kernel
File size: 12,166 Bytes
e94ff91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#include <ATen/core/TensorBody.h>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/TensorIterator.h>
#include <sycl/sycl.hpp>
#include <ATen/core/Array.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/TypeCast.h>
#include <cstdint>
#include <type_traits>
#include <array>
#include <c10/core/ScalarType.h>
#include <c10/xpu/XPUStream.h>
#include <ATen/xpu/XPUContext.h>

constexpr int MAX_DIMS = 12;

struct LoadWithoutCast {
  template <typename scalar_t>
  C10_DEVICE scalar_t load(char* base_ptr, uint32_t offset, int arg) {
    return c10::load(reinterpret_cast<scalar_t*>(base_ptr) + offset);
  }
};

struct StoreWithoutCast {
  template <typename scalar_t>
  C10_DEVICE void store(scalar_t value, char* base_ptr, uint32_t offset, int arg = 0) {
    *(reinterpret_cast<scalar_t*>(base_ptr) + offset) = value;
  }
};

template <template <int i> typename func, int end, int current = 0>
struct static_unroll {
  template <typename... Args>
  static inline C10_HOST_DEVICE void with_args(Args&&... args) {
    func<current>::apply(std::forward<Args>(args)...);
    static_unroll<func, end, current + 1>::with_args(args...);
  }
};

template <template <int i> typename func, int end>
struct static_unroll<func, end, end> {
  template <typename... Args>
  static inline C10_HOST_DEVICE void with_args(Args... args) {}
};

template <int current>
struct multi_outputs_store_helper {
  template <int ntensors, int num_outputs, typename... Args>
  static C10_HOST_DEVICE void apply(
      at::detail::Array<char*, ntensors> data,
      at::detail::Array<uint32_t, num_outputs> offsets,
      std::tuple<Args...> ret) {
    using T = typename std::tuple_element<current, std::tuple<Args...>>::type;
    T* to = reinterpret_cast<T*>(data[current]) + offsets[current];
    *to = std::get<current>(ret);
  }
};

template <int arg_index>
struct unroll_load_helper {
  template <typename args_t, typename policy_t, typename offset_t, typename loader_t>
  static C10_DEVICE void apply(
      policy_t& self,
      args_t* args,
      offset_t offset,
      loader_t loader,
      int j,
      int num_outputs) {
    using arg_t = std::tuple_element_t<arg_index, args_t>;
    std::get<arg_index>(args[j]) = loader.template load<arg_t>(
        self.data[arg_index + num_outputs], offset[arg_index], arg_index);
  }
};

template <int item_work_size, typename data_t, typename inp_calc_t, typename out_calc_t, int num_outputs>
struct multi_outputs_unroll {
  data_t data;
  int remaining;
  inp_calc_t input_offset_calculator;
  out_calc_t output_offset_calculator;
  LoadWithoutCast loader;
  StoreWithoutCast storer;
  int item_idx;
  int group_idx;
  int num_items_per_group;
  int group_work_size;

  multi_outputs_unroll(
      data_t data,
      int remaining,
      inp_calc_t ic,
      out_calc_t oc,
      int item_idx,
      int group_idx,
      int num_items_per_group)
      : data(data),
        remaining(remaining),
        input_offset_calculator(ic),
        output_offset_calculator(oc),
        item_idx(item_idx),
        group_idx(group_idx),
        num_items_per_group(num_items_per_group),
        group_work_size(item_work_size * num_items_per_group) {}

  inline bool check_inbounds(int item_work_elem) const {
    return (item_idx + item_work_elem * num_items_per_group < remaining);
  }

  template <typename args_t>
  inline void load(args_t* args) {
    constexpr int arity = std::tuple_size<args_t>::value;
    int item_idx_ = item_idx;
#pragma unroll
    for (int i = 0; i < item_work_size; i++) {
      if (item_idx_ >= remaining) {
        return;
      }
      int linear_idx = item_idx_ + group_work_size * group_idx;
      auto offset = input_offset_calculator.get(linear_idx);
      static_unroll<unroll_load_helper, arity>::with_args(
          *this, args, offset, loader, i, num_outputs);
      item_idx_ += num_items_per_group;
    }
  }

  template <typename return_t>
  inline void store(return_t* from) {
    int item_idx_ = item_idx;
#pragma unroll
    for (int i = 0; i < item_work_size; i++) {
      if (item_idx_ >= this->remaining) {
        return;
      }
      int linear_idx = item_idx_ + group_work_size * group_idx;
      auto offsets = this->output_offset_calculator.get(linear_idx);
      static_unroll<multi_outputs_store_helper, num_outputs>::with_args(this->data, offsets, from[i]);
      item_idx_ += num_items_per_group;
    }
  }
};

template <int item_work_size, typename func_t, typename policy_t>
inline void elementwise_kernel_helper(func_t f, policy_t policy) {
  using traits = function_traits<func_t>;
  using return_t = typename traits::result_type;
  using args_t = typename traits::ArgsTuple;

  return_t results[item_work_size];
  args_t args[item_work_size];

  policy.load(args);

#pragma unroll
  for (int i = 0; i < item_work_size; i++) {
    if (policy.check_inbounds(i)) {
      results[i] = std::apply(f, args[i]);
    }
  }

  policy.store(results);
}

template <int num_outputs, typename func_t, typename array_t, typename in_calc_t, typename out_calc_t>
struct UnrolledElementwiseForMultiOutputsKernel {
  static constexpr int item_work_size = 4;

  void operator()(sycl::nd_item<1> item_id) const {
    int grpsz = item_id.get_local_range(0);
    int grpid = item_id.get_group(0);
    int lid = item_id.get_local_id(0);
    int remaining = numel_ - item_work_size * grpsz * grpid;
    auto policy = multi_outputs_unroll<item_work_size, array_t, in_calc_t, out_calc_t, num_outputs>(
        data_, remaining, ic_, oc_, lid, grpid, grpsz);
    elementwise_kernel_helper<item_work_size>(f_, policy);
  };

  UnrolledElementwiseForMultiOutputsKernel(int numel, func_t f, array_t data, in_calc_t ic, out_calc_t oc)
      : numel_(numel), f_(f), data_(data), ic_(ic), oc_(oc) {}

 private:
  int numel_;
  func_t f_;
  array_t data_;
  in_calc_t ic_;
  out_calc_t oc_;
};

template <typename Value>
struct IntDivider {
  IntDivider() = default;
  IntDivider(Value d) : divisor(d) {}

  C10_HOST_DEVICE inline Value div(Value n) const {
    return n / divisor;
  }
  C10_HOST_DEVICE inline Value mod(Value n) const {
    return n % divisor;
  }
  C10_HOST_DEVICE inline auto divmod(Value n) const {
    return std::make_pair(n / divisor, n % divisor);
  }

  Value divisor;
};

template <int NARGS, typename index_t = uint32_t, bool signed_strides = false>
struct OffsetCalculator {
  using stride_t = std::conditional_t<signed_strides, std::make_signed_t<index_t>, index_t>;
  using offset_type = at::detail::Array<stride_t, std::max<int>(NARGS, 1)>;

  OffsetCalculator(int dims, const int64_t* sizes, const int64_t* const* strides, const int64_t* element_sizes = nullptr)
      : dims(dims) {
    TORCH_CHECK(dims <= MAX_DIMS, "tensor has too many (>", MAX_DIMS, ") dims");
    for (int i = 0; i < dims; i++) {
      sizes_[i] = IntDivider<index_t>(sizes[i]);
      for (int arg = 0; arg < NARGS; arg++) {
        int64_t element_size = (element_sizes == nullptr ? 1LL : element_sizes[arg]);
        strides_[i][arg] = strides[arg][i] / element_size;
      }
    }
  }

  C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
    offset_type offsets;
#pragma unroll
    for (int arg = 0; arg < NARGS; arg++) {
      offsets[arg] = 0;
    }

#pragma unroll
    for (int dim = 0; dim < MAX_DIMS; ++dim) {
      if (dim == dims) {
        break;
      }
      auto divmod = sizes_[dim].divmod(linear_idx);
      linear_idx = divmod.first;

#pragma unroll
      for (int arg = 0; arg < NARGS; arg++) {
        offsets[arg] += divmod.second * strides_[dim][arg];
      }
    }
    return offsets;
  }

  int dims;
  IntDivider<index_t> sizes_[MAX_DIMS];
  stride_t strides_[MAX_DIMS][std::max<int>(NARGS, 1)];
};

template <int N>
static OffsetCalculator<N> make_input_offset_calculator(const at::TensorIteratorBase& iter) {
  constexpr int array_size = std::max<int>(N, 1);
  TORCH_INTERNAL_ASSERT(N == iter.ntensors() - iter.noutputs());
  std::array<const int64_t*, array_size> strides;
  int64_t element_sizes[array_size];
  for (int i = 0; i < N; i++) {
    strides[i] = iter.strides(i + iter.noutputs()).data();
    element_sizes[i] = iter.element_size(i + iter.noutputs());
  }
  return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}

template <int num_outputs = 1>
static OffsetCalculator<num_outputs> make_output_offset_calculator(const at::TensorIteratorBase& iter) {
  TORCH_INTERNAL_ASSERT(num_outputs == iter.noutputs());
  std::array<const int64_t*, num_outputs> strides;
  int64_t element_sizes[num_outputs];
  for (int i = 0; i < num_outputs; i++) {
    strides[i] = iter.strides(i).data();
    element_sizes[i] = iter.element_size(i);
  }
  return OffsetCalculator<num_outputs>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}

static inline int64_t syclMaxWorkItemsPerSubSlice(at::DeviceIndex dev_id = c10::xpu::getCurrentXPUStream().device_index()) {
  auto* dev_prop = at::xpu::getDeviceProperties(dev_id);
  int64_t simd_width = dev_prop->sub_group_sizes[0];
  int64_t eu_count = dev_prop->gpu_eu_count_per_subslice;
  return simd_width * eu_count;
}

template<class T>
T ceil_div(T dividend, T divisor) {
    return (dividend + divisor - 1) / divisor;
}

template <typename ker_t>
static inline void sycl_kernel_submit(int64_t global_range, int64_t local_range, ::sycl::queue q, ker_t ker) {
  q.parallel_for(
    sycl::nd_range<1>(sycl::range<1>(global_range), sycl::range<1>(local_range)),
    ker
  );
}

template <int num_outputs, typename func_t, typename array_t, typename in_calc_t, typename out_calc_t>
static inline void launch_unrolled_kernel_for_multi_outputs(
    int64_t N,
    const func_t& f,
    array_t data,
    in_calc_t ic,
    out_calc_t oc) {
  TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());

  auto ker = UnrolledElementwiseForMultiOutputsKernel<num_outputs, func_t, array_t, in_calc_t, out_calc_t>(N, f, data, ic, oc);
  using ker_t = decltype(ker);

  int wg_sz = syclMaxWorkItemsPerSubSlice();
  int num_wg = ceil_div<int>(N, ker_t::item_work_size * wg_sz);
  sycl_kernel_submit(wg_sz * num_wg, wg_sz, c10::xpu::getCurrentXPUStream().queue(), ker);
}

template <int N>
struct TrivialOffsetCalculator {
  using offset_type = at::detail::Array<uint32_t, std::max<int>(N, 1)>;

  C10_HOST_DEVICE offset_type get(uint32_t linear_idx) const {
    offset_type offsets;
#pragma unroll
    for (int arg = 0; arg < N; arg++) {
      offsets[arg] = linear_idx;
    }
    return offsets;
  }
};

template <typename func_t>
void gpu_kernel_multiple_outputs_impl(at::TensorIteratorBase& iter, const func_t& f) {
  using traits = function_traits<func_t>;
  using output_t = typename traits::result_type;
  constexpr int num_outputs = std::tuple_size<output_t>::value;
  constexpr int num_inputs = traits::arity;
  constexpr int ntensors = num_outputs + num_inputs;

  TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
  TORCH_INTERNAL_ASSERT(iter.ntensors() == ntensors);

  at::detail::Array<char*, ntensors> data;
  for (int i = 0; i < ntensors; i++) {
    data[i] = (char*)iter.data_ptr(i);
  }

  int64_t numel = iter.numel();

  if (iter.is_contiguous()) {
    auto input_calc = TrivialOffsetCalculator<num_inputs>();
    auto output_calc = TrivialOffsetCalculator<num_outputs>();
    launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
  } else {
    auto input_calc = make_input_offset_calculator<num_inputs>(iter);
    auto output_calc = make_output_offset_calculator<num_outputs>(iter);
    launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
  }
}

template <typename func_t>
void gpu_kernel_multiple_outputs(at::TensorIteratorBase& iter, const func_t& f) {
  for (int arg = 0; arg < iter.ntensors(); arg++) {
    TORCH_INTERNAL_ASSERT(iter.device(arg).is_xpu());
  }

  if (iter.numel() == 0) {
    return;
  }

  if (!iter.can_use_32bit_indexing()) {
    for (auto& sub_iter : iter.with_32bit_indexing()) {
      gpu_kernel_multiple_outputs(sub_iter, f);
    }
    return;
  }

  gpu_kernel_multiple_outputs_impl(iter, f);
}