kernel
File size: 7,364 Bytes
89e2950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import os
import pytest
from megablocks.layers import MegaBlocksMoeMLPWithSharedExpert, create_shared_expert_weights


def run_distributed_shared_expert_test(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12356"
    os.environ["RANK"] = str(rank)
    os.environ["WORLD_SIZE"] = str(world_size)

    dist.init_process_group(
        backend="gloo",
        rank=rank,
        world_size=world_size,
    )

    model = MegaBlocksMoeMLPWithSharedExpert()

    hidden_size = 128
    shared_expert_hidden_size = 192
    device = "cuda" if torch.cuda.is_available() else "cpu"

    def simple_init(tensor):
        torch.nn.init.xavier_uniform_(tensor)

    shared_up_proj_weight, shared_down_proj_weight, shared_up_proj_bias, shared_down_proj_bias = create_shared_expert_weights(
        hidden_size=hidden_size,
        shared_expert_hidden_size=shared_expert_hidden_size,
        device=torch.device(device),
        dtype=torch.float32,
        init_method=simple_init
    )

    model.set_shared_expert_weights(
        up_proj_weight=shared_up_proj_weight,
        down_proj_weight=shared_down_proj_weight,
        up_proj_bias=shared_up_proj_bias,
        down_proj_bias=shared_down_proj_bias,
        weighted_sum=True,
        activation_fn=torch.nn.functional.gelu
    )

    assert model.shared_up_proj_weight is not None, f"Shared up proj weight not set on rank {rank}"
    assert model.shared_down_proj_weight is not None, f"Shared down proj weight not set on rank {rank}"
    assert model.shared_expert_weighted_sum == True, f"Weighted sum not set correctly on rank {rank}"
    
    print(f"Rank {rank}: Shared expert setup test passed!")

    dist.destroy_process_group()


def run_distributed_shared_expert_weighted_sum_test(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "12357"
    os.environ["RANK"] = str(rank)
    os.environ["WORLD_SIZE"] = str(world_size)

    dist.init_process_group(
        backend="gloo",
        rank=rank,
        world_size=world_size,
    )

    model = MegaBlocksMoeMLPWithSharedExpert()

    hidden_size = 64
    device = "cuda" if torch.cuda.is_available() else "cpu"

    def simple_init(tensor):
        torch.nn.init.xavier_uniform_(tensor)

    shared_up_proj_weight, shared_down_proj_weight, _, _ = create_shared_expert_weights(
        hidden_size=hidden_size,
        shared_expert_hidden_size=96,
        device=torch.device(device),
        dtype=torch.float32,
        init_method=simple_init
    )

    model.set_shared_expert_weights(
        up_proj_weight=shared_up_proj_weight,
        down_proj_weight=shared_down_proj_weight,
        weighted_sum=False,
        activation_fn=torch.nn.functional.relu
    )

    assert model.shared_up_proj_weight is not None, f"Shared up proj weight not set on rank {rank}"
    assert model.shared_down_proj_weight is not None, f"Shared down proj weight not set on rank {rank}"
    assert model.shared_expert_weighted_sum == False, f"Weighted sum not set correctly on rank {rank}"
    assert model.shared_activation_fn == torch.nn.functional.relu, f"Activation function not set correctly on rank {rank}"
    
    print(f"Rank {rank}: Weighted sum setup test passed!")

    dist.destroy_process_group()


@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
def test_shared_expert_distributed_functionality(world_size):
    if world_size == 1:
        # Single process test
        model = MegaBlocksMoeMLPWithSharedExpert()
        
        hidden_size = 128
        shared_expert_hidden_size = 192
        device = "cuda" if torch.cuda.is_available() else "cpu"

        def simple_init(tensor):
            torch.nn.init.xavier_uniform_(tensor)

        shared_up_proj_weight, shared_down_proj_weight, shared_up_proj_bias, shared_down_proj_bias = create_shared_expert_weights(
            hidden_size=hidden_size,
            shared_expert_hidden_size=shared_expert_hidden_size,
            device=torch.device(device),
            dtype=torch.float32,
            init_method=simple_init
        )

        model.set_shared_expert_weights(
            up_proj_weight=shared_up_proj_weight,
            down_proj_weight=shared_down_proj_weight,
            up_proj_bias=shared_up_proj_bias,
            down_proj_bias=shared_down_proj_bias,
            weighted_sum=True,
            activation_fn=torch.nn.functional.gelu
        )

        assert model.shared_up_proj_weight is not None, "Shared up proj weight not set"
        assert model.shared_down_proj_weight is not None, "Shared down proj weight not set"
        assert model.shared_expert_weighted_sum == True, "Weighted sum not set correctly"
        
        print("Single process shared expert setup test passed!")
    else:
        # Multi-process test
        mp.spawn(run_distributed_shared_expert_test, args=(world_size,), nprocs=world_size, join=True)
        print("Multi-process shared expert test completed successfully!")


@pytest.mark.parametrize("world_size", [1, 2, 4, 8])
def test_shared_expert_distributed_weighted_sum(world_size):
    if world_size == 1:
        # Single process test
        model = MegaBlocksMoeMLPWithSharedExpert()

        hidden_size = 64
        device = "cuda" if torch.cuda.is_available() else "cpu"

        def simple_init(tensor):
            torch.nn.init.xavier_uniform_(tensor)

        shared_up_proj_weight, shared_down_proj_weight, _, _ = create_shared_expert_weights(
            hidden_size=hidden_size,
            shared_expert_hidden_size=96,
            device=torch.device(device),
            dtype=torch.float32,
            init_method=simple_init
        )

        model.set_shared_expert_weights(
            up_proj_weight=shared_up_proj_weight,
            down_proj_weight=shared_down_proj_weight,
            weighted_sum=False,
            activation_fn=torch.nn.functional.relu
        )

        assert model.shared_up_proj_weight is not None, "Shared up proj weight not set"
        assert model.shared_down_proj_weight is not None, "Shared down proj weight not set"
        assert model.shared_expert_weighted_sum == False, "Weighted sum not set correctly"
        assert model.shared_activation_fn == torch.nn.functional.relu, "Activation function not set correctly"
        
        print("Single process weighted sum setup test passed!")
    else:
        # Multi-process test
        mp.spawn(run_distributed_shared_expert_weighted_sum_test, args=(world_size,), nprocs=world_size, join=True)
        print("Multi-process shared expert weighted sum test completed successfully!")


def test_shared_expert_single_process():
    model = MegaBlocksMoeMLPWithSharedExpert()
    
    assert model.shared_up_proj_weight is None
    assert model.shared_down_proj_weight is None
    assert hasattr(model, 'set_shared_expert_weights')
    
    print("Single process shared expert basic test passed!")


if __name__ == "__main__":
    test_shared_expert_single_process()
    print("Single process test passed!")
    
    os.environ['WORLD_SIZE'] = '2'
    test_shared_expert_distributed_functionality()
    print("Distributed functionality test passed!")
    
    test_shared_expert_distributed_weighted_sum()
    print("Distributed weighted sum test passed!")