File size: 12,166 Bytes
e94ff91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
#include <ATen/core/TensorBody.h>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/TensorIterator.h>
#include <sycl/sycl.hpp>
#include <ATen/core/Array.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/TypeCast.h>
#include <cstdint>
#include <type_traits>
#include <array>
#include <c10/core/ScalarType.h>
#include <c10/xpu/XPUStream.h>
#include <ATen/xpu/XPUContext.h>
constexpr int MAX_DIMS = 12;
struct LoadWithoutCast {
template <typename scalar_t>
C10_DEVICE scalar_t load(char* base_ptr, uint32_t offset, int arg) {
return c10::load(reinterpret_cast<scalar_t*>(base_ptr) + offset);
}
};
struct StoreWithoutCast {
template <typename scalar_t>
C10_DEVICE void store(scalar_t value, char* base_ptr, uint32_t offset, int arg = 0) {
*(reinterpret_cast<scalar_t*>(base_ptr) + offset) = value;
}
};
template <template <int i> typename func, int end, int current = 0>
struct static_unroll {
template <typename... Args>
static inline C10_HOST_DEVICE void with_args(Args&&... args) {
func<current>::apply(std::forward<Args>(args)...);
static_unroll<func, end, current + 1>::with_args(args...);
}
};
template <template <int i> typename func, int end>
struct static_unroll<func, end, end> {
template <typename... Args>
static inline C10_HOST_DEVICE void with_args(Args... args) {}
};
template <int current>
struct multi_outputs_store_helper {
template <int ntensors, int num_outputs, typename... Args>
static C10_HOST_DEVICE void apply(
at::detail::Array<char*, ntensors> data,
at::detail::Array<uint32_t, num_outputs> offsets,
std::tuple<Args...> ret) {
using T = typename std::tuple_element<current, std::tuple<Args...>>::type;
T* to = reinterpret_cast<T*>(data[current]) + offsets[current];
*to = std::get<current>(ret);
}
};
template <int arg_index>
struct unroll_load_helper {
template <typename args_t, typename policy_t, typename offset_t, typename loader_t>
static C10_DEVICE void apply(
policy_t& self,
args_t* args,
offset_t offset,
loader_t loader,
int j,
int num_outputs) {
using arg_t = std::tuple_element_t<arg_index, args_t>;
std::get<arg_index>(args[j]) = loader.template load<arg_t>(
self.data[arg_index + num_outputs], offset[arg_index], arg_index);
}
};
template <int item_work_size, typename data_t, typename inp_calc_t, typename out_calc_t, int num_outputs>
struct multi_outputs_unroll {
data_t data;
int remaining;
inp_calc_t input_offset_calculator;
out_calc_t output_offset_calculator;
LoadWithoutCast loader;
StoreWithoutCast storer;
int item_idx;
int group_idx;
int num_items_per_group;
int group_work_size;
multi_outputs_unroll(
data_t data,
int remaining,
inp_calc_t ic,
out_calc_t oc,
int item_idx,
int group_idx,
int num_items_per_group)
: data(data),
remaining(remaining),
input_offset_calculator(ic),
output_offset_calculator(oc),
item_idx(item_idx),
group_idx(group_idx),
num_items_per_group(num_items_per_group),
group_work_size(item_work_size * num_items_per_group) {}
inline bool check_inbounds(int item_work_elem) const {
return (item_idx + item_work_elem * num_items_per_group < remaining);
}
template <typename args_t>
inline void load(args_t* args) {
constexpr int arity = std::tuple_size<args_t>::value;
int item_idx_ = item_idx;
#pragma unroll
for (int i = 0; i < item_work_size; i++) {
if (item_idx_ >= remaining) {
return;
}
int linear_idx = item_idx_ + group_work_size * group_idx;
auto offset = input_offset_calculator.get(linear_idx);
static_unroll<unroll_load_helper, arity>::with_args(
*this, args, offset, loader, i, num_outputs);
item_idx_ += num_items_per_group;
}
}
template <typename return_t>
inline void store(return_t* from) {
int item_idx_ = item_idx;
#pragma unroll
for (int i = 0; i < item_work_size; i++) {
if (item_idx_ >= this->remaining) {
return;
}
int linear_idx = item_idx_ + group_work_size * group_idx;
auto offsets = this->output_offset_calculator.get(linear_idx);
static_unroll<multi_outputs_store_helper, num_outputs>::with_args(this->data, offsets, from[i]);
item_idx_ += num_items_per_group;
}
}
};
template <int item_work_size, typename func_t, typename policy_t>
inline void elementwise_kernel_helper(func_t f, policy_t policy) {
using traits = function_traits<func_t>;
using return_t = typename traits::result_type;
using args_t = typename traits::ArgsTuple;
return_t results[item_work_size];
args_t args[item_work_size];
policy.load(args);
#pragma unroll
for (int i = 0; i < item_work_size; i++) {
if (policy.check_inbounds(i)) {
results[i] = std::apply(f, args[i]);
}
}
policy.store(results);
}
template <int num_outputs, typename func_t, typename array_t, typename in_calc_t, typename out_calc_t>
struct UnrolledElementwiseForMultiOutputsKernel {
static constexpr int item_work_size = 4;
void operator()(sycl::nd_item<1> item_id) const {
int grpsz = item_id.get_local_range(0);
int grpid = item_id.get_group(0);
int lid = item_id.get_local_id(0);
int remaining = numel_ - item_work_size * grpsz * grpid;
auto policy = multi_outputs_unroll<item_work_size, array_t, in_calc_t, out_calc_t, num_outputs>(
data_, remaining, ic_, oc_, lid, grpid, grpsz);
elementwise_kernel_helper<item_work_size>(f_, policy);
};
UnrolledElementwiseForMultiOutputsKernel(int numel, func_t f, array_t data, in_calc_t ic, out_calc_t oc)
: numel_(numel), f_(f), data_(data), ic_(ic), oc_(oc) {}
private:
int numel_;
func_t f_;
array_t data_;
in_calc_t ic_;
out_calc_t oc_;
};
template <typename Value>
struct IntDivider {
IntDivider() = default;
IntDivider(Value d) : divisor(d) {}
C10_HOST_DEVICE inline Value div(Value n) const {
return n / divisor;
}
C10_HOST_DEVICE inline Value mod(Value n) const {
return n % divisor;
}
C10_HOST_DEVICE inline auto divmod(Value n) const {
return std::make_pair(n / divisor, n % divisor);
}
Value divisor;
};
template <int NARGS, typename index_t = uint32_t, bool signed_strides = false>
struct OffsetCalculator {
using stride_t = std::conditional_t<signed_strides, std::make_signed_t<index_t>, index_t>;
using offset_type = at::detail::Array<stride_t, std::max<int>(NARGS, 1)>;
OffsetCalculator(int dims, const int64_t* sizes, const int64_t* const* strides, const int64_t* element_sizes = nullptr)
: dims(dims) {
TORCH_CHECK(dims <= MAX_DIMS, "tensor has too many (>", MAX_DIMS, ") dims");
for (int i = 0; i < dims; i++) {
sizes_[i] = IntDivider<index_t>(sizes[i]);
for (int arg = 0; arg < NARGS; arg++) {
int64_t element_size = (element_sizes == nullptr ? 1LL : element_sizes[arg]);
strides_[i][arg] = strides[arg][i] / element_size;
}
}
}
C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
offset_type offsets;
#pragma unroll
for (int arg = 0; arg < NARGS; arg++) {
offsets[arg] = 0;
}
#pragma unroll
for (int dim = 0; dim < MAX_DIMS; ++dim) {
if (dim == dims) {
break;
}
auto divmod = sizes_[dim].divmod(linear_idx);
linear_idx = divmod.first;
#pragma unroll
for (int arg = 0; arg < NARGS; arg++) {
offsets[arg] += divmod.second * strides_[dim][arg];
}
}
return offsets;
}
int dims;
IntDivider<index_t> sizes_[MAX_DIMS];
stride_t strides_[MAX_DIMS][std::max<int>(NARGS, 1)];
};
template <int N>
static OffsetCalculator<N> make_input_offset_calculator(const at::TensorIteratorBase& iter) {
constexpr int array_size = std::max<int>(N, 1);
TORCH_INTERNAL_ASSERT(N == iter.ntensors() - iter.noutputs());
std::array<const int64_t*, array_size> strides;
int64_t element_sizes[array_size];
for (int i = 0; i < N; i++) {
strides[i] = iter.strides(i + iter.noutputs()).data();
element_sizes[i] = iter.element_size(i + iter.noutputs());
}
return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}
template <int num_outputs = 1>
static OffsetCalculator<num_outputs> make_output_offset_calculator(const at::TensorIteratorBase& iter) {
TORCH_INTERNAL_ASSERT(num_outputs == iter.noutputs());
std::array<const int64_t*, num_outputs> strides;
int64_t element_sizes[num_outputs];
for (int i = 0; i < num_outputs; i++) {
strides[i] = iter.strides(i).data();
element_sizes[i] = iter.element_size(i);
}
return OffsetCalculator<num_outputs>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}
static inline int64_t syclMaxWorkItemsPerSubSlice(at::DeviceIndex dev_id = c10::xpu::getCurrentXPUStream().device_index()) {
auto* dev_prop = at::xpu::getDeviceProperties(dev_id);
int64_t simd_width = dev_prop->sub_group_sizes[0];
int64_t eu_count = dev_prop->gpu_eu_count_per_subslice;
return simd_width * eu_count;
}
template<class T>
T ceil_div(T dividend, T divisor) {
return (dividend + divisor - 1) / divisor;
}
template <typename ker_t>
static inline void sycl_kernel_submit(int64_t global_range, int64_t local_range, ::sycl::queue q, ker_t ker) {
q.parallel_for(
sycl::nd_range<1>(sycl::range<1>(global_range), sycl::range<1>(local_range)),
ker
);
}
template <int num_outputs, typename func_t, typename array_t, typename in_calc_t, typename out_calc_t>
static inline void launch_unrolled_kernel_for_multi_outputs(
int64_t N,
const func_t& f,
array_t data,
in_calc_t ic,
out_calc_t oc) {
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
auto ker = UnrolledElementwiseForMultiOutputsKernel<num_outputs, func_t, array_t, in_calc_t, out_calc_t>(N, f, data, ic, oc);
using ker_t = decltype(ker);
int wg_sz = syclMaxWorkItemsPerSubSlice();
int num_wg = ceil_div<int>(N, ker_t::item_work_size * wg_sz);
sycl_kernel_submit(wg_sz * num_wg, wg_sz, c10::xpu::getCurrentXPUStream().queue(), ker);
}
template <int N>
struct TrivialOffsetCalculator {
using offset_type = at::detail::Array<uint32_t, std::max<int>(N, 1)>;
C10_HOST_DEVICE offset_type get(uint32_t linear_idx) const {
offset_type offsets;
#pragma unroll
for (int arg = 0; arg < N; arg++) {
offsets[arg] = linear_idx;
}
return offsets;
}
};
template <typename func_t>
void gpu_kernel_multiple_outputs_impl(at::TensorIteratorBase& iter, const func_t& f) {
using traits = function_traits<func_t>;
using output_t = typename traits::result_type;
constexpr int num_outputs = std::tuple_size<output_t>::value;
constexpr int num_inputs = traits::arity;
constexpr int ntensors = num_outputs + num_inputs;
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
TORCH_INTERNAL_ASSERT(iter.ntensors() == ntensors);
at::detail::Array<char*, ntensors> data;
for (int i = 0; i < ntensors; i++) {
data[i] = (char*)iter.data_ptr(i);
}
int64_t numel = iter.numel();
if (iter.is_contiguous()) {
auto input_calc = TrivialOffsetCalculator<num_inputs>();
auto output_calc = TrivialOffsetCalculator<num_outputs>();
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
} else {
auto input_calc = make_input_offset_calculator<num_inputs>(iter);
auto output_calc = make_output_offset_calculator<num_outputs>(iter);
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
}
}
template <typename func_t>
void gpu_kernel_multiple_outputs(at::TensorIteratorBase& iter, const func_t& f) {
for (int arg = 0; arg < iter.ntensors(); arg++) {
TORCH_INTERNAL_ASSERT(iter.device(arg).is_xpu());
}
if (iter.numel() == 0) {
return;
}
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_kernel_multiple_outputs(sub_iter, f);
}
return;
}
gpu_kernel_multiple_outputs_impl(iter, f);
} |