import torch import pytest from megablocks.ops.binned_gather import BinnedGatherOp binned_gather_triton = BinnedGatherOp.apply def set_seeds(seed=0): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # Stress test expert_capacity, especially near and at the upper limit (e.g., 65535 for int16 indexing) def make_stress_expert_capacity_tests(): tests = [] # Small cases for sanity for seq_len, hidden_size, num_experts, top_k in [ (4, 2, 2, 1), (4, 2, 2, 2), (4, 2, 2, 4), ]: for expert_capacity in [1, 2, 4]: tests.append((seq_len, hidden_size, num_experts, top_k, expert_capacity)) # Medium cases for seq_len, hidden_size, num_experts, top_k in [ (1024, 1536, 4, 1), (1024, 1536, 4, 2), (1024, 1536, 4, 4), (1024, 1536, 64, 1), (1024, 1536, 64, 2), (1024, 1536, 64, 4), (1024, 1536, 128, 1), (1024, 1536, 128, 2), (1024, 1536, 128, 4), ]: for expert_capacity in [1, 2, 4, 128, 1024]: tests.append((seq_len, hidden_size, num_experts, top_k, expert_capacity)) # Large cases, stress expert_capacity near 65536 (CUDA second dim grid limit) for seq_len, hidden_size, num_experts, top_k in [ (4096, 768, 32, 4), ]: for expert_capacity in [65535, 70000, 90000]: tests.append((seq_len, hidden_size, num_experts, top_k, expert_capacity)) return tuple(tests) BINNED_GATHER_TESTS = make_stress_expert_capacity_tests() @pytest.mark.parametrize(('seq_len', 'hidden_size', 'num_experts', 'top_k', 'expert_capacity'), BINNED_GATHER_TESTS) def test_binned_gather(seq_len: int, hidden_size: int, num_experts: int, top_k: int, expert_capacity: int): # NOTE: Capacity factor == 1. set_seeds(42) # Create the data and indices with gradient tracking x = torch.arange(seq_len * hidden_size, device='cuda', dtype=torch.half).view(seq_len, hidden_size) x.requires_grad_(True) # Randomly assign tokens to experts. top_expert = torch.randint(0, num_experts, (seq_len * top_k,), device='cuda', dtype=torch.int) _, indices = torch.sort(top_expert) bins = torch.cumsum(torch.bincount(top_expert, minlength=num_experts), 0).to(torch.int32) # Example: counts is [12, 2, 3], the bins tensor will be [12, 14, 20]. This tells the gather function: # Expert 0's assignments are in indices[0:12]. # Expert 1's assignments are in indices[12:14]. # Expert 2's assignments are in indices[14:20]. (we have num_tokens * 3) def binned_gather_pytorch( x: torch.Tensor, indices: torch.Tensor, bins: torch.Tensor, expert_capacity: int, top_k: int, ): start = 0 out = torch.zeros((num_experts, expert_capacity, hidden_size), dtype=x.dtype, device=x.device) for i in range(num_experts): end = bins[i] num_tokens = min(expert_capacity, end - start) if num_tokens > 0: # indices[start:end] are the indices for this expert # For each slot j, get the input index and copy the row idx = indices[start : start + num_tokens] // top_k out[i, :num_tokens, :] = x[idx, :] start = end return out out = binned_gather_triton(x, indices, bins, expert_capacity, top_k) expected_out = binned_gather_pytorch(x, indices, bins, expert_capacity, top_k) assert torch.all(torch.eq(out, expected_out)) # Test backward pass grad_output = torch.arange(out.numel(), device=out.device, dtype=out.dtype).view_as(out) out.backward(grad_output) # Verify gradients were computed assert x.grad is not None, "Gradients should be computed for input x" assert x.grad.shape == x.shape, f"Gradient shape {x.grad.shape} should match input shape {x.shape}" # Reference implementation for backward pass (binned_scatter) def binned_scatter_pytorch( x: torch.Tensor, indices: torch.Tensor, weights: torch.Tensor, bins: torch.Tensor, top_k: int, ): # x: (ne, ec, hs) # indices: (sl * top_k,) # weights: (sl * top_k,) # bins: (ne,) # Output: (sl, hs) out = torch.zeros((seq_len, hidden_size), device=x.device, dtype=x.dtype) start = 0 for i in range(num_experts): end = bins[i] num_tokens = min(expert_capacity, end - start) for j in range(num_tokens): index = indices[start + j] scale = weights[index] if weights is not None else 1.0 token_pos = index // top_k out[token_pos, :] += scale * x[i, j, :] start = end return out expected_grad = binned_scatter_pytorch(grad_output, indices, None, bins, top_k) print(f"x.grad: {x.grad}") print(f"expected_grad: {expected_grad}") # Use torch.allclose instead of exact equality for floating point comparison if torch.allclose(x.grad, expected_grad, rtol=1e-3, atol=1e-3): print("✅ Success: Gradients match!") else: print("❌ Gradients don't match") # Let's see if it's just a reordering issue print("Checking if values match when sorted...") grad_sorted = torch.sort(x.grad.flatten())[0] expected_sorted = torch.sort(expected_grad.flatten())[0] if torch.allclose(grad_sorted, expected_sorted, rtol=1e-3, atol=1e-3): print("✅ Same values, different order - routing issue!") else: print("❌ Different values entirely") print(f"\nTriton Output Shape: {x.grad.shape}") print(f"PyTorch Output Shape: {expected_grad.shape}")