(dot_dtype)
acc += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
if HAS_SEQ_IDX:
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1)
seq_idx_n = tl.load(seq_idx_ptr + offs_n * stride_seq_idx_seqlen, mask=offs_n < chunk_size_limit, other=-2)
acc = tl.where(seq_idx_m[:, None] == seq_idx_n[None, :], acc, 0.0)
out = acc.to(out_ptr.dtype.element_ty)
out_ptr += pid_b * stride_out_batch + pid_c * stride_out_chunk + pid_h * stride_out_head
out_ptrs = out_ptr + (stride_outm * offs_m[:, None] + offs_n[None, :] * stride_outn)
tl.store(out_ptrs, out, mask=(offs_m[:, None] < chunk_size) & (offs_n[None, :] < chunk_size))
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_CS': 64}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_CS': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_CS': 32}, num_stages=4, num_warps=2),
],
key=['chunk_size', 'K'],
)
@triton.jit
def _bmm_chunk_bwd_kernel(
# Pointers to matrices
a_ptr, dout_ptr, db_ptr, res_ptr,
# Matrix dimensions
seqlen, chunk_size, K, ngroups,
stride_a_batch, stride_a_seqlen, stride_a_head, stride_ak,
stride_dout_batch, stride_dout_chunk, stride_dout_head, stride_dout_csize_m, stride_dout_csize_n,
stride_db_batch, stride_db_seqlen, stride_db_head, stride_db_k,
stride_res_batch, stride_res_seqlen, stride_res_head, stride_res_k,
# Meta-parameters
dot_dtype: tl.constexpr,
HAS_RESIDUAL: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_CS: tl.constexpr,
):
pid_b = tl.program_id(axis=1)
pid_ch = tl.program_id(axis=2)
pid_c = pid_ch // ngroups
pid_h = pid_ch - pid_c * ngroups
num_pid_n = tl.cdiv(K, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
a_ptr += pid_b * stride_a_batch + pid_c * chunk_size * stride_a_seqlen + pid_h * stride_a_head
dout_ptr += pid_b * stride_dout_batch + pid_c * stride_dout_chunk + pid_h * stride_dout_head
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_cs = tl.arange(0, BLOCK_SIZE_CS)
dout_ptrs = dout_ptr + (offs_m[:, None] * stride_dout_csize_n + offs_cs[None, :] * stride_dout_csize_m)
a_ptrs = a_ptr + (offs_cs[:, None] * stride_a_seqlen + offs_n[None, :] * stride_ak)
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for cs in range(0, tl.cdiv(chunk_size_limit, BLOCK_SIZE_CS)):
dout = tl.load(dout_ptrs, mask=(offs_m[:, None] < chunk_size) & (offs_cs[None, :] < chunk_size_limit - cs * BLOCK_SIZE_CS), other=0.0).to(dot_dtype)
a = tl.load(a_ptrs, mask=(offs_cs[:, None] < chunk_size_limit - cs * BLOCK_SIZE_CS) & (offs_n[None, :] < K), other=0.0).to(dot_dtype)
acc += tl.dot(dout, a)
dout_ptrs += BLOCK_SIZE_CS * stride_dout_csize_m
a_ptrs += BLOCK_SIZE_CS * stride_a_seqlen
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
if HAS_RESIDUAL:
res_ptr += pid_b * stride_res_batch + pid_c * chunk_size * stride_res_seqlen + pid_h * stride_res_head
res_ptrs = res_ptr + (offs_m[:, None] * stride_res_seqlen + offs_n[None, :] * stride_res_k)
res = tl.load(res_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < K)).to(tl.float32)
acc += res
db = acc.to(db_ptr.dtype.element_ty)
db_ptr += pid_b * stride_db_batch + pid_c * chunk_size * stride_db_seqlen + pid_h * stride_db_head
db_ptrs = db_ptr + (offs_m[:, None] * stride_db_seqlen + offs_n[None, :] * stride_db_k)
tl.store(db_ptrs, db, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < K))
def _bmm_chunk_fwd(a, b, chunk_size, seq_idx=None, causal=False, output_dtype=None):
"""
Argument:
a: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
b: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
seq_idx: (batch, seqlen) or None. out[i, j] for seq_idx[i] != seq_idx[j] will be zeroed out.
causal: if True, then out[i, j] for i > j will be arbitrary, only out[i, j] for i <= j are
guaranteed to be correct.
Return:
out: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size)
"""
# Check constraints.
has_groups = a.dim() == 4
if not has_groups:
batch, seqlen, k = a.shape
else:
batch, seqlen, ngroups, k = a.shape
assert b.shape == a.shape
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if a.stride(-1) != 1 and a.stride(1) != 1:
a = a.contiguous()
if b.stride(-1) != 1 and b.stride(1) != 1:
b = b.contiguous()
nchunks = math.ceil(seqlen / chunk_size)
# Allocates output.
out_dtype = a.dtype if output_dtype is None else output_dtype
out = torch.empty((batch, nchunks, chunk_size, chunk_size) if not has_groups else (batch, nchunks, ngroups, chunk_size, chunk_size),
device=a.device, dtype=out_dtype)
dot_dtype = (tl.bfloat16 if a.dtype == torch.bfloat16 or b.dtype == torch.bfloat16 else
(tl.float16 if a.dtype == torch.float16 or b.dtype == torch.float16 else tl.float32))
grid = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(chunk_size, META['BLOCK_SIZE_N']),
batch, nchunks if not has_groups else nchunks * ngroups)
with torch.cuda.device(a.device.index):
_bmm_chunk_fwd_kernel[grid](
a, b, out, seq_idx,
seqlen, chunk_size, k, ngroups if has_groups else 1,
a.stride(0), a.stride(1), 0 if not has_groups else a.stride(2), a.stride(-1),
b.stride(0), b.stride(1), 0 if not has_groups else b.stride(2), b.stride(-1),
out.stride(0), out.stride(1), 0 if not has_groups else out.stride(2), out.stride(-2), out.stride(-1),
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
causal,
dot_dtype,
HAS_SEQ_IDX=seq_idx is not None,
)
return out
def _bmm_chunk_bwd(a, dout, residual=None, out=None):
"""
Argument:
a: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
dout: (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, ngroups, chunk_size, chunk_size)
residual: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
Return:
out: (batch, seqlen, k) or (batch, seqlen, ngroups, k)
If there was seq_idx in the fwd pass, then dout[i, j] for seq_idx[i] != seq_idx[j] should already be
zeroed out before calling this function.
"""
# Check constraints.
has_groups = a.dim() == 4
if not has_groups:
batch, seqlen, k = a.shape
else:
batch, seqlen, ngroups, k = a.shape
nchunks, chunk_size = dout.shape[1], dout.shape[-1]
if a.stride(-1) != 1 and a.stride(-2) != 1:
a = a.contiguous()
if dout.stride(-1) != 1 and dout.stride(-2) != 1:
dout = dout.contiguous()
if residual is not None:
assert residual.shape == (batch, seqlen, k) if not has_groups else (batch, seqlen, ngroups, k)
if residual.stride(-1) != 1 and residual.stride(1) != 1:
residual = residual.contiguous()
# Allocates output.
if out is not None:
assert out.shape == a.shape
assert out.stride(-1) == 1 or out.stride(1) == 1
else:
out = torch.empty_like(a)
dot_dtype = (tl.bfloat16 if a.dtype == torch.bfloat16 or dout.dtype == torch.bfloat16 else
(tl.float16 if a.dtype == torch.float16 or dout.dtype == torch.float16 else tl.float32))
grid = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(k, META['BLOCK_SIZE_N']), batch,
nchunks if not has_groups else nchunks * ngroups)
residual_strides = ((residual.stride(0), residual.stride(1), 0 if not has_groups else residual.stride(2),
residual.stride(-1))
if residual is not None else (0, 0, 0, 0))
with torch.cuda.device(a.device.index):
_bmm_chunk_bwd_kernel[grid](
a, dout, out, residual,
seqlen, chunk_size, k, ngroups if has_groups else 1,
a.stride(0), a.stride(1), 0 if not has_groups else a.stride(2), a.stride(-1),
dout.stride(0), dout.stride(1), 0 if not has_groups else dout.stride(2), dout.stride(-2), dout.stride(-1),
out.stride(0), out.stride(1), 0 if not has_groups else out.stride(2), out.stride(-1),
residual_strides[0], residual_strides[1], residual_strides[2], residual_strides[3],
dot_dtype,
HAS_RESIDUAL=residual is not None,
)
return out
|