# Copyright (c) 2023, Tri Dao, Albert Gu. import torch import torch.nn.functional as F from ..utils.torch import custom_fwd, custom_bwd from einops import rearrange, repeat try: from causal_conv1d import causal_conv1d_fn import causal_conv1d_cuda except ImportError: causal_conv1d_fn = None causal_conv1d_cuda = None from .triton.layer_norm import _layer_norm_fwd from .._ops import ops class SelectiveScanFn(torch.autograd.Function): @staticmethod def forward( ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False, ): if u.stride(-1) != 1: u = u.contiguous() if delta.stride(-1) != 1: delta = delta.contiguous() if D is not None: D = D.contiguous() if B.stride(-1) != 1: B = B.contiguous() if C.stride(-1) != 1: C = C.contiguous() if z is not None and z.stride(-1) != 1: z = z.contiguous() if B.dim() == 3: B = rearrange(B, "b dstate l -> b 1 dstate l") ctx.squeeze_B = True if C.dim() == 3: C = rearrange(C, "b dstate l -> b 1 dstate l") ctx.squeeze_C = True out, x, *rest = ops.selective_scan_fwd( u, delta, A, B, C, D, z, delta_bias, delta_softplus ) ctx.delta_softplus = delta_softplus ctx.has_z = z is not None last_state = x[:, :, -1, 1::2] # (batch, dim, dstate) if not ctx.has_z: ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) return out if not return_last_state else (out, last_state) else: ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out) out_z = rest[0] return out_z if not return_last_state else (out_z, last_state) @staticmethod def backward(ctx, dout, *args): if not ctx.has_z: u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors z = None out = None else: u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors if dout.stride(-1) != 1: dout = dout.contiguous() # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the # backward of selective_scan_cuda with the backward of chunk). # Here we just pass in None and dz will be allocated in the C++ code. du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = ops.selective_scan_bwd( u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus, False, # option to recompute out_z, not used here ) dz = rest[0] if ctx.has_z else None dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC return ( du, ddelta, dA, dB, dC, dD if D is not None else None, dz, ddelta_bias if delta_bias is not None else None, None, None, ) def rms_norm_forward( x, weight, bias, eps=1e-6, is_rms_norm=True, ): # x (b l) d if x.stride(-1) != 1: x = x.contiguous() weight = weight.contiguous() if bias is not None: bias = bias.contiguous() y = _layer_norm_fwd( x, weight, bias, eps, None, residual_dtype=None, is_rms_norm=is_rms_norm )[0] # y (b l) d return y def selective_scan_fn( u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False, ): """if return_last_state is True, returns (out, last_state) last_state has shape (batch, dim, dstate). Note that the gradient of the last state is not considered in the backward pass. """ return SelectiveScanFn.apply( u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state ) def selective_scan_ref( u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False, ): """ u: r(B D L) delta: r(B D L) A: c(D N) or r(D N) B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L) C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L) D: r(D) z: r(B D L) delta_bias: r(D), fp32 out: r(B D L) last_state (optional): r(B D dstate) or c(B D dstate) """ dtype_in = u.dtype u = u.float() delta = delta.float() if delta_bias is not None: delta = delta + delta_bias[..., None].float() if delta_softplus: delta = F.softplus(delta) batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1] is_variable_B = B.dim() >= 3 is_variable_C = C.dim() >= 3 if A.is_complex(): if is_variable_B: B = torch.view_as_complex( rearrange(B.float(), "... (L two) -> ... L two", two=2) ) if is_variable_C: C = torch.view_as_complex( rearrange(C.float(), "... (L two) -> ... L two", two=2) ) else: B = B.float() C = C.float() x = A.new_zeros((batch, dim, dstate)) ys = [] deltaA = torch.exp(torch.einsum("bdl,dn->bdln", delta, A)) if not is_variable_B: deltaB_u = torch.einsum("bdl,dn,bdl->bdln", delta, B, u) else: if B.dim() == 3: deltaB_u = torch.einsum("bdl,bnl,bdl->bdln", delta, B, u) else: B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1]) deltaB_u = torch.einsum("bdl,bdnl,bdl->bdln", delta, B, u) if is_variable_C and C.dim() == 4: C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1]) last_state = None for i in range(u.shape[2]): x = deltaA[:, :, i] * x + deltaB_u[:, :, i] if not is_variable_C: y = torch.einsum("bdn,dn->bd", x, C) else: if C.dim() == 3: y = torch.einsum("bdn,bn->bd", x, C[:, :, i]) else: y = torch.einsum("bdn,bdn->bd", x, C[:, :, :, i]) if i == u.shape[2] - 1: last_state = x if y.is_complex(): y = y.real * 2 ys.append(y) y = torch.stack(ys, dim=2) # (batch dim L) out = y if D is None else y + u * rearrange(D, "d -> d 1") if z is not None: out = out * F.silu(z) out = out.to(dtype=dtype_in) return out if not return_last_state else (out, last_state) class MambaInnerFn(torch.autograd.Function): @staticmethod @custom_fwd def forward( ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1, b_rms_weight=None, c_rms_weight=None, dt_rms_weight=None, b_c_dt_rms_eps=1e-6, ): """ xz: (batch, dim, seqlen) """ assert ( causal_conv1d_cuda is not None ), "causal_conv1d_cuda is not available. Please install causal-conv1d." assert checkpoint_lvl in [0, 1] L = xz.shape[-1] delta_rank = delta_proj_weight.shape[1] d_state = A.shape[-1] * (1 if not A.is_complex() else 2) if torch.is_autocast_enabled(): x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) delta_proj_weight = delta_proj_weight.to( dtype=torch.get_autocast_gpu_dtype() ) out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) out_proj_bias = ( out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype()) if out_proj_bias is not None else None ) if xz.stride(-1) != 1: xz = xz.contiguous() conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w") x, z = xz.chunk(2, dim=1) conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd( x, conv1d_weight, conv1d_bias, None, None, None, True ) # We're being very careful here about the layout, to avoid extra transposes. # We want delta to have d as the slowest moving dimension # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. x_dbl = F.linear( rearrange(conv1d_out, "b d l -> (b l) d"), x_proj_weight ) # (bl d) delta = rearrange( delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L ) ctx.is_variable_B = B is None ctx.is_variable_C = C is None ctx.B_proj_bias_is_None = B_proj_bias is None ctx.C_proj_bias_is_None = C_proj_bias is None if B is None: # variable B B = x_dbl[:, delta_rank : delta_rank + d_state] # (bl dstate) if B_proj_bias is not None: B = B + B_proj_bias.to(dtype=B.dtype) if not A.is_complex(): # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous() B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() else: B = rearrange( B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2 ).contiguous() else: if B.stride(-1) != 1: B = B.contiguous() if C is None: # variable C C = x_dbl[:, -d_state:] # (bl dstate) if C_proj_bias is not None: C = C + C_proj_bias.to(dtype=C.dtype) if not A.is_complex(): # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous() C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() else: C = rearrange( C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2 ).contiguous() else: if C.stride(-1) != 1: C = C.contiguous() if D is not None: D = D.contiguous() if b_rms_weight is not None: B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous() B = rms_norm_forward(B, b_rms_weight, bias=None, eps=b_c_dt_rms_eps) B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if c_rms_weight is not None: C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous() C = rms_norm_forward(C, c_rms_weight, bias=None, eps=b_c_dt_rms_eps) C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if dt_rms_weight is not None: delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous() delta = rms_norm_forward( delta, dt_rms_weight, bias=None, eps=b_c_dt_rms_eps ) delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous() out, scan_intermediates, out_z = ops.selective_scan_fwd( conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus ) ctx.delta_softplus = delta_softplus ctx.out_proj_bias_is_None = out_proj_bias is None ctx.checkpoint_lvl = checkpoint_lvl ctx.b_rms_weight = b_rms_weight ctx.c_rms_weight = c_rms_weight ctx.dt_rms_weight = dt_rms_weight ctx.b_c_dt_rms_eps = b_c_dt_rms_eps if ( checkpoint_lvl >= 1 ): # Will recompute conv1d_out and delta in the backward pass conv1d_out, delta = None, None ctx.save_for_backward( xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, b_rms_weight, c_rms_weight, dt_rms_weight, out, ) return F.linear( rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias ) @staticmethod @custom_bwd def backward(ctx, dout): # dout: (batch, seqlen, dim) assert ( causal_conv1d_cuda is not None ), "causal_conv1d_cuda is not available. Please install causal-conv1d." ( xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, b_rms_weight, c_rms_weight, dt_rms_weight, out, ) = ctx.saved_tensors L = xz.shape[-1] delta_rank = delta_proj_weight.shape[1] d_state = A.shape[-1] * (1 if not A.is_complex() else 2) x, z = xz.chunk(2, dim=1) if dout.stride(-1) != 1: dout = dout.contiguous() if ctx.checkpoint_lvl == 1: conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd( x, conv1d_weight, conv1d_bias, None, None, None, True ) delta = rearrange( delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L ) if dt_rms_weight is not None: delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous() delta = rms_norm_forward( delta, ctx.dt_rms_weight, None, ctx.b_c_dt_rms_eps ) delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous() if b_rms_weight is not None: # Recompute & RMSNorm B B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous() B = rms_norm_forward(B, ctx.b_rms_weight, None, ctx.b_c_dt_rms_eps) B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if c_rms_weight is not None: # Recompute & RMSNorm C C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous() C = rms_norm_forward(C, ctx.c_rms_weight, None, ctx.b_c_dt_rms_eps) C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the # backward of selective_scan_cuda with the backward of chunk). dxz = torch.empty_like(xz) # (batch, dim, seqlen) dx, dz = dxz.chunk(2, dim=1) dout = rearrange(dout, "b l e -> e (b l)") dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L) dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = ( ops.selective_scan_bwd( conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz, ctx.delta_softplus, True, # option to recompute out_z ) ) dout_proj_weight = torch.einsum( "eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)") ) dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None dD = dD if D is not None else None dx_dbl = torch.empty_like(x_dbl) dB_proj_bias = None if ctx.is_variable_B: if not A.is_complex(): dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous() else: dB = rearrange( dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2 ).contiguous() dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None dx_dbl[:, delta_rank : delta_rank + d_state] = dB # (bl d) dB = None dC_proj_bias = None if ctx.is_variable_C: if not A.is_complex(): dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous() else: dC = rearrange( dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2 ).contiguous() dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None dx_dbl[:, -d_state:] = dC # (bl d) dC = None ddelta = rearrange(ddelta, "b d l -> d (b l)") ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank]) dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight) dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)") dx_proj_weight = torch.einsum( "Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d") ) dconv1d_out = torch.addmm( dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out ) dconv1d_out = rearrange( dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1] ) # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the # backward of conv1d with the backward of chunk). dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd( x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True, ) dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w") return ( dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight, dout_proj_weight, dout_proj_bias, dA, dB, dC, dD, ddelta_bias if delta_bias is not None else None, # 6-None are delta_softplus, checkpoint_lvl, b_rms_weight, c_rms_weight, dt_rms_weight, b_c_dt_rms_eps dB_proj_bias, dC_proj_bias, None, None, None, None, None, None, ) def mamba_inner_fn( xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1, b_rms_weight=None, c_rms_weight=None, dt_rms_weight=None, b_c_dt_rms_eps=1e-6, ): return MambaInnerFn.apply( xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus, checkpoint_lvl, b_rms_weight, c_rms_weight, dt_rms_weight, b_c_dt_rms_eps, ) def mamba_inner_ref( xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True, ): assert ( causal_conv1d_fn is not None ), "causal_conv1d_fn is not available. Please install causal-conv1d." L = xz.shape[-1] delta_rank = delta_proj_weight.shape[1] d_state = A.shape[-1] * (1 if not A.is_complex() else 2) x, z = xz.chunk(2, dim=1) x = causal_conv1d_fn( x, rearrange(conv1d_weight, "d 1 w -> d w"), conv1d_bias, activation="silu" ) # We're being very careful here about the layout, to avoid extra transposes. # We want delta to have d as the slowest moving dimension # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. x_dbl = F.linear(rearrange(x, "b d l -> (b l) d"), x_proj_weight) # (bl d) delta = delta_proj_weight @ x_dbl[:, :delta_rank].t() delta = rearrange(delta, "d (b l) -> b d l", l=L) if B is None: # variable B B = x_dbl[:, delta_rank : delta_rank + d_state] # (bl d) if B_proj_bias is not None: B = B + B_proj_bias.to(dtype=B.dtype) if not A.is_complex(): B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous() else: B = rearrange( B, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2 ).contiguous() if C is None: # variable B C = x_dbl[:, -d_state:] # (bl d) if C_proj_bias is not None: C = C + C_proj_bias.to(dtype=C.dtype) if not A.is_complex(): C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous() else: C = rearrange( C, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2 ).contiguous() y = selective_scan_fn( x, delta, A, B, C, D, z=z, delta_bias=delta_bias, delta_softplus=True ) return F.linear(rearrange(y, "b d l -> b l d"), out_proj_weight, out_proj_bias)