Build uploaded using `kernels`.
Browse files- .gitattributes +6 -0
- build/torch28-cxx11-cu126-x86_64-linux/__init__.py +63 -0
- build/torch28-cxx11-cu126-x86_64-linux/_ops.py +9 -0
- build/torch28-cxx11-cu126-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so +3 -0
- build/torch28-cxx11-cu126-x86_64-linux/metadata.json +1 -0
- build/torch28-cxx11-cu126-x86_64-linux/tinygrad_rms/__init__.py +26 -0
- build/torch28-cxx11-cu128-x86_64-linux/__init__.py +63 -0
- build/torch28-cxx11-cu128-x86_64-linux/_ops.py +9 -0
- build/torch28-cxx11-cu128-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so +3 -0
- build/torch28-cxx11-cu128-x86_64-linux/metadata.json +1 -0
- build/torch28-cxx11-cu128-x86_64-linux/tinygrad_rms/__init__.py +26 -0
- build/torch28-cxx11-cu129-x86_64-linux/__init__.py +63 -0
- build/torch28-cxx11-cu129-x86_64-linux/_ops.py +9 -0
- build/torch28-cxx11-cu129-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so +3 -0
- build/torch28-cxx11-cu129-x86_64-linux/metadata.json +1 -0
- build/torch28-cxx11-cu129-x86_64-linux/tinygrad_rms/__init__.py +26 -0
- build/torch29-cxx11-cu126-x86_64-linux/__init__.py +63 -0
- build/torch29-cxx11-cu126-x86_64-linux/_ops.py +9 -0
- build/torch29-cxx11-cu126-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so +3 -0
- build/torch29-cxx11-cu126-x86_64-linux/metadata.json +1 -0
- build/torch29-cxx11-cu126-x86_64-linux/tinygrad_rms/__init__.py +26 -0
- build/torch29-cxx11-cu128-x86_64-linux/__init__.py +63 -0
- build/torch29-cxx11-cu128-x86_64-linux/_ops.py +9 -0
- build/torch29-cxx11-cu128-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so +3 -0
- build/torch29-cxx11-cu128-x86_64-linux/metadata.json +1 -0
- build/torch29-cxx11-cu128-x86_64-linux/tinygrad_rms/__init__.py +26 -0
- build/torch29-cxx11-cu130-x86_64-linux/__init__.py +63 -0
- build/torch29-cxx11-cu130-x86_64-linux/_ops.py +9 -0
- build/torch29-cxx11-cu130-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so +3 -0
- build/torch29-cxx11-cu130-x86_64-linux/metadata.json +1 -0
- build/torch29-cxx11-cu130-x86_64-linux/tinygrad_rms/__init__.py +26 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
build/torch28-cxx11-cu126-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
build/torch28-cxx11-cu128-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
build/torch28-cxx11-cu129-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
build/torch29-cxx11-cu126-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
build/torch29-cxx11-cu128-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
build/torch29-cxx11-cu130-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so filter=lfs diff=lfs merge=lfs -text
|
build/torch28-cxx11-cu126-x86_64-linux/__init__.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def tinygrad_rms_norm(
|
| 9 |
+
x: torch.Tensor,
|
| 10 |
+
epsilon: float = 1e-6,
|
| 11 |
+
out: Optional[torch.Tensor] = None,
|
| 12 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 13 |
+
"""
|
| 14 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 15 |
+
|
| 16 |
+
RMSNorm(x) = x * (1 / sqrt(mean(x^2) + epsilon))
|
| 17 |
+
|
| 18 |
+
This implementation uses a two-kernel approach:
|
| 19 |
+
1. Compute 1/sqrt(mean(x^2) + epsilon) for each row
|
| 20 |
+
2. Multiply input by the computed factor
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
x: Input tensor of shape (..., hidden_size)
|
| 24 |
+
epsilon: Small constant for numerical stability
|
| 25 |
+
out: Optional pre-allocated output tensor
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Tuple of (output tensor, rms_inv tensor)
|
| 29 |
+
"""
|
| 30 |
+
if out is None:
|
| 31 |
+
out = torch.empty_like(x)
|
| 32 |
+
|
| 33 |
+
hidden_size = x.size(-1)
|
| 34 |
+
num_rows = x.numel() // hidden_size
|
| 35 |
+
rms_inv = torch.empty(num_rows, dtype=x.dtype, device=x.device)
|
| 36 |
+
|
| 37 |
+
ops.tinygrad_rms_norm(out, rms_inv, x, epsilon)
|
| 38 |
+
return out, rms_inv
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def tinygrad_rms_norm_simple(
|
| 42 |
+
x: torch.Tensor,
|
| 43 |
+
epsilon: float = 1e-6,
|
| 44 |
+
out: Optional[torch.Tensor] = None,
|
| 45 |
+
) -> torch.Tensor:
|
| 46 |
+
"""
|
| 47 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 48 |
+
|
| 49 |
+
This is a simpler interface that only returns the normalized output.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
x: Input tensor of shape (..., hidden_size)
|
| 53 |
+
epsilon: Small constant for numerical stability
|
| 54 |
+
out: Optional pre-allocated output tensor
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
Normalized output tensor
|
| 58 |
+
"""
|
| 59 |
+
if out is None:
|
| 60 |
+
out = torch.empty_like(x)
|
| 61 |
+
|
| 62 |
+
ops.tinygrad_rms_norm_inplace(out, x, epsilon)
|
| 63 |
+
return out
|
build/torch28-cxx11-cu126-x86_64-linux/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _tinygrad_rms_3102ae4
|
| 3 |
+
ops = torch.ops._tinygrad_rms_3102ae4
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_tinygrad_rms_3102ae4::{op_name}"
|
build/torch28-cxx11-cu126-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be89de0420f14c5ed6705727ec25129a13946b039a7083a3a4d3c617bc3e9974
|
| 3 |
+
size 2055480
|
build/torch28-cxx11-cu126-x86_64-linux/metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"python-depends":[]}
|
build/torch28-cxx11-cu126-x86_64-linux/tinygrad_rms/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ctypes
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import importlib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from types import ModuleType
|
| 7 |
+
|
| 8 |
+
def _import_from_path(file_path: Path) -> ModuleType:
|
| 9 |
+
# We cannot use the module name as-is, after adding it to `sys.modules`,
|
| 10 |
+
# it would also be used for other imports. So, we make a module name that
|
| 11 |
+
# depends on the path for it to be unique using the hex-encoded hash of
|
| 12 |
+
# the path.
|
| 13 |
+
path_hash = "{:x}".format(ctypes.c_size_t(hash(file_path.absolute())).value)
|
| 14 |
+
module_name = path_hash
|
| 15 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 16 |
+
if spec is None:
|
| 17 |
+
raise ImportError(f"Cannot load spec for {module_name} from {file_path}")
|
| 18 |
+
module = importlib.util.module_from_spec(spec)
|
| 19 |
+
if module is None:
|
| 20 |
+
raise ImportError(f"Cannot load module {module_name} from spec")
|
| 21 |
+
sys.modules[module_name] = module
|
| 22 |
+
spec.loader.exec_module(module) # type: ignore
|
| 23 |
+
return module
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
globals().update(vars(_import_from_path(Path(__file__).parent.parent / "__init__.py")))
|
build/torch28-cxx11-cu128-x86_64-linux/__init__.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def tinygrad_rms_norm(
|
| 9 |
+
x: torch.Tensor,
|
| 10 |
+
epsilon: float = 1e-6,
|
| 11 |
+
out: Optional[torch.Tensor] = None,
|
| 12 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 13 |
+
"""
|
| 14 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 15 |
+
|
| 16 |
+
RMSNorm(x) = x * (1 / sqrt(mean(x^2) + epsilon))
|
| 17 |
+
|
| 18 |
+
This implementation uses a two-kernel approach:
|
| 19 |
+
1. Compute 1/sqrt(mean(x^2) + epsilon) for each row
|
| 20 |
+
2. Multiply input by the computed factor
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
x: Input tensor of shape (..., hidden_size)
|
| 24 |
+
epsilon: Small constant for numerical stability
|
| 25 |
+
out: Optional pre-allocated output tensor
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Tuple of (output tensor, rms_inv tensor)
|
| 29 |
+
"""
|
| 30 |
+
if out is None:
|
| 31 |
+
out = torch.empty_like(x)
|
| 32 |
+
|
| 33 |
+
hidden_size = x.size(-1)
|
| 34 |
+
num_rows = x.numel() // hidden_size
|
| 35 |
+
rms_inv = torch.empty(num_rows, dtype=x.dtype, device=x.device)
|
| 36 |
+
|
| 37 |
+
ops.tinygrad_rms_norm(out, rms_inv, x, epsilon)
|
| 38 |
+
return out, rms_inv
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def tinygrad_rms_norm_simple(
|
| 42 |
+
x: torch.Tensor,
|
| 43 |
+
epsilon: float = 1e-6,
|
| 44 |
+
out: Optional[torch.Tensor] = None,
|
| 45 |
+
) -> torch.Tensor:
|
| 46 |
+
"""
|
| 47 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 48 |
+
|
| 49 |
+
This is a simpler interface that only returns the normalized output.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
x: Input tensor of shape (..., hidden_size)
|
| 53 |
+
epsilon: Small constant for numerical stability
|
| 54 |
+
out: Optional pre-allocated output tensor
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
Normalized output tensor
|
| 58 |
+
"""
|
| 59 |
+
if out is None:
|
| 60 |
+
out = torch.empty_like(x)
|
| 61 |
+
|
| 62 |
+
ops.tinygrad_rms_norm_inplace(out, x, epsilon)
|
| 63 |
+
return out
|
build/torch28-cxx11-cu128-x86_64-linux/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _tinygrad_rms_3102ae4
|
| 3 |
+
ops = torch.ops._tinygrad_rms_3102ae4
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_tinygrad_rms_3102ae4::{op_name}"
|
build/torch28-cxx11-cu128-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4cb8f8f145b462cb3c631f8a11431fc7fc28f1491e3728ea264cd1603ce7b7d0
|
| 3 |
+
size 2147152
|
build/torch28-cxx11-cu128-x86_64-linux/metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"python-depends":[]}
|
build/torch28-cxx11-cu128-x86_64-linux/tinygrad_rms/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ctypes
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import importlib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from types import ModuleType
|
| 7 |
+
|
| 8 |
+
def _import_from_path(file_path: Path) -> ModuleType:
|
| 9 |
+
# We cannot use the module name as-is, after adding it to `sys.modules`,
|
| 10 |
+
# it would also be used for other imports. So, we make a module name that
|
| 11 |
+
# depends on the path for it to be unique using the hex-encoded hash of
|
| 12 |
+
# the path.
|
| 13 |
+
path_hash = "{:x}".format(ctypes.c_size_t(hash(file_path.absolute())).value)
|
| 14 |
+
module_name = path_hash
|
| 15 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 16 |
+
if spec is None:
|
| 17 |
+
raise ImportError(f"Cannot load spec for {module_name} from {file_path}")
|
| 18 |
+
module = importlib.util.module_from_spec(spec)
|
| 19 |
+
if module is None:
|
| 20 |
+
raise ImportError(f"Cannot load module {module_name} from spec")
|
| 21 |
+
sys.modules[module_name] = module
|
| 22 |
+
spec.loader.exec_module(module) # type: ignore
|
| 23 |
+
return module
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
globals().update(vars(_import_from_path(Path(__file__).parent.parent / "__init__.py")))
|
build/torch28-cxx11-cu129-x86_64-linux/__init__.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def tinygrad_rms_norm(
|
| 9 |
+
x: torch.Tensor,
|
| 10 |
+
epsilon: float = 1e-6,
|
| 11 |
+
out: Optional[torch.Tensor] = None,
|
| 12 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 13 |
+
"""
|
| 14 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 15 |
+
|
| 16 |
+
RMSNorm(x) = x * (1 / sqrt(mean(x^2) + epsilon))
|
| 17 |
+
|
| 18 |
+
This implementation uses a two-kernel approach:
|
| 19 |
+
1. Compute 1/sqrt(mean(x^2) + epsilon) for each row
|
| 20 |
+
2. Multiply input by the computed factor
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
x: Input tensor of shape (..., hidden_size)
|
| 24 |
+
epsilon: Small constant for numerical stability
|
| 25 |
+
out: Optional pre-allocated output tensor
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Tuple of (output tensor, rms_inv tensor)
|
| 29 |
+
"""
|
| 30 |
+
if out is None:
|
| 31 |
+
out = torch.empty_like(x)
|
| 32 |
+
|
| 33 |
+
hidden_size = x.size(-1)
|
| 34 |
+
num_rows = x.numel() // hidden_size
|
| 35 |
+
rms_inv = torch.empty(num_rows, dtype=x.dtype, device=x.device)
|
| 36 |
+
|
| 37 |
+
ops.tinygrad_rms_norm(out, rms_inv, x, epsilon)
|
| 38 |
+
return out, rms_inv
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def tinygrad_rms_norm_simple(
|
| 42 |
+
x: torch.Tensor,
|
| 43 |
+
epsilon: float = 1e-6,
|
| 44 |
+
out: Optional[torch.Tensor] = None,
|
| 45 |
+
) -> torch.Tensor:
|
| 46 |
+
"""
|
| 47 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 48 |
+
|
| 49 |
+
This is a simpler interface that only returns the normalized output.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
x: Input tensor of shape (..., hidden_size)
|
| 53 |
+
epsilon: Small constant for numerical stability
|
| 54 |
+
out: Optional pre-allocated output tensor
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
Normalized output tensor
|
| 58 |
+
"""
|
| 59 |
+
if out is None:
|
| 60 |
+
out = torch.empty_like(x)
|
| 61 |
+
|
| 62 |
+
ops.tinygrad_rms_norm_inplace(out, x, epsilon)
|
| 63 |
+
return out
|
build/torch28-cxx11-cu129-x86_64-linux/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _tinygrad_rms_3102ae4
|
| 3 |
+
ops = torch.ops._tinygrad_rms_3102ae4
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_tinygrad_rms_3102ae4::{op_name}"
|
build/torch28-cxx11-cu129-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7f0993df65ef46a52d07c0d40e11fcb5ae1430ad1cdab7c118693542163cc11
|
| 3 |
+
size 2168648
|
build/torch28-cxx11-cu129-x86_64-linux/metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"python-depends":[]}
|
build/torch28-cxx11-cu129-x86_64-linux/tinygrad_rms/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ctypes
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import importlib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from types import ModuleType
|
| 7 |
+
|
| 8 |
+
def _import_from_path(file_path: Path) -> ModuleType:
|
| 9 |
+
# We cannot use the module name as-is, after adding it to `sys.modules`,
|
| 10 |
+
# it would also be used for other imports. So, we make a module name that
|
| 11 |
+
# depends on the path for it to be unique using the hex-encoded hash of
|
| 12 |
+
# the path.
|
| 13 |
+
path_hash = "{:x}".format(ctypes.c_size_t(hash(file_path.absolute())).value)
|
| 14 |
+
module_name = path_hash
|
| 15 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 16 |
+
if spec is None:
|
| 17 |
+
raise ImportError(f"Cannot load spec for {module_name} from {file_path}")
|
| 18 |
+
module = importlib.util.module_from_spec(spec)
|
| 19 |
+
if module is None:
|
| 20 |
+
raise ImportError(f"Cannot load module {module_name} from spec")
|
| 21 |
+
sys.modules[module_name] = module
|
| 22 |
+
spec.loader.exec_module(module) # type: ignore
|
| 23 |
+
return module
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
globals().update(vars(_import_from_path(Path(__file__).parent.parent / "__init__.py")))
|
build/torch29-cxx11-cu126-x86_64-linux/__init__.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def tinygrad_rms_norm(
|
| 9 |
+
x: torch.Tensor,
|
| 10 |
+
epsilon: float = 1e-6,
|
| 11 |
+
out: Optional[torch.Tensor] = None,
|
| 12 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 13 |
+
"""
|
| 14 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 15 |
+
|
| 16 |
+
RMSNorm(x) = x * (1 / sqrt(mean(x^2) + epsilon))
|
| 17 |
+
|
| 18 |
+
This implementation uses a two-kernel approach:
|
| 19 |
+
1. Compute 1/sqrt(mean(x^2) + epsilon) for each row
|
| 20 |
+
2. Multiply input by the computed factor
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
x: Input tensor of shape (..., hidden_size)
|
| 24 |
+
epsilon: Small constant for numerical stability
|
| 25 |
+
out: Optional pre-allocated output tensor
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Tuple of (output tensor, rms_inv tensor)
|
| 29 |
+
"""
|
| 30 |
+
if out is None:
|
| 31 |
+
out = torch.empty_like(x)
|
| 32 |
+
|
| 33 |
+
hidden_size = x.size(-1)
|
| 34 |
+
num_rows = x.numel() // hidden_size
|
| 35 |
+
rms_inv = torch.empty(num_rows, dtype=x.dtype, device=x.device)
|
| 36 |
+
|
| 37 |
+
ops.tinygrad_rms_norm(out, rms_inv, x, epsilon)
|
| 38 |
+
return out, rms_inv
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def tinygrad_rms_norm_simple(
|
| 42 |
+
x: torch.Tensor,
|
| 43 |
+
epsilon: float = 1e-6,
|
| 44 |
+
out: Optional[torch.Tensor] = None,
|
| 45 |
+
) -> torch.Tensor:
|
| 46 |
+
"""
|
| 47 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 48 |
+
|
| 49 |
+
This is a simpler interface that only returns the normalized output.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
x: Input tensor of shape (..., hidden_size)
|
| 53 |
+
epsilon: Small constant for numerical stability
|
| 54 |
+
out: Optional pre-allocated output tensor
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
Normalized output tensor
|
| 58 |
+
"""
|
| 59 |
+
if out is None:
|
| 60 |
+
out = torch.empty_like(x)
|
| 61 |
+
|
| 62 |
+
ops.tinygrad_rms_norm_inplace(out, x, epsilon)
|
| 63 |
+
return out
|
build/torch29-cxx11-cu126-x86_64-linux/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _tinygrad_rms_3102ae4
|
| 3 |
+
ops = torch.ops._tinygrad_rms_3102ae4
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_tinygrad_rms_3102ae4::{op_name}"
|
build/torch29-cxx11-cu126-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ef5c694a44df69ad379a9be347cfe07b6e546aa1495b7b3192d4e5439811771
|
| 3 |
+
size 2055456
|
build/torch29-cxx11-cu126-x86_64-linux/metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"python-depends":[]}
|
build/torch29-cxx11-cu126-x86_64-linux/tinygrad_rms/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ctypes
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import importlib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from types import ModuleType
|
| 7 |
+
|
| 8 |
+
def _import_from_path(file_path: Path) -> ModuleType:
|
| 9 |
+
# We cannot use the module name as-is, after adding it to `sys.modules`,
|
| 10 |
+
# it would also be used for other imports. So, we make a module name that
|
| 11 |
+
# depends on the path for it to be unique using the hex-encoded hash of
|
| 12 |
+
# the path.
|
| 13 |
+
path_hash = "{:x}".format(ctypes.c_size_t(hash(file_path.absolute())).value)
|
| 14 |
+
module_name = path_hash
|
| 15 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 16 |
+
if spec is None:
|
| 17 |
+
raise ImportError(f"Cannot load spec for {module_name} from {file_path}")
|
| 18 |
+
module = importlib.util.module_from_spec(spec)
|
| 19 |
+
if module is None:
|
| 20 |
+
raise ImportError(f"Cannot load module {module_name} from spec")
|
| 21 |
+
sys.modules[module_name] = module
|
| 22 |
+
spec.loader.exec_module(module) # type: ignore
|
| 23 |
+
return module
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
globals().update(vars(_import_from_path(Path(__file__).parent.parent / "__init__.py")))
|
build/torch29-cxx11-cu128-x86_64-linux/__init__.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def tinygrad_rms_norm(
|
| 9 |
+
x: torch.Tensor,
|
| 10 |
+
epsilon: float = 1e-6,
|
| 11 |
+
out: Optional[torch.Tensor] = None,
|
| 12 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 13 |
+
"""
|
| 14 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 15 |
+
|
| 16 |
+
RMSNorm(x) = x * (1 / sqrt(mean(x^2) + epsilon))
|
| 17 |
+
|
| 18 |
+
This implementation uses a two-kernel approach:
|
| 19 |
+
1. Compute 1/sqrt(mean(x^2) + epsilon) for each row
|
| 20 |
+
2. Multiply input by the computed factor
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
x: Input tensor of shape (..., hidden_size)
|
| 24 |
+
epsilon: Small constant for numerical stability
|
| 25 |
+
out: Optional pre-allocated output tensor
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Tuple of (output tensor, rms_inv tensor)
|
| 29 |
+
"""
|
| 30 |
+
if out is None:
|
| 31 |
+
out = torch.empty_like(x)
|
| 32 |
+
|
| 33 |
+
hidden_size = x.size(-1)
|
| 34 |
+
num_rows = x.numel() // hidden_size
|
| 35 |
+
rms_inv = torch.empty(num_rows, dtype=x.dtype, device=x.device)
|
| 36 |
+
|
| 37 |
+
ops.tinygrad_rms_norm(out, rms_inv, x, epsilon)
|
| 38 |
+
return out, rms_inv
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def tinygrad_rms_norm_simple(
|
| 42 |
+
x: torch.Tensor,
|
| 43 |
+
epsilon: float = 1e-6,
|
| 44 |
+
out: Optional[torch.Tensor] = None,
|
| 45 |
+
) -> torch.Tensor:
|
| 46 |
+
"""
|
| 47 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 48 |
+
|
| 49 |
+
This is a simpler interface that only returns the normalized output.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
x: Input tensor of shape (..., hidden_size)
|
| 53 |
+
epsilon: Small constant for numerical stability
|
| 54 |
+
out: Optional pre-allocated output tensor
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
Normalized output tensor
|
| 58 |
+
"""
|
| 59 |
+
if out is None:
|
| 60 |
+
out = torch.empty_like(x)
|
| 61 |
+
|
| 62 |
+
ops.tinygrad_rms_norm_inplace(out, x, epsilon)
|
| 63 |
+
return out
|
build/torch29-cxx11-cu128-x86_64-linux/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _tinygrad_rms_3102ae4
|
| 3 |
+
ops = torch.ops._tinygrad_rms_3102ae4
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_tinygrad_rms_3102ae4::{op_name}"
|
build/torch29-cxx11-cu128-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0229db5ced57dc868ce0558deafe5fe01035becd619437b2963f90c2344be3a0
|
| 3 |
+
size 2151224
|
build/torch29-cxx11-cu128-x86_64-linux/metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"python-depends":[]}
|
build/torch29-cxx11-cu128-x86_64-linux/tinygrad_rms/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ctypes
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import importlib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from types import ModuleType
|
| 7 |
+
|
| 8 |
+
def _import_from_path(file_path: Path) -> ModuleType:
|
| 9 |
+
# We cannot use the module name as-is, after adding it to `sys.modules`,
|
| 10 |
+
# it would also be used for other imports. So, we make a module name that
|
| 11 |
+
# depends on the path for it to be unique using the hex-encoded hash of
|
| 12 |
+
# the path.
|
| 13 |
+
path_hash = "{:x}".format(ctypes.c_size_t(hash(file_path.absolute())).value)
|
| 14 |
+
module_name = path_hash
|
| 15 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 16 |
+
if spec is None:
|
| 17 |
+
raise ImportError(f"Cannot load spec for {module_name} from {file_path}")
|
| 18 |
+
module = importlib.util.module_from_spec(spec)
|
| 19 |
+
if module is None:
|
| 20 |
+
raise ImportError(f"Cannot load module {module_name} from spec")
|
| 21 |
+
sys.modules[module_name] = module
|
| 22 |
+
spec.loader.exec_module(module) # type: ignore
|
| 23 |
+
return module
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
globals().update(vars(_import_from_path(Path(__file__).parent.parent / "__init__.py")))
|
build/torch29-cxx11-cu130-x86_64-linux/__init__.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from ._ops import ops
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def tinygrad_rms_norm(
|
| 9 |
+
x: torch.Tensor,
|
| 10 |
+
epsilon: float = 1e-6,
|
| 11 |
+
out: Optional[torch.Tensor] = None,
|
| 12 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 13 |
+
"""
|
| 14 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 15 |
+
|
| 16 |
+
RMSNorm(x) = x * (1 / sqrt(mean(x^2) + epsilon))
|
| 17 |
+
|
| 18 |
+
This implementation uses a two-kernel approach:
|
| 19 |
+
1. Compute 1/sqrt(mean(x^2) + epsilon) for each row
|
| 20 |
+
2. Multiply input by the computed factor
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
x: Input tensor of shape (..., hidden_size)
|
| 24 |
+
epsilon: Small constant for numerical stability
|
| 25 |
+
out: Optional pre-allocated output tensor
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
Tuple of (output tensor, rms_inv tensor)
|
| 29 |
+
"""
|
| 30 |
+
if out is None:
|
| 31 |
+
out = torch.empty_like(x)
|
| 32 |
+
|
| 33 |
+
hidden_size = x.size(-1)
|
| 34 |
+
num_rows = x.numel() // hidden_size
|
| 35 |
+
rms_inv = torch.empty(num_rows, dtype=x.dtype, device=x.device)
|
| 36 |
+
|
| 37 |
+
ops.tinygrad_rms_norm(out, rms_inv, x, epsilon)
|
| 38 |
+
return out, rms_inv
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def tinygrad_rms_norm_simple(
|
| 42 |
+
x: torch.Tensor,
|
| 43 |
+
epsilon: float = 1e-6,
|
| 44 |
+
out: Optional[torch.Tensor] = None,
|
| 45 |
+
) -> torch.Tensor:
|
| 46 |
+
"""
|
| 47 |
+
Compute RMSNorm using tinygrad-style CUDA kernels.
|
| 48 |
+
|
| 49 |
+
This is a simpler interface that only returns the normalized output.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
x: Input tensor of shape (..., hidden_size)
|
| 53 |
+
epsilon: Small constant for numerical stability
|
| 54 |
+
out: Optional pre-allocated output tensor
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
Normalized output tensor
|
| 58 |
+
"""
|
| 59 |
+
if out is None:
|
| 60 |
+
out = torch.empty_like(x)
|
| 61 |
+
|
| 62 |
+
ops.tinygrad_rms_norm_inplace(out, x, epsilon)
|
| 63 |
+
return out
|
build/torch29-cxx11-cu130-x86_64-linux/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _tinygrad_rms_3102ae4
|
| 3 |
+
ops = torch.ops._tinygrad_rms_3102ae4
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_tinygrad_rms_3102ae4::{op_name}"
|
build/torch29-cxx11-cu130-x86_64-linux/_tinygrad_rms_3102ae4.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4346c1856b3913788f2171dd8b561bd3dcfddd75e36f1250c1277163f2054999
|
| 3 |
+
size 2173416
|
build/torch29-cxx11-cu130-x86_64-linux/metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"python-depends":[]}
|
build/torch29-cxx11-cu130-x86_64-linux/tinygrad_rms/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ctypes
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import importlib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from types import ModuleType
|
| 7 |
+
|
| 8 |
+
def _import_from_path(file_path: Path) -> ModuleType:
|
| 9 |
+
# We cannot use the module name as-is, after adding it to `sys.modules`,
|
| 10 |
+
# it would also be used for other imports. So, we make a module name that
|
| 11 |
+
# depends on the path for it to be unique using the hex-encoded hash of
|
| 12 |
+
# the path.
|
| 13 |
+
path_hash = "{:x}".format(ctypes.c_size_t(hash(file_path.absolute())).value)
|
| 14 |
+
module_name = path_hash
|
| 15 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 16 |
+
if spec is None:
|
| 17 |
+
raise ImportError(f"Cannot load spec for {module_name} from {file_path}")
|
| 18 |
+
module = importlib.util.module_from_spec(spec)
|
| 19 |
+
if module is None:
|
| 20 |
+
raise ImportError(f"Cannot load module {module_name} from spec")
|
| 21 |
+
sys.modules[module_name] = module
|
| 22 |
+
spec.loader.exec_module(module) # type: ignore
|
| 23 |
+
return module
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
globals().update(vars(_import_from_path(Path(__file__).parent.parent / "__init__.py")))
|