|
|
|
|
|
import pytest |
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
|
|
from triton_layer_norm import ( |
|
layer_norm_fn, |
|
layer_norm_linear_fn, |
|
) |
|
from triton_layer_norm.layer_norm import layer_norm_ref, rms_norm_ref |
|
|
|
|
|
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 |
|
|
|
|
|
|
|
@pytest.mark.parametrize("zero_centered_weight", [False]) |
|
@pytest.mark.parametrize("has_weight1", [False, True]) |
|
|
|
@pytest.mark.parametrize("has_x1", [False, True]) |
|
|
|
@pytest.mark.parametrize("has_rowscale", [False, True]) |
|
|
|
@pytest.mark.parametrize("dropout_p", [0.0, 0.27]) |
|
|
|
@pytest.mark.parametrize("prenorm", [True, False]) |
|
|
|
@pytest.mark.parametrize("is_rms_norm", [False, True]) |
|
|
|
@pytest.mark.parametrize("has_residual", [True, False]) |
|
|
|
@pytest.mark.parametrize( |
|
"weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else []) |
|
) |
|
|
|
@pytest.mark.parametrize( |
|
"input_dtype,residual_dtype", |
|
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] |
|
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []), |
|
) |
|
|
|
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 4096]) |
|
|
|
def test_layer_norm( |
|
hidden_size, |
|
input_dtype, |
|
residual_dtype, |
|
weight_dtype, |
|
has_residual, |
|
is_rms_norm, |
|
prenorm, |
|
dropout_p, |
|
has_rowscale, |
|
has_x1, |
|
has_weight1, |
|
zero_centered_weight, |
|
): |
|
if has_rowscale and has_x1: |
|
pytest.skip("Not supported") |
|
device = "cuda" |
|
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]): |
|
atol = 5e-2 |
|
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]): |
|
atol = 1e-2 |
|
else: |
|
atol = 1e-4 |
|
|
|
torch.random.manual_seed(0) |
|
batch_size = 8 |
|
seqlen = 512 |
|
layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref |
|
allclose = ( |
|
|
|
lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max() |
|
<= 2 * (x_pt[~x_pt.isnan()] - x_ref[~x_pt.isnan()]).abs().max() + atol |
|
or ( |
|
|
|
|
|
(x_pt[~x_pt.isnan()] - x_ref[~x_pt.isnan()]).abs().max() == 0.0 |
|
and (x - x_ref).abs().max() |
|
<= 2 * (x_pt[~x_pt.isnan()] * 0.3 / 0.3 - x_ref[~x_pt.isnan()]).abs().max() + atol |
|
) |
|
) |
|
x0 = torch.randn( |
|
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True |
|
) |
|
x0_pt = x0.detach().clone().requires_grad_() |
|
x0_ref = x0.detach().clone().requires_grad_() |
|
if has_residual: |
|
res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) |
|
res_pt = res.detach().clone().requires_grad_() |
|
res_ref = res.detach().clone().requires_grad_() |
|
else: |
|
res, res_pt, res_ref = None, None, None |
|
weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) |
|
if not is_rms_norm: |
|
bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) |
|
else: |
|
bias = None |
|
weight_pt = weight.detach().clone().requires_grad_() |
|
weight_ref = weight.detach().clone().requires_grad_() |
|
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None |
|
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None |
|
if has_x1: |
|
x1 = torch.randn_like(x0, dtype=input_dtype, requires_grad=True) |
|
x1_pt = x1.detach().clone().requires_grad_() |
|
x1_ref = x1.detach().clone().requires_grad_() |
|
else: |
|
x1, x1_pt, x1_ref = None, None, None |
|
if has_weight1: |
|
weight1 = torch.randn( |
|
hidden_size, device=device, dtype=weight_dtype, requires_grad=True |
|
) |
|
weight1_pt = weight1.detach().clone().requires_grad_() |
|
weight1_ref = weight1.detach().clone().requires_grad_() |
|
if not is_rms_norm: |
|
bias1 = torch.randn( |
|
hidden_size, device=device, dtype=weight_dtype, requires_grad=True |
|
) |
|
else: |
|
bias1 = None |
|
bias1_pt = bias1.detach().clone().requires_grad_() if bias1 is not None else None |
|
bias1_ref = bias1.detach().clone().requires_grad_() if bias1 is not None else None |
|
else: |
|
weight1, weight1_pt, weight1_ref = None, None, None |
|
bias1, bias1_pt, bias1_ref = None, None, None |
|
|
|
rowscale = ( |
|
torch.randn(batch_size, seqlen, dtype=input_dtype, device=device) |
|
if has_rowscale |
|
else None |
|
) |
|
|
|
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 |
|
out, *rest = layer_norm_fn( |
|
x0, |
|
weight, |
|
bias, |
|
residual=res, |
|
x1=x1, |
|
weight1=weight1, |
|
bias1=bias1, |
|
eps=1e-6, |
|
dropout_p=dropout_p, |
|
rowscale=rowscale, |
|
prenorm=prenorm, |
|
residual_in_fp32=residual_in_fp32, |
|
zero_centered_weight=zero_centered_weight, |
|
is_rms_norm=is_rms_norm, |
|
return_dropout_mask=True, |
|
) |
|
dropout_mask = rest[-2] if dropout_p > 0.0 else None |
|
dropout_mask1 = rest[-1] if dropout_p > 0.0 and x1 is not None else None |
|
out_pt = layer_norm_ref_fn( |
|
x0_pt, |
|
weight_pt, |
|
bias_pt, |
|
residual=res_pt, |
|
x1=x1_pt, |
|
weight1=weight1_pt, |
|
bias1=bias1_pt, |
|
eps=1e-6, |
|
dropout_p=dropout_p, |
|
rowscale=rowscale, |
|
prenorm=prenorm, |
|
zero_centered_weight=zero_centered_weight, |
|
dropout_mask=dropout_mask, |
|
dropout_mask1=dropout_mask1, |
|
) |
|
out_ref = layer_norm_ref_fn( |
|
x0_ref, |
|
weight_ref, |
|
bias_ref, |
|
residual=res_ref, |
|
x1=x1_ref, |
|
weight1=weight1_ref, |
|
bias1=bias1_ref, |
|
eps=1e-6, |
|
dropout_p=dropout_p, |
|
rowscale=rowscale, |
|
prenorm=prenorm, |
|
zero_centered_weight=zero_centered_weight, |
|
dropout_mask=dropout_mask, |
|
dropout_mask1=dropout_mask1, |
|
upcast=True, |
|
) |
|
if not has_weight1: |
|
if prenorm: |
|
residual = rest[0] |
|
out_pt, residual_pt = out_pt |
|
out_ref, residual_ref = out_ref |
|
out1, out1_pt, out1_ref = None, None, None |
|
else: |
|
out1 = rest.pop(0) |
|
if prenorm: |
|
residual = rest[0] |
|
out_pt, out1_pt, residual_pt = out_pt |
|
out_ref, out1_ref, residual_ref = out_ref |
|
else: |
|
out_pt, out1_pt = out_pt |
|
out_ref, out1_ref = out_ref |
|
assert out.dtype == input_dtype |
|
if prenorm: |
|
assert residual.dtype == residual_dtype |
|
assert allclose(residual, residual_pt, residual_ref) |
|
assert allclose(out, out_pt, out_ref) |
|
if out1 is not None: |
|
assert out1.dtype == input_dtype |
|
assert allclose(out1, out1_pt, out1_ref) |
|
if dropout_mask is not None: |
|
dropout_fraction = 1.0 - dropout_mask.float().mean() |
|
assert abs(dropout_fraction - dropout_p) < 0.01 |
|
if dropout_mask1 is not None: |
|
dropout_fraction = 1.0 - dropout_mask1.float().mean() |
|
assert abs(dropout_fraction - dropout_p) < 0.01 |
|
assert not torch.equal(dropout_mask, dropout_mask1) |
|
|
|
g = torch.randn_like(out) / batch_size |
|
if has_weight1: |
|
out = out * F.gelu(out1) |
|
out_pt = out_pt * F.gelu(out1_pt) |
|
out_ref = out_ref * F.gelu(out1_ref) |
|
if not prenorm: |
|
out.backward(g) |
|
out_pt.backward(g) |
|
out_ref.backward(g) |
|
else: |
|
(out * F.sigmoid(residual)).backward(g) |
|
(out_pt * F.sigmoid(residual_pt)).backward(g) |
|
(out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g) |
|
assert allclose(x0.grad, x0_pt.grad, x0_ref.grad) |
|
if has_residual: |
|
assert allclose(res.grad, res_pt.grad, res_ref.grad) |
|
if has_x1: |
|
assert allclose(x1.grad, x1_pt.grad, x1_ref.grad) |
|
assert allclose(weight.grad, weight_pt.grad, weight_ref.grad) |
|
if bias is not None: |
|
assert allclose(bias.grad, bias_pt.grad, bias_ref.grad) |
|
if has_weight1: |
|
assert allclose(weight1.grad, weight1_pt.grad, weight1_ref.grad) |
|
if bias1 is not None: |
|
assert allclose(bias1.grad, bias1_pt.grad, bias1_ref.grad) |
|
|
|
|
|
@pytest.mark.parametrize("prenorm", [True, False]) |
|
|
|
@pytest.mark.parametrize("is_rms_norm", [False, True]) |
|
|
|
@pytest.mark.parametrize("has_residual", [True, False]) |
|
|
|
@pytest.mark.parametrize("weight_dtype", [torch.float32]) |
|
@pytest.mark.parametrize( |
|
"input_dtype,residual_dtype", |
|
[(torch.float16, torch.float16), (torch.float16, torch.float32)] |
|
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []), |
|
) |
|
|
|
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000]) |
|
|
|
def test_layer_norm_linear( |
|
hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm, prenorm |
|
): |
|
device = "cuda" |
|
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]): |
|
atol = 5e-2 |
|
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]): |
|
atol = 1e-2 |
|
else: |
|
atol = 1e-4 |
|
|
|
torch.random.manual_seed(0) |
|
batch_size = 4 |
|
seqlen = 512 |
|
|
|
|
|
layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref |
|
allclose = ( |
|
lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max() |
|
<= 2 * (x_pt - x_ref).abs().max() + atol |
|
) |
|
x0 = torch.randn( |
|
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True |
|
) |
|
x0_pt = x0.detach().clone().requires_grad_() |
|
x0_ref = x0.detach().clone().requires_grad_() |
|
if has_residual: |
|
res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) |
|
res_pt = res.detach().clone().requires_grad_() |
|
res_ref = res.detach().clone().requires_grad_() |
|
else: |
|
res, res_pt, res_ref = None, None, None |
|
norm_weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) |
|
if not is_rms_norm: |
|
norm_bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) |
|
else: |
|
norm_bias = None |
|
norm_weight_pt = norm_weight.detach().clone().requires_grad_() |
|
norm_weight_ref = norm_weight.detach().clone().requires_grad_() |
|
norm_bias_pt = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None |
|
norm_bias_ref = norm_bias.detach().clone().requires_grad_() if norm_bias is not None else None |
|
linear_weight = torch.empty( |
|
2 * hidden_size, hidden_size, device=device, dtype=weight_dtype, requires_grad=True |
|
) |
|
torch.nn.init.xavier_uniform_(linear_weight) |
|
if not is_rms_norm: |
|
linear_bias = torch.randn( |
|
2 * hidden_size, device=device, dtype=weight_dtype, requires_grad=True |
|
) |
|
else: |
|
linear_bias = None |
|
linear_weight_pt = linear_weight.detach().clone().requires_grad_() |
|
linear_weight_ref = linear_weight.detach().clone().requires_grad_() |
|
linear_bias_pt = ( |
|
linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None |
|
) |
|
linear_bias_ref = ( |
|
linear_bias.detach().clone().requires_grad_() if linear_bias is not None else None |
|
) |
|
|
|
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 |
|
with torch.autocast(device_type="cuda", dtype=input_dtype): |
|
out, *rest = layer_norm_linear_fn( |
|
x0, |
|
norm_weight, |
|
norm_bias, |
|
linear_weight, |
|
linear_bias, |
|
residual=res, |
|
eps=1e-6, |
|
prenorm=prenorm, |
|
residual_in_fp32=residual_in_fp32, |
|
is_rms_norm=is_rms_norm, |
|
) |
|
out_pt, *rest_pt = layer_norm_ref_fn( |
|
x0_pt, norm_weight_pt, norm_bias_pt, residual=res_pt, eps=1e-6, prenorm=prenorm |
|
) |
|
with torch.autocast(device_type="cuda", dtype=input_dtype): |
|
out_pt = F.linear(out_pt, linear_weight_pt, linear_bias_pt) |
|
out_ref, *rest_ref = layer_norm_ref_fn( |
|
x0_ref, |
|
norm_weight_ref, |
|
norm_bias_ref, |
|
residual=res_ref, |
|
eps=1e-6, |
|
prenorm=prenorm, |
|
upcast=True, |
|
) |
|
out_ref = F.linear(out_ref.to(linear_weight_ref.dtype), linear_weight_ref, linear_bias_ref) |
|
if prenorm: |
|
residual = rest[0] |
|
residual_pt = rest_pt[0] |
|
residual_ref = rest_ref[0] |
|
assert out.dtype == input_dtype |
|
if prenorm: |
|
assert residual.dtype == residual_dtype |
|
assert allclose(residual, residual_pt, residual_ref) |
|
assert allclose(out, out_pt, out_ref) |
|
|
|
g = torch.randn_like(out) / batch_size |
|
out.backward(g) |
|
out_pt.backward(g) |
|
out_ref.backward(g) |
|
assert allclose(x0.grad, x0_pt.grad, x0_ref.grad) |
|
if has_residual: |
|
assert allclose(res.grad, res_pt.grad, res_ref.grad) |
|
assert allclose(norm_weight.grad, norm_weight_pt.grad, norm_weight_ref.grad) |
|
if norm_bias is not None: |
|
assert allclose(norm_bias.grad, norm_bias_pt.grad, norm_bias_ref.grad) |
|
assert allclose(linear_weight.grad, linear_weight_pt.grad, linear_weight_ref.grad) |
|
if linear_bias is not None: |
|
assert allclose(linear_bias.grad, linear_bias_pt.grad, linear_bias_ref.grad) |
|
|