|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, repeat |
|
|
|
try: |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
except ImportError: |
|
causal_conv1d_fn, causal_conv1d_update = None, None |
|
|
|
try: |
|
from causal_conv1d.causal_conv1d_varlen import causal_conv1d_varlen_states |
|
except ImportError: |
|
causal_conv1d_varlen_states = None |
|
|
|
try: |
|
from ..ops.triton.selective_state_update import selective_state_update |
|
except ImportError: |
|
selective_state_update = None |
|
|
|
from ..ops.triton.layernorm_gated import RMSNorm as RMSNormGated |
|
|
|
from ..distributed.tensor_parallel import ColumnParallelLinear, RowParallelLinear |
|
from ..distributed.distributed_utils import all_reduce, reduce_scatter |
|
|
|
from ..ops.triton.ssd_combined import mamba_chunk_scan_combined |
|
from ..ops.triton.ssd_combined import mamba_split_conv1d_scan_combined |
|
|
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
|
|
class Mamba2(nn.Module, PyTorchModelHubMixin): |
|
def __init__( |
|
self, |
|
d_model, |
|
d_state=128, |
|
d_conv=4, |
|
conv_init=None, |
|
expand=2, |
|
headdim=64, |
|
d_ssm=None, |
|
ngroups=1, |
|
A_init_range=(1, 16), |
|
D_has_hdim=False, |
|
rmsnorm=True, |
|
norm_before_gate=False, |
|
dt_min=0.001, |
|
dt_max=0.1, |
|
dt_init_floor=1e-4, |
|
dt_limit=(0.0, float("inf")), |
|
bias=False, |
|
conv_bias=True, |
|
|
|
chunk_size=256, |
|
use_mem_eff_path=True, |
|
layer_idx=None, |
|
process_group=None, |
|
sequence_parallel=True, |
|
device=None, |
|
dtype=None, |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.d_model = d_model |
|
self.d_state = d_state |
|
self.d_conv = d_conv |
|
self.conv_init = conv_init |
|
self.expand = expand |
|
self.process_group = process_group |
|
self.sequence_parallel = sequence_parallel |
|
self.world_size = 1 if process_group is None else process_group.size() |
|
self.local_rank = 0 if process_group is None else process_group.rank() |
|
self.d_inner = (self.expand * self.d_model) // self.world_size |
|
assert self.d_inner * self.world_size == self.expand * self.d_model |
|
self.headdim = headdim |
|
self.d_ssm = self.d_inner if d_ssm is None else d_ssm // self.world_size |
|
assert ngroups % self.world_size == 0 |
|
self.ngroups = ngroups // self.world_size |
|
assert self.d_ssm % self.headdim == 0 |
|
self.nheads = self.d_ssm // self.headdim |
|
self.D_has_hdim = D_has_hdim |
|
self.rmsnorm = rmsnorm |
|
self.norm_before_gate = norm_before_gate |
|
self.dt_limit = dt_limit |
|
self.activation = "silu" |
|
self.chunk_size = chunk_size |
|
self.use_mem_eff_path = use_mem_eff_path |
|
self.layer_idx = layer_idx |
|
|
|
|
|
d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads |
|
if self.process_group is None: |
|
self.in_proj = nn.Linear( |
|
self.d_model, d_in_proj, bias=bias, **factory_kwargs |
|
) |
|
else: |
|
self.in_proj = ColumnParallelLinear( |
|
self.d_model, |
|
d_in_proj * self.world_size, |
|
bias=bias, |
|
process_group=self.process_group, |
|
sequence_parallel=self.sequence_parallel, |
|
**factory_kwargs, |
|
) |
|
|
|
conv_dim = self.d_ssm + 2 * self.ngroups * self.d_state |
|
self.conv1d = nn.Conv1d( |
|
in_channels=conv_dim, |
|
out_channels=conv_dim, |
|
bias=conv_bias, |
|
kernel_size=d_conv, |
|
groups=conv_dim, |
|
padding=d_conv - 1, |
|
**factory_kwargs, |
|
) |
|
if self.conv_init is not None: |
|
nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init) |
|
|
|
self.act = nn.SiLU() |
|
|
|
|
|
dt = torch.exp( |
|
torch.rand(self.nheads, **factory_kwargs) |
|
* (math.log(dt_max) - math.log(dt_min)) |
|
+ math.log(dt_min) |
|
) |
|
dt = torch.clamp(dt, min=dt_init_floor) |
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
self.dt_bias = nn.Parameter(inv_dt) |
|
|
|
|
|
self.dt_bias._no_weight_decay = True |
|
|
|
assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0] |
|
A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_( |
|
*A_init_range |
|
) |
|
A_log = torch.log(A).to(dtype=dtype) |
|
self.A_log = nn.Parameter(A_log) |
|
self.A_log._no_weight_decay = True |
|
|
|
|
|
self.D = nn.Parameter( |
|
torch.ones(self.d_ssm if self.D_has_hdim else self.nheads, device=device) |
|
) |
|
self.D._no_weight_decay = True |
|
|
|
if self.rmsnorm: |
|
assert RMSNormGated is not None |
|
self.norm = RMSNormGated( |
|
self.d_ssm, |
|
eps=1e-5, |
|
norm_before_gate=self.norm_before_gate, |
|
group_size=self.d_ssm // ngroups, |
|
**factory_kwargs, |
|
) |
|
|
|
if self.process_group is None: |
|
self.out_proj = nn.Linear( |
|
self.d_inner, self.d_model, bias=bias, **factory_kwargs |
|
) |
|
else: |
|
self.out_proj = RowParallelLinear( |
|
self.d_inner * self.world_size, |
|
self.d_model, |
|
bias=bias, |
|
process_group=self.process_group, |
|
sequence_parallel=self.sequence_parallel, |
|
**factory_kwargs, |
|
) |
|
|
|
def forward( |
|
self, u, seqlen=None, seq_idx=None, cu_seqlens=None, inference_params=None |
|
): |
|
""" |
|
u: (batch, seqlen, hidden_dim) if seqlen=None. |
|
If seqlen is not None, u is (batch * seqlen, hidden_dim). This is so that when we |
|
split u during sequence parallel, we split the batch * seqlen dimension |
|
(in case batch is small). |
|
Returns: same shape as u |
|
""" |
|
seqlen_og = seqlen |
|
if seqlen is None: |
|
batch, seqlen, dim = u.shape |
|
else: |
|
batch_seqlen, dim = u.shape |
|
batch = batch_seqlen // seqlen |
|
|
|
conv_state, ssm_state = None, None |
|
if inference_params is not None: |
|
inference_batch = ( |
|
cu_seqlens.shape[0] - 1 if cu_seqlens is not None else batch |
|
) |
|
conv_state, ssm_state = self._get_states_from_cache( |
|
inference_params, inference_batch |
|
) |
|
if inference_params.seqlen_offset > 0: |
|
|
|
out, _, _ = self.step(u, conv_state, ssm_state) |
|
return out |
|
|
|
zxbcdt = self.in_proj(u) |
|
if seqlen_og is not None: |
|
zxbcdt = rearrange(zxbcdt, "(b l) d -> b l d", l=seqlen) |
|
|
|
A = -torch.exp(self.A_log.float()) |
|
dt_limit_kwargs = ( |
|
{} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit) |
|
) |
|
if self.use_mem_eff_path and inference_params is None: |
|
out = mamba_split_conv1d_scan_combined( |
|
zxbcdt, |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
self.dt_bias, |
|
A, |
|
D=( |
|
rearrange(self.D, "(h p) -> h p", p=self.headdim) |
|
if self.D_has_hdim |
|
else self.D |
|
), |
|
chunk_size=self.chunk_size, |
|
seq_idx=seq_idx, |
|
activation=self.activation, |
|
rmsnorm_weight=self.norm.weight if self.rmsnorm else None, |
|
rmsnorm_eps=self.norm.eps if self.rmsnorm else 1e-6, |
|
outproj_weight=self.out_proj.weight, |
|
outproj_bias=self.out_proj.bias, |
|
headdim=None if self.D_has_hdim else self.headdim, |
|
ngroups=self.ngroups, |
|
norm_before_gate=self.norm_before_gate, |
|
**dt_limit_kwargs, |
|
) |
|
if seqlen_og is not None: |
|
out = rearrange(out, "b l d -> (b l) d") |
|
if self.process_group is not None: |
|
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce |
|
out = reduce_fn(out, self.process_group) |
|
else: |
|
d_mlp = ( |
|
zxbcdt.shape[-1] |
|
- 2 * self.d_ssm |
|
- 2 * self.ngroups * self.d_state |
|
- self.nheads |
|
) // 2 |
|
z0, x0, z, xBC, dt = torch.split( |
|
zxbcdt, |
|
[ |
|
d_mlp, |
|
d_mlp, |
|
self.d_ssm, |
|
self.d_ssm + 2 * self.ngroups * self.d_state, |
|
self.nheads, |
|
], |
|
dim=-1, |
|
) |
|
if conv_state is not None: |
|
if cu_seqlens is None: |
|
|
|
|
|
xBC_t = rearrange(xBC, "b l d -> b d l") |
|
conv_state.copy_( |
|
F.pad(xBC_t, (self.d_conv - xBC_t.shape[-1], 0)) |
|
) |
|
else: |
|
assert ( |
|
causal_conv1d_varlen_states is not None |
|
), "varlen inference requires causal_conv1d package" |
|
assert ( |
|
batch == 1 |
|
), "varlen inference only supports batch dimension 1" |
|
conv_varlen_states = causal_conv1d_varlen_states( |
|
xBC.squeeze(0), cu_seqlens, state_len=conv_state.shape[-1] |
|
) |
|
conv_state.copy_(conv_varlen_states) |
|
assert self.activation in ["silu", "swish"] |
|
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]: |
|
assert ( |
|
seq_idx is None |
|
), "varlen conv1d requires the causal_conv1d package" |
|
xBC = self.act( |
|
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[ |
|
:, : -(self.d_conv - 1) |
|
] |
|
) |
|
else: |
|
xBC = causal_conv1d_fn( |
|
xBC.transpose(1, 2), |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
bias=self.conv1d.bias, |
|
activation=self.activation, |
|
seq_idx=seq_idx, |
|
).transpose(1, 2) |
|
x, B, C = torch.split( |
|
xBC, |
|
[self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], |
|
dim=-1, |
|
) |
|
y = mamba_chunk_scan_combined( |
|
rearrange(x, "b l (h p) -> b l h p", p=self.headdim), |
|
dt, |
|
A, |
|
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups), |
|
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups), |
|
chunk_size=self.chunk_size, |
|
D=( |
|
rearrange(self.D, "(h p) -> h p", p=self.headdim) |
|
if self.D_has_hdim |
|
else self.D |
|
), |
|
z=( |
|
rearrange(z, "b l (h p) -> b l h p", p=self.headdim) |
|
if not self.rmsnorm |
|
else None |
|
), |
|
dt_bias=self.dt_bias, |
|
dt_softplus=True, |
|
seq_idx=seq_idx, |
|
cu_seqlens=cu_seqlens, |
|
**dt_limit_kwargs, |
|
return_final_states=ssm_state is not None, |
|
return_varlen_states=cu_seqlens is not None |
|
and inference_params is not None, |
|
) |
|
if ssm_state is not None: |
|
y, last_state, *rest = y |
|
if cu_seqlens is None: |
|
ssm_state.copy_(last_state) |
|
else: |
|
varlen_states = rest[0] |
|
ssm_state.copy_(varlen_states) |
|
y = rearrange(y, "b l h p -> b l (h p)") |
|
if self.rmsnorm: |
|
y = self.norm(y, z) |
|
if d_mlp > 0: |
|
y = torch.cat([F.silu(z0) * x0, y], dim=-1) |
|
if seqlen_og is not None: |
|
y = rearrange(y, "b l d -> (b l) d") |
|
out = self.out_proj(y) |
|
return out |
|
|
|
def step(self, hidden_states, conv_state, ssm_state): |
|
dtype = hidden_states.dtype |
|
assert ( |
|
hidden_states.shape[1] == 1 |
|
), "Only support decoding with 1 token at a time for now" |
|
zxbcdt = self.in_proj(hidden_states.squeeze(1)) |
|
d_mlp = ( |
|
zxbcdt.shape[-1] |
|
- 2 * self.d_ssm |
|
- 2 * self.ngroups * self.d_state |
|
- self.nheads |
|
) // 2 |
|
z0, x0, z, xBC, dt = torch.split( |
|
zxbcdt, |
|
[ |
|
d_mlp, |
|
d_mlp, |
|
self.d_ssm, |
|
self.d_ssm + 2 * self.ngroups * self.d_state, |
|
self.nheads, |
|
], |
|
dim=-1, |
|
) |
|
|
|
|
|
if causal_conv1d_update is None: |
|
conv_state.copy_( |
|
torch.roll(conv_state, shifts=-1, dims=-1) |
|
) |
|
conv_state[:, :, -1] = xBC |
|
xBC = torch.sum( |
|
conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1 |
|
) |
|
if self.conv1d.bias is not None: |
|
xBC = xBC + self.conv1d.bias |
|
xBC = self.act(xBC).to(dtype=dtype) |
|
else: |
|
xBC = causal_conv1d_update( |
|
xBC, |
|
conv_state, |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
|
|
x, B, C = torch.split( |
|
xBC, |
|
[self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], |
|
dim=-1, |
|
) |
|
A = -torch.exp(self.A_log.float()) |
|
|
|
|
|
if selective_state_update is None: |
|
assert ( |
|
self.ngroups == 1 |
|
), "Only support ngroups=1 for this inference code path" |
|
|
|
dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype)) |
|
dA = torch.exp(dt * A) |
|
x = rearrange(x, "b (h p) -> b h p", p=self.headdim) |
|
dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x) |
|
ssm_state.copy_(ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx) |
|
y = torch.einsum("bhpn,bn->bhp", ssm_state.to(dtype), C) |
|
y = y + rearrange(self.D.to(dtype), "h -> h 1") * x |
|
y = rearrange(y, "b h p -> b (h p)") |
|
if not self.rmsnorm: |
|
y = y * self.act(z) |
|
else: |
|
A = repeat(A, "h -> h p n", p=self.headdim, n=self.d_state).to( |
|
dtype=torch.float32 |
|
) |
|
dt = repeat(dt, "b h -> b h p", p=self.headdim) |
|
dt_bias = repeat(self.dt_bias, "h -> h p", p=self.headdim) |
|
D = repeat(self.D, "h -> h p", p=self.headdim) |
|
B = rearrange(B, "b (g n) -> b g n", g=self.ngroups) |
|
C = rearrange(C, "b (g n) -> b g n", g=self.ngroups) |
|
x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.headdim) |
|
if not self.rmsnorm: |
|
z = rearrange(z, "b (h p) -> b h p", p=self.headdim) |
|
y = selective_state_update( |
|
ssm_state, |
|
x_reshaped, |
|
dt, |
|
A, |
|
B, |
|
C, |
|
D, |
|
z=z if not self.rmsnorm else None, |
|
dt_bias=dt_bias, |
|
dt_softplus=True, |
|
) |
|
y = rearrange(y, "b h p -> b (h p)") |
|
if self.rmsnorm: |
|
y = self.norm(y, z) |
|
if d_mlp > 0: |
|
y = torch.cat([F.silu(z0) * x0, y], dim=-1) |
|
out = self.out_proj(y) |
|
return out.unsqueeze(1), conv_state, ssm_state |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
device = self.out_proj.weight.device |
|
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype |
|
conv_state = torch.zeros( |
|
batch_size, |
|
self.d_conv, |
|
self.conv1d.weight.shape[0], |
|
device=device, |
|
dtype=conv_dtype, |
|
).transpose(1, 2) |
|
ssm_dtype = self.in_proj.weight.dtype if dtype is None else dtype |
|
ssm_state = torch.zeros( |
|
batch_size, |
|
self.nheads, |
|
self.headdim, |
|
self.d_state, |
|
device=device, |
|
dtype=ssm_dtype, |
|
) |
|
return conv_state, ssm_state |
|
|
|
def _get_states_from_cache( |
|
self, inference_params, batch_size, initialize_states=False |
|
): |
|
assert self.layer_idx is not None |
|
if self.layer_idx not in inference_params.key_value_memory_dict: |
|
batch_shape = (batch_size,) |
|
conv_state = torch.zeros( |
|
batch_size, |
|
self.d_conv, |
|
self.conv1d.weight.shape[0], |
|
device=self.conv1d.weight.device, |
|
dtype=self.conv1d.weight.dtype, |
|
).transpose(1, 2) |
|
ssm_state = torch.zeros( |
|
batch_size, |
|
self.nheads, |
|
self.headdim, |
|
self.d_state, |
|
device=self.in_proj.weight.device, |
|
dtype=self.in_proj.weight.dtype, |
|
) |
|
inference_params.key_value_memory_dict[self.layer_idx] = ( |
|
conv_state, |
|
ssm_state, |
|
) |
|
else: |
|
conv_state, ssm_state = inference_params.key_value_memory_dict[ |
|
self.layer_idx |
|
] |
|
|
|
if initialize_states: |
|
conv_state.zero_() |
|
ssm_state.zero_() |
|
return conv_state, ssm_state |
|
|