File size: 35,726 Bytes
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
 
c31b5ce
 
 
 
 
 
 
 
8aa00a3
 
 
 
c31b5ce
 
 
 
 
8aa00a3
c31b5ce
 
 
8aa00a3
 
 
 
 
 
 
 
 
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
 
c31b5ce
 
 
 
 
 
8aa00a3
 
c31b5ce
 
 
 
 
8aa00a3
 
c31b5ce
8aa00a3
 
 
c31b5ce
 
 
 
8aa00a3
c31b5ce
 
 
 
 
 
 
 
 
8aa00a3
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
c31b5ce
 
 
 
 
 
 
8aa00a3
c31b5ce
8aa00a3
 
 
 
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
c31b5ce
 
 
 
 
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
 
8aa00a3
 
0da5bf5
8aa00a3
c31b5ce
 
8aa00a3
c31b5ce
 
8aa00a3
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
c31b5ce
 
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
 
 
 
c31b5ce
8aa00a3
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
 
 
 
c31b5ce
8aa00a3
 
c31b5ce
 
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
 
8aa00a3
 
 
c31b5ce
8aa00a3
 
 
 
c31b5ce
8aa00a3
 
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
 
 
 
c31b5ce
 
 
8aa00a3
 
c31b5ce
 
8aa00a3
 
 
c31b5ce
 
 
 
 
 
8aa00a3
 
 
 
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
c31b5ce
 
 
 
 
8aa00a3
c31b5ce
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
 
 
c31b5ce
8aa00a3
c31b5ce
8aa00a3
 
 
 
c31b5ce
 
8aa00a3
 
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
 
 
8aa00a3
c31b5ce
 
 
8aa00a3
c31b5ce
 
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
 
 
 
 
8aa00a3
 
 
 
 
 
 
 
 
 
c31b5ce
 
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
c31b5ce
8aa00a3
 
 
 
 
 
 
 
c31b5ce
 
 
 
 
8aa00a3
 
 
 
c31b5ce
 
 
 
 
 
 
8aa00a3
 
 
 
 
 
 
 
 
c31b5ce
 
 
 
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
 
8aa00a3
c31b5ce
 
8aa00a3
 
 
 
 
 
 
 
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
8aa00a3
c31b5ce
 
 
 
 
 
 
 
 
 
8aa00a3
c31b5ce
 
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c31b5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa00a3
 
 
 
 
c31b5ce
 
 
 
 
 
8aa00a3
 
 
 
 
 
 
c31b5ce
 
8aa00a3
c31b5ce
8aa00a3
c31b5ce
 
8aa00a3
c31b5ce
8aa00a3
 
 
 
 
 
 
c31b5ce
 
8aa00a3
 
 
 
 
 
 
c31b5ce
 
 
 
 
 
 
 
8aa00a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/*
 * Modified by Neural Magic
 * Copyright (C) Marlin.2024 Elias Frantar
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Adapted from https://github.com/IST-DASLab/marlin
 */

#ifndef MARLIN_NAMESPACE_NAME
  #define MARLIN_NAMESPACE_NAME marlin
#endif

#include "kernel.h"

#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t)               \
  static_assert(std::is_same<scalar_t, half>::value ||          \
                    std::is_same<scalar_t, nv_bfloat16>::value, \
                "only float16 and bfloat16 is supported");

namespace marlin {

__global__ void MarlinDefault(MARLIN_KERNEL_PARAMS){};

using MarlinFuncPtr = void (*)(MARLIN_KERNEL_PARAMS);

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800

__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
                                    int const* __restrict__ perm_int_ptr,
                                    int4* __restrict__ out_int4_ptr, int size_m,
                                    int size_k, int lda, int block_rows) {}

}  // namespace marlin

torch::Tensor gptq_marlin_gemm(
    torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
    torch::Tensor& b_q_weight, torch::Tensor& b_scales,
    std::optional<torch::Tensor> const& b_zeros_or_none,
    std::optional<torch::Tensor> const& g_idx_or_none,
    std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
    vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
    int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
    bool is_zp_float) {
  TORCH_CHECK_NOT_IMPLEMENTED(false,
                              "marlin_gemm(..) requires CUDA_ARCH >= 8.0");
  return torch::empty({1, 1});
}

#else

// For a given "a" of size [M,K] performs a permutation of the K columns based
// on the given "perm" indices.
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
                                    int const* __restrict__ perm_int_ptr,
                                    int4* __restrict__ out_int4_ptr, int size_m,
                                    int size_k, int lda, int block_rows) {
  auto start_row = block_rows * blockIdx.x;
  int finish_row = start_row + block_rows;
  if (finish_row > size_m) {
    finish_row = size_m;
  }
  int cur_block_rows = finish_row - start_row;

  int input_row_stride = lda * sizeof(half) / 16;
  int output_row_stride = size_k * sizeof(half) / 16;

  auto permute_row = [&](int row) {
    int iters = size_k / default_threads;
    int rest = size_k % default_threads;

    int input_offset = row * input_row_stride;
    int output_offset = row * output_row_stride;

    half const* a_row_half =
        reinterpret_cast<half const*>(a_int4_ptr + input_offset);
    half* out_half = reinterpret_cast<half*>(out_int4_ptr + output_offset);

    int base_k = 0;

    for (int i = 0; i < iters; i++) {
      auto cur_k = base_k + threadIdx.x;
      int src_pos = perm_int_ptr[cur_k];

      out_half[cur_k] = a_row_half[src_pos];

      base_k += default_threads;
    }

    if (rest) {
      if (threadIdx.x < rest) {
        auto cur_k = base_k + threadIdx.x;
        int src_pos = perm_int_ptr[cur_k];

        out_half[cur_k] = a_row_half[src_pos];
      }
    }
  };

  for (int i = 0; i < cur_block_rows; i++) {
    int cur_row = start_row + i;
    if (cur_row < size_m) {
      permute_row(cur_row);
    }
  }
}

typedef struct {
  int thread_k;
  int thread_n;
  int num_threads;
} thread_config_t;

thread_config_t small_batch_thread_configs[] = {
    // Ordered by priority

    // thread_k, thread_n, num_threads
    {128, 128, 256},
    {64, 128, 128},
    {128, 64, 128}};

thread_config_t large_batch_thread_configs[] = {
    // Ordered by priority

    // thread_k, thread_n, num_threads
    {64, 256, 256},
    {64, 128, 128},
    {128, 64, 128}};

typedef struct {
  int blocks_per_sm;
  thread_config_t tb_cfg;
} exec_config_t;

int get_scales_cache_size(thread_config_t const& th_config, int prob_m,
                          int prob_n, int prob_k, int num_bits, int group_size,
                          bool has_act_order, bool is_k_full) {
  bool cache_scales_chunk = has_act_order && !is_k_full;

  int tb_n = th_config.thread_n;
  int tb_k = th_config.thread_k;

  // Get max scale groups per thread-block
  int tb_groups;
  if (group_size == -1) {
    tb_groups = 1;
  } else if (group_size == 0) {
    tb_groups = div_ceil(tb_k, 32);  // Worst case is 32 group size
  } else {
    tb_groups = div_ceil(tb_k, group_size);
  }

  if (cache_scales_chunk) {
    int load_groups =
        tb_groups * pipe_stages * 2;     // Chunk size is 2x pipeline over dim K
    load_groups = max(load_groups, 32);  // We load at least 32 scale groups
    return load_groups * tb_n * 2;
  } else {
    int tb_scales = tb_groups * tb_n * 2;

    return tb_scales * pipe_stages;
  }
}

int get_kernel_cache_size(thread_config_t const& th_config, int thread_m_blocks,
                          int prob_m, int prob_n, int prob_k, int num_bits,
                          int group_size, bool has_act_order, bool is_k_full,
                          int has_zp, int is_zp_float) {
  int pack_factor = 32 / num_bits;

  // Get B size
  int tb_k = th_config.thread_k;
  int tb_n = th_config.thread_n;
  int tb_m = thread_m_blocks * 16;
  int sh_a_size = pipe_stages * (tb_m * tb_k) * 2;
  int sh_b_size = pipe_stages * (tb_k * tb_n / pack_factor) * 4;
  int sh_red_size = tb_m * (tb_n + 8);
  int sh_s_size =
      get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits,
                            group_size, has_act_order, is_k_full);
  int sh_g_idx_size = has_act_order && !is_k_full ? pipe_stages * tb_k / 4 : 0;
  int sh_zp_size = 0;
  if (has_zp) {
    if (is_zp_float)
      sh_zp_size = sh_s_size;
    else if (num_bits == 4)
      sh_zp_size = sh_s_size / 4;
    else if (num_bits == 8)
      sh_zp_size = sh_s_size / 2;
  }

  int total_size = max(sh_b_size, sh_red_size) + sh_a_size + sh_s_size +
                   sh_zp_size + sh_g_idx_size;

  return total_size;
}

bool is_valid_config(thread_config_t const& th_config, int thread_m_blocks,
                     int prob_m, int prob_n, int prob_k, int num_bits,
                     int group_size, bool has_act_order, bool is_k_full,
                     int has_zp, int is_zp_float, int max_shared_mem) {
  // Sanity
  if (th_config.thread_k == -1 || th_config.thread_n == -1 ||
      th_config.num_threads == -1) {
    return false;
  }

  // Verify K/N are divisible by thread K/N
  if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) {
    return false;
  }

  // Verify min for thread K/N
  if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) {
    return false;
  }

  // num_threads must be at least 128 (= 4 warps)
  if (th_config.num_threads < 128) {
    return false;
  }

  // Check that pipeline fits into cache
  int cache_size = get_kernel_cache_size(
      th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size,
      has_act_order, is_k_full, has_zp, is_zp_float);
  return cache_size <= max_shared_mem;
}

  #define _GET_IF(W_TYPE, THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \
                  M_BLOCK_SIZE_8, GROUP_BLOCKS, NUM_THREADS, IS_ZP_FLOAT)    \
    else if (q_type == W_TYPE && thread_m_blocks == THREAD_M_BLOCKS &&       \
             thread_n_blocks == THREAD_N_BLOCKS &&                           \
             thread_k_blocks == THREAD_K_BLOCKS &&                           \
             m_block_size_8 == M_BLOCK_SIZE_8 &&                             \
             group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS &&   \
             is_zp_float == IS_ZP_FLOAT) {                                   \
      kernel = Marlin<scalar_t, W_TYPE.id(), NUM_THREADS, THREAD_M_BLOCKS,   \
                      THREAD_N_BLOCKS, THREAD_K_BLOCKS, M_BLOCK_SIZE_8,      \
                      pipe_stages, GROUP_BLOCKS, IS_ZP_FLOAT>;               \
    }

  // COMMON: cases for (group_blocks in [-1, 2, 4, 8] and is_zp_float == false)
  //         this is the most common cases
  // BIGGROUP: cases for big group size (group_blocks in [-1, 8])
  // FZP: cases for float-zero-point (is_zp_float = true)
  // ACT: cases for act order case (group_blocks == 0)
  // FP4: cases for nvfp4(e2m1) (group_blocks == 1)
  #define COMMON_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)       \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 2, NUM_THREADS, false)   \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, false)   \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false)   \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)

  #define COMMON_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)     \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)  \
                                                                          \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)  \
                                                                          \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 2, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)

  #define COMMON_GET_IF(W_TYPE)            \
    COMMON_GET_IF_M1(W_TYPE, 8, 8, 256)    \
    COMMON_GET_IF_M1(W_TYPE, 8, 4, 128)    \
    COMMON_GET_IF_M1(W_TYPE, 4, 8, 128)    \
    COMMON_GET_IF_M234(W_TYPE, 16, 4, 256) \
    COMMON_GET_IF_M234(W_TYPE, 8, 4, 128)  \
    COMMON_GET_IF_M234(W_TYPE, 4, 8, 128)

  #define BIGGROUP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)     \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, -1, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 8, NUM_THREADS, false)   \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)

  #define BIGGROUP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)   \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)  \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, -1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 8, NUM_THREADS, false)

  #define BIGGROUP_GET_IF(W_TYPE)            \
    BIGGROUP_GET_IF_M1(W_TYPE, 8, 8, 256)    \
    BIGGROUP_GET_IF_M1(W_TYPE, 8, 4, 128)    \
    BIGGROUP_GET_IF_M1(W_TYPE, 4, 8, 128)    \
    BIGGROUP_GET_IF_M234(W_TYPE, 16, 4, 256) \
    BIGGROUP_GET_IF_M234(W_TYPE, 8, 4, 128)  \
    BIGGROUP_GET_IF_M234(W_TYPE, 4, 8, 128)

  #define FP4_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)        \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)

  #define FP4_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)       \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 1, NUM_THREADS, false)

  #define FP4_GET_IF(W_TYPE)            \
    FP4_GET_IF_M1(W_TYPE, 8, 8, 256)    \
    FP4_GET_IF_M1(W_TYPE, 8, 4, 128)    \
    FP4_GET_IF_M1(W_TYPE, 4, 8, 128)    \
    FP4_GET_IF_M234(W_TYPE, 16, 4, 256) \
    FP4_GET_IF_M234(W_TYPE, 8, 4, 128)  \
    FP4_GET_IF_M234(W_TYPE, 4, 8, 128)

  // We currently have 4-bit models only with group_blocks == 4
  #define FZP_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)       \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 4, NUM_THREADS, true) \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)

  #define FZP_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)      \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true) \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 4, NUM_THREADS, true)

  #define FZP_GET_IF(W_TYPE)            \
    FZP_GET_IF_M1(W_TYPE, 8, 8, 256)    \
    FZP_GET_IF_M1(W_TYPE, 8, 4, 128)    \
    FZP_GET_IF_M1(W_TYPE, 4, 8, 128)    \
    FZP_GET_IF_M234(W_TYPE, 16, 4, 256) \
    FZP_GET_IF_M234(W_TYPE, 8, 4, 128)  \
    FZP_GET_IF_M234(W_TYPE, 4, 8, 128)

  // We currently have 4-bit models only with group_blocks == 4
  #define ACT_GET_IF_M1(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)        \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, true, 0, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 1, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)

  #define ACT_GET_IF_M234(W_TYPE, N_BLOCKS, K_BLOCKS, NUM_THREADS)       \
    _GET_IF(W_TYPE, 2, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 3, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false) \
    _GET_IF(W_TYPE, 4, N_BLOCKS, K_BLOCKS, false, 0, NUM_THREADS, false)

  #define ACT_GET_IF(W_TYPE)            \
    ACT_GET_IF_M1(W_TYPE, 8, 8, 256)    \
    ACT_GET_IF_M1(W_TYPE, 8, 4, 128)    \
    ACT_GET_IF_M1(W_TYPE, 4, 8, 128)    \
    ACT_GET_IF_M234(W_TYPE, 16, 4, 256) \
    ACT_GET_IF_M234(W_TYPE, 8, 4, 128)  \
    ACT_GET_IF_M234(W_TYPE, 4, 8, 128)

template <typename scalar_t>
MarlinFuncPtr get_marlin_kernel(const vllm::ScalarType q_type,
                                int thread_m_blocks, int thread_n_blocks,
                                int thread_k_blocks, bool m_block_size_8,
                                bool has_act_order, bool has_zp,
                                int group_blocks, int num_threads,
                                bool is_zp_float) {
  int num_bits = q_type.size_bits();
  auto kernel = MarlinDefault;
  if (false) {
  }

  COMMON_GET_IF(vllm::kU4)
  COMMON_GET_IF(vllm::kU4B8)
  COMMON_GET_IF(vllm::kU8B128)

  FP4_GET_IF(vllm::kFE2M1f)

  BIGGROUP_GET_IF(vllm::kFE4M3fn)

  ACT_GET_IF(vllm::kU4B8)
  ACT_GET_IF(vllm::kU8B128)

  if (std::is_same<scalar_t, half>::value) {
    if (false) {
    }
    FZP_GET_IF(vllm::kU4)
  }

  return kernel;
}

template <typename scalar_t>
exec_config_t determine_exec_config(const vllm::ScalarType& q_type, int prob_m,
                                    int prob_n, int prob_k, int thread_m_blocks,
                                    bool m_block_size_8, int num_bits,
                                    int group_size, bool has_act_order,
                                    bool is_k_full, bool has_zp,
                                    bool is_zp_float, int max_shared_mem,
                                    int sms) {
  exec_config_t exec_cfg = exec_config_t{1, thread_config_t{-1, -1, -1}};
  thread_config_t* thread_configs = thread_m_blocks > 1
                                        ? large_batch_thread_configs
                                        : small_batch_thread_configs;
  int thread_configs_size =
      thread_m_blocks > 1
          ? sizeof(large_batch_thread_configs) / sizeof(thread_config_t)
          : sizeof(small_batch_thread_configs) / sizeof(thread_config_t);

  for (int i = 0; i < thread_configs_size; i++) {
    thread_config_t th_config = thread_configs[i];

    if (!is_valid_config(th_config, thread_m_blocks, prob_m, prob_n, prob_k,
                         num_bits, group_size, has_act_order, is_k_full, has_zp,
                         is_zp_float, max_shared_mem)) {
      continue;
    }

    int cache_size = get_kernel_cache_size(
        th_config, thread_m_blocks, prob_m, prob_n, prob_k, num_bits,
        group_size, has_act_order, is_k_full, has_zp, is_zp_float);

    int group_blocks = 0;
    if (!has_act_order) {
      group_blocks = group_size == -1 ? -1 : group_size / 16;
    }

    auto kernel = get_marlin_kernel<scalar_t>(
        q_type, thread_m_blocks, th_config.thread_n / 16,
        th_config.thread_k / 16, m_block_size_8, has_act_order, has_zp,
        group_blocks, th_config.num_threads, is_zp_float);

    if (kernel == MarlinDefault) continue;

    // int m_tiles = div_ceil(prob_m, thread_m_blocks * 16);
    // int n_tiles = prob_n / th_config.thread_n;
    // int k_tiles = prob_k / th_config.thread_k;

    return {1, th_config};
  }

  return exec_cfg;
}

template <typename scalar_t>
void marlin_mm(const void* A, const void* B, void* C, void* C_tmp, void* s,
               void* s2, void* zp, void* g_idx, void* perm, void* a_tmp,
               int prob_m, int prob_n, int prob_k, int lda, void* workspace,
               vllm::ScalarType const& q_type, bool has_act_order,
               bool is_k_full, bool has_zp, int num_groups, int group_size,
               int dev, cudaStream_t stream, int thread_k_init,
               int thread_n_init, int sms, bool use_atomic_add,
               bool use_fp32_reduce, bool is_zp_float) {
  if (has_zp) {
    TORCH_CHECK(
        q_type == vllm::kU4 || q_type == vllm::kU8,
        "q_type must be u4 or u8 when has_zp = True. Got = ", q_type.str());
  } else {
    TORCH_CHECK(
        q_type == vllm::kU4B8 || q_type == vllm::kU8B128 ||
            q_type == vllm::kFE4M3fn || q_type == vllm::kFE2M1f,
        "q_type must be uint4b8, uint8b128, float8_e4m3fn or float4_e2m1f when "
        "has_zp = False. Got = ",
        q_type.str());
  }

  TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m,
              ", ", prob_n, ", ", prob_k, "]");

  int group_blocks = 0;
  if (has_act_order) {
    if (is_k_full) {
      TORCH_CHECK(group_size != -1);
      group_blocks = group_size / 16;
      TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
                  " is not divisible by group_blocks = ", group_blocks);
    } else {
      TORCH_CHECK(group_size == 0);
      group_blocks = 0;
    }
  } else {
    if (group_size == -1) {
      group_blocks = -1;
    } else {
      group_blocks = group_size / 16;
      TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k,
                  " is not divisible by group_blocks = ", group_blocks);
    }
  }

  int num_bits = q_type.size_bits();
  const int4* A_ptr = (const int4*)A;
  const int4* B_ptr = (const int4*)B;
  int4* C_ptr = (int4*)C;
  int4* C_tmp_ptr = (int4*)C_tmp;
  const int4* s_ptr = (const int4*)s;
  const uint16_t* s2_ptr = (const uint16_t*)s2;
  const int4* zp_ptr = (const int4*)zp;
  const int* g_idx_ptr = (const int*)g_idx;
  const int* perm_ptr = (const int*)perm;
  int4* a_tmp_ptr = (int4*)a_tmp;

  int* locks = (int*)workspace;

  if (has_act_order) {
    // Permute A columns
    int block_rows = div_ceil(prob_m, sms);
    // avoid ">>>" being formatted to "> > >"
    // clang-format off
    permute_cols_kernel<<<sms, default_threads, 0, stream>>>(
        A_ptr, perm_ptr, a_tmp_ptr, prob_m, prob_k, lda, block_rows);
    // clang-format on
    A_ptr = a_tmp_ptr;
    lda = prob_k;

    // If we have a full K, then we can run the non-act-order version of Marlin
    // (since the weight rows are reordered by increasing group ids, and by
    // having a full K, we have full original groups)
    if (is_k_full) has_act_order = false;
  }

  int max_shared_mem = 0;
  cudaDeviceGetAttribute(&max_shared_mem,
                         cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
  TORCH_CHECK(max_shared_mem > 0);

  int max_par = 16;
  if (prob_n <= 4096) max_par = 16 * 8;
  int max_shared_mem_new = max_shared_mem;
  int rest_m = prob_m;
  int max_thread_m_blocks = 4;
  while (rest_m) {
    int par_count = rest_m / (max_thread_m_blocks * 16);
    if (par_count > max_par) par_count = max_par;
    int prob_m_split =
        par_count > 0 ? (par_count * (max_thread_m_blocks * 16)) : rest_m;

    int thread_k = thread_k_init;
    int thread_n = thread_n_init;

    int thread_m_blocks = min(div_ceil(prob_m_split, 16), max_thread_m_blocks);
    int m_block_size_8 = prob_m_split <= 8;

    // Set thread config
    exec_config_t exec_cfg;
    thread_config_t thread_tfg;
    if (thread_k != -1 && thread_n != -1) {
      thread_tfg = thread_config_t{thread_k, thread_n, default_threads};
      exec_cfg = exec_config_t{1, thread_tfg};
      TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n,
                  " is not divisible by thread_n = ", thread_n);
      TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k,
                  " is not divisible by thread_k = ", thread_k);
    } else {
      // Auto config
      exec_cfg = determine_exec_config<scalar_t>(
          q_type, prob_m_split, prob_n, prob_k, thread_m_blocks, m_block_size_8,
          num_bits, group_size, has_act_order, is_k_full, has_zp, is_zp_float,
          max_shared_mem, sms);
      thread_tfg = exec_cfg.tb_cfg;
      if (thread_tfg.thread_k == -1 && max_thread_m_blocks > 1) {
        max_thread_m_blocks--;
        continue;
      }
    }

    int num_threads = thread_tfg.num_threads;
    thread_k = thread_tfg.thread_k;
    thread_n = thread_tfg.thread_n;
    int blocks = sms * exec_cfg.blocks_per_sm;
    if (exec_cfg.blocks_per_sm > 1)
      max_shared_mem_new = max_shared_mem / exec_cfg.blocks_per_sm - 1024;

    int thread_k_blocks = thread_k / 16;
    int thread_n_blocks = thread_n / 16;

    TORCH_CHECK(
        is_valid_config(thread_tfg, thread_m_blocks, prob_m_split, prob_n,
                        prob_k, num_bits, group_size, has_act_order, is_k_full,
                        has_zp, is_zp_float, max_shared_mem_new),
        "Invalid thread config: thread_m_blocks = ", thread_m_blocks,
        ", thread_k = ", thread_tfg.thread_k,
        ", thread_n = ", thread_tfg.thread_n,
        ", num_threads = ", thread_tfg.num_threads, " for MKN = [", prob_m,
        ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits,
        ", prob_m_split = ", prob_m_split, ", group_size = ", group_size,
        ", has_act_order = ", has_act_order, ", is_k_full = ", is_k_full,
        ", has_zp = ", has_zp, ", is_zp_float = ", is_zp_float,
        ", max_shared_mem_new = ", max_shared_mem_new);

    auto kernel = get_marlin_kernel<scalar_t>(
        q_type, thread_m_blocks, thread_n_blocks, thread_k_blocks,
        m_block_size_8, has_act_order, has_zp, group_blocks, num_threads,
        is_zp_float);

    if (kernel == MarlinDefault) {
      TORCH_CHECK(false, "Unsupported shapes: MNK = [", prob_m, ", ", prob_n,
                  ", ", prob_k, "]", ", has_act_order = ", has_act_order,
                  ", num_groups = ", num_groups, ", group_size = ", group_size,
                  ", prob_m_split = ", prob_m_split,
                  ", thread_m_blocks = ", thread_m_blocks,
                  ", thread_n_blocks = ", thread_n_blocks,
                  ", thread_k_blocks = ", thread_k_blocks,
                  ", num_threads = ", num_threads, ", num_bits = ", num_bits);
    }

    cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
                         max_shared_mem_new);

    bool part_use_atomic_add =
        use_atomic_add && div_ceil(prob_m_split, 64) * prob_n <= 2048;

    // avoid ">>>" being formatted to "> > >"
    // clang-format off
    kernel<<<blocks, num_threads, max_shared_mem_new, stream>>>(
        A_ptr, B_ptr, C_ptr, C_tmp_ptr, s_ptr, s2_ptr, zp_ptr, g_idx_ptr, num_groups,
        prob_m_split, prob_n, prob_k, lda, locks, part_use_atomic_add,
        use_fp32_reduce, max_shared_mem_new);
    // clang-format on

    A_ptr += prob_m_split * (lda / 8);
    C_ptr += prob_m_split * (prob_n / 8);
    rest_m -= prob_m_split;
  }
}

}  // namespace marlin

torch::Tensor gptq_marlin_gemm(
    torch::Tensor& a, std::optional<torch::Tensor> c_or_none,
    torch::Tensor& b_q_weight, torch::Tensor& b_scales,
    std::optional<torch::Tensor> const& global_scale_or_none,
    std::optional<torch::Tensor> const& b_zeros_or_none,
    std::optional<torch::Tensor> const& g_idx_or_none,
    std::optional<torch::Tensor> const& perm_or_none, torch::Tensor& workspace,
    vllm::ScalarTypeId const& b_q_type_id, int64_t size_m, int64_t size_n,
    int64_t size_k, bool is_k_full, bool use_atomic_add, bool use_fp32_reduce,
    bool is_zp_float) {
  vllm::ScalarType const b_q_type = vllm::ScalarType::from_id(b_q_type_id);
  int pack_factor = 32 / b_q_type.size_bits();

  // Verify A
  TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0),
              ", size_m = ", size_m);
  TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1),
              ", size_k = ", size_k);

  // Verify B
  TORCH_CHECK(
      size_k % MARLIN_NAMESPACE_NAME::tile_size == 0, "size_k = ", size_k,
      " is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
  TORCH_CHECK((size_k / MARLIN_NAMESPACE_NAME::tile_size) == b_q_weight.size(0),
              "Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0),
              ", size_k = ", size_k,
              ", tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
  TORCH_CHECK(
      b_q_weight.size(1) % MARLIN_NAMESPACE_NAME::tile_size == 0,
      "b_q_weight.size(1) = ", b_q_weight.size(1),
      " is not divisible by tile_size = ", MARLIN_NAMESPACE_NAME::tile_size);
  int actual_size_n =
      (b_q_weight.size(1) / MARLIN_NAMESPACE_NAME::tile_size) * pack_factor;
  TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n,
              ", actual_size_n = ", actual_size_n);

  // Verify device and strides
  TORCH_CHECK(a.device().is_cuda(), "A is not on GPU");
  TORCH_CHECK(a.stride(1) == 1, "A.stride(1) is not 1");
  // We use int4 (16 bytes) to load A, so A must aligned to 16 bytes
  TORCH_CHECK(a.stride(0) % 8 == 0, "A.stride(0) must divisible by 8");
  TORCH_CHECK(((uint64_t)a.data_ptr()) % 16 == 0, "A must aligned to 16 bytes");

  TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU");
  TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous");

  TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU");
  TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous");

  // thread_k: `k` size of a thread_tile in `weights` (can usually be left as
  // auto -1)
  int thread_k = -1;
  // thread_n: `n` size of a thread_tile in `weights` (can usually be left as
  // auto -1)
  int thread_n = -1;
  // sms: number of SMs to use for the kernel
  int sms = -1;
  cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());

  // Alloc buffers
  const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
  auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
  torch::Tensor c;
  if (c_or_none.has_value()) {
    c = c_or_none.value();
    TORCH_CHECK(c.device().is_cuda(), "c is not on GPU");
    TORCH_CHECK(c.is_contiguous(), "c is not contiguous");
    TORCH_CHECK(c.size(0) == size_m, "Shape mismatch: c.size(0) = ", c.size(0),
                ", size_m = ", size_m);
    TORCH_CHECK(c.size(1) == size_n, "Shape mismatch: c.size(1) = ", c.size(1),
                ", size_n = ", size_n);
  } else {
    c = torch::empty({size_m, size_n}, options);
  }
  if (size_m == 0) return c;

  // Alloc C tmp buffer that is going to be used for the global reduce
  torch::Tensor c_tmp;
  auto options_fp32 =
      torch::TensorOptions().dtype(at::kFloat).device(a.device());
  if (use_fp32_reduce) {
    int max_m_block_size = (size_m + 16 - 1) / 16 * 16;
    max_m_block_size = min(max_m_block_size, 64);
    int max_c_tmp_size =
        sms * max_m_block_size * MARLIN_NAMESPACE_NAME::max_thread_n;
    c_tmp = torch::empty({max_c_tmp_size}, options_fp32);
  } else {
    c_tmp = torch::empty({0}, options_fp32);
  }

  // Detect groupsize and act_order
  int num_groups = -1;
  int group_size = -1;

  int rank = b_scales.sizes().size();
  TORCH_CHECK(rank == 2, "b_scales rank = ", rank, " is not 2");
  TORCH_CHECK(b_scales.size(1) == size_n, "b_scales dim 1 = ", b_scales.size(1),
              " is not size_n = ", size_n);
  num_groups = b_scales.size(0);

  torch::Tensor g_idx, perm, a_tmp;
  if (g_idx_or_none.has_value() && perm_or_none.has_value()) {
    g_idx = g_idx_or_none.value();
    perm = perm_or_none.value();

    TORCH_CHECK(g_idx.device().is_cuda(), "g_idx is not on GPU");
    TORCH_CHECK(g_idx.is_contiguous(), "g_idx is not contiguous");
    TORCH_CHECK(perm.device().is_cuda(), "perm is not on GPU");
    TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");

    // Verify g_idx and perm
    TORCH_CHECK((g_idx.size(-1) == 0 && perm.size(-1) == 0) ||
                    (g_idx.size(-1) == size_k && perm.size(-1) == size_k),
                "Unexpected g_idx.size(-1) = ", g_idx.size(-1),
                " and perm.size(-1) = ", perm.size(-1),
                ", where size_k = ", size_k);
  } else {
    g_idx = torch::empty({0}, options);
    perm = torch::empty({0}, options);
    a_tmp = torch::empty({0}, options);
  }
  bool has_act_order = g_idx.size(-1) > 0 && perm.size(-1) > 0;

  if (has_act_order) {
    a_tmp = torch::empty({size_m, size_k}, options);
    if (is_k_full) {
      TORCH_CHECK(num_groups > 1, "For act_order, num_groups must be > 1");
      TORCH_CHECK(size_k % num_groups == 0, "size_k = ", size_k,
                  ", is not divisible by num_groups = ", num_groups);
      group_size = size_k / num_groups;
    } else {
      group_size = 0;
    }

  } else {
    a_tmp = torch::empty({0}, options);
    if (num_groups > 1) {
      TORCH_CHECK(
          size_k % num_groups == 0, "size_k = ", size_k,
          ", is not divisible by b_scales.size(0) = ", b_scales.size(0));
      group_size = size_k / num_groups;
    } else {
      group_size = -1;
    }
  }

  torch::Tensor global_scale;
  if (global_scale_or_none.has_value()) {
    global_scale = global_scale_or_none.value();
    TORCH_CHECK(b_q_type == vllm::kFE2M1f,
                "global_scale can only be used for float4_e2m1f.");
  } else {
    global_scale = torch::empty({0}, options);
    TORCH_CHECK(!(b_q_type == vllm::kFE2M1f),
                "the global_scale parameter must be passed for float4_e2m1f.");
  }

  torch::Tensor b_zeros;
  if (b_zeros_or_none.has_value()) {
    b_zeros = b_zeros_or_none.value();
    TORCH_CHECK(b_zeros.device().is_cuda(), "b_zeros is not on GPU");
    TORCH_CHECK(b_zeros.is_contiguous(), "b_zeros is not contiguous");
  } else {
    b_zeros = torch::empty({0}, options);
  }
  bool has_zp = b_zeros.size(-1) > 0;
  if (has_zp) {
    TORCH_CHECK(
        b_q_type == vllm::kU4 || b_q_type == vllm::kU8,
        "b_q_type must be u4 or u8 when has_zp = True. Got = ", b_q_type.str());
  } else {
    TORCH_CHECK(b_q_type == vllm::kU4B8 || b_q_type == vllm::kU8B128 ||
                    b_q_type == vllm::kFE4M3fn || b_q_type == vllm::kFE2M1f,
                "b_q_type must be uint4b8, uint8b128, float8_e4m3fn or "
                "float4_e2m1f when "
                "has_zp = False. Got = ",
                b_q_type.str());
  }

  if (has_zp && is_zp_float) {
    TORCH_CHECK(a.scalar_type() == at::ScalarType::Half,
                "Computation type must be float16 (half) when using float zero "
                "points.");
  }

  // Verify b_zeros
  if (has_zp) {
    int rank = b_zeros.sizes().size();
    TORCH_CHECK(rank == 2, "b_zeros rank = ", rank, " is not 2");
    if (is_zp_float) {
      TORCH_CHECK(b_zeros.size(1) == size_n,
                  "b_zeros dim 1 = ", b_zeros.size(1),
                  " is not size_n = ", size_n);
      TORCH_CHECK(num_groups == b_zeros.size(0),
                  "b_zeros dim 0 = ", b_zeros.size(0),
                  " is not num_groups = ", num_groups);
      TORCH_CHECK(num_groups != -1, "num_groups must be != -1");
    } else {
      TORCH_CHECK(b_zeros.size(0) == num_groups,
                  "b_zeros dim 0 = ", b_zeros.size(0),
                  " is not num_groups = ", num_groups);
      TORCH_CHECK(b_zeros.size(1) == size_n / pack_factor,
                  "b_zeros dim 1 = ", b_zeros.size(1),
                  " is not size_n / pack_factor = ", size_n / pack_factor);
    }
  }

  // Verify workspace size
  TORCH_CHECK(size_n % MARLIN_NAMESPACE_NAME::min_thread_n == 0,
              "size_n = ", size_n, ", is not divisible by min_thread_n = ",
              MARLIN_NAMESPACE_NAME::min_thread_n);

  int min_workspace_size = sms;
  TORCH_CHECK(workspace.numel() >= min_workspace_size,
              "workspace.numel = ", workspace.numel(),
              " is below min_workspace_size = ", min_workspace_size);

  int dev = a.get_device();
  if (a.scalar_type() == at::ScalarType::Half) {
    void* scales_ptr;
    if (b_q_type == vllm::kFE2M1f) {
      scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
    } else {
      scales_ptr = b_scales.data_ptr<at::Half>();
    }

    marlin::marlin_mm<half>(
        a.data_ptr<at::Half>(), b_q_weight.data_ptr(), c.data_ptr<at::Half>(),
        c_tmp.data_ptr<float>(), scales_ptr, global_scale.data_ptr<at::Half>(),
        b_zeros.data_ptr(), g_idx.data_ptr(), perm.data_ptr(),
        a_tmp.data_ptr<at::Half>(), size_m, size_n, size_k, a.stride(0),
        workspace.data_ptr(), b_q_type, has_act_order, is_k_full, has_zp,
        num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev),
        thread_k, thread_n, sms, use_atomic_add, use_fp32_reduce, is_zp_float);
  } else if (a.scalar_type() == at::ScalarType::BFloat16) {
    void* scales_ptr;
    if (b_q_type == vllm::kFE2M1f) {
      scales_ptr = b_scales.data_ptr<at::Float8_e4m3fn>();
    } else {
      scales_ptr = b_scales.data_ptr<at::BFloat16>();
    }

    marlin::marlin_mm<nv_bfloat16>(
        a.data_ptr<at::BFloat16>(), b_q_weight.data_ptr(),
        c.data_ptr<at::BFloat16>(), c_tmp.data_ptr<float>(), scales_ptr,
        global_scale.data_ptr<at::BFloat16>(), b_zeros.data_ptr(),
        g_idx.data_ptr(), perm.data_ptr(), a_tmp.data_ptr<at::BFloat16>(),
        size_m, size_n, size_k, a.stride(0), workspace.data_ptr(), b_q_type,
        has_act_order, is_k_full, has_zp, num_groups, group_size, dev,
        at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms,
        use_atomic_add, use_fp32_reduce, is_zp_float);
  } else {
    TORCH_CHECK(false, "gpt_marlin_gemm only supports bfloat16 and float16");
  }

  return c;
}

#endif