File size: 28,898 Bytes
567c8ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
# isort: off
# fmt: off
from dataclasses import dataclass, fields, replace
import pytest
import torch
from typing import Union
import triton
# routing utilities
from triton_kernels.routing import routing
# matmul utilities
import triton_kernels.matmul_ogs_details.opt_flags as opt_flags
from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig, FusedActivation, FnSpecs, FnName, Epilogue
from triton_kernels.matmul_ogs import matmul_ogs_set_idle_sms, matmul_ogs, matmul_ogs_torch
from triton_kernels.swiglu import swiglu, swiglu_fn, PrecisionConfig as SwiGLUPrecisionConfig
from triton_kernels.tensor import convert_layout, wrap_torch_tensor, FP4
from triton_kernels.tensor_details import layout
# numerics utilities
from triton_kernels.numerics import InFlexData, OutFlexData
from triton_kernels.numerics_details.mxfp import downcast_to_mxfp, upcast_from_mxfp, dequantize_mxfp8_fn, downcast_to_mxfp_torch, upcast_from_mxfp_torch, MXFP_BLOCK_SIZE
# testing utilities
from triton_kernels.testing import assert_close, compute_actual_scale
# target-specific utilities
from triton_kernels.target_info import is_hip, is_hip_cdna3, is_cuda, is_hip_cdna4
# ---------------
# initialize data
# ---------------
def alloc_rand(shape, device, dtype, requires_grad=True):
if dtype.itemsize == 1:
tmp = 2**-(torch.randint(4, 8, shape, device=device, dtype=torch.float16))
return tmp.to(dtype).requires_grad_(requires_grad)
return torch.randn(shape, device=device, dtype=dtype, requires_grad=requires_grad)
def alloc_rand_like(x):
return alloc_rand(x.shape, x.device, x.dtype, x.requires_grad)
def mask_indx(idx, n_expts_act):
idx.src_indx[idx.dst_indx[-n_expts_act:]] = -1
idx.dst_indx[-n_expts_act:] = -1
return idx
def init_routing_data(m, n_expts_tot, n_expts_act, n_expt_shards, do_gather, do_scatter, device="cuda"):
logits = torch.randn((m, n_expts_tot), dtype=torch.float16, device=device, requires_grad=True)
routing_data, gather_idx, scatter_idx = routing(logits, n_expts_act, simulated_ep=n_expt_shards)
routing_data.gate_scal = None
gather_idx = gather_idx if do_gather else None
scatter_idx = scatter_idx if do_scatter else None
return m, routing_data, gather_idx, scatter_idx
def init_compute_data(m, n, k, gindx, sindx, n_expts_tot, n_expts_act, n_expt_shards, mode, act_dtype, weight_dtype,
has_y_gammas, requires_grad=True, device="cuda"):
torch.manual_seed(0)
assert mode in {'batched', "plain", 'ragged'}
in_m = m * (n_expts_act if gindx is None else 1)
shape_x = (n_expts_tot, in_m, k) if mode == 'batched' else (in_m, k)
shape_batch = tuple() if mode == "plain" else (n_expts_tot // n_expt_shards, )
x = alloc_rand(shape_x, device=device, dtype=act_dtype, requires_grad=requires_grad)
w = alloc_rand(shape_batch + (k, n), device=device, dtype=weight_dtype, requires_grad=requires_grad)
bias = alloc_rand(shape_batch + (n, ), device=device, dtype=torch.float32, requires_grad=requires_grad)
gs0 = 2**torch.randint(-5, 0, (m * n_expts_act, ), device=device, dtype=torch.float32, requires_grad=requires_grad)
gs1 = 2**torch.randint(-5, 0, (m * n_expts_act, ), device=device, dtype=torch.float32, requires_grad=requires_grad)
gs0 = gs0.detach().requires_grad_(requires_grad)
gs1 = gs1.detach().requires_grad_(requires_grad)
if mode == 'batched' or (not has_y_gammas) or (has_y_gammas and (gindx is not None) and act_dtype.itemsize >= 2):
gs0 = None
gs1 = None
if "float8" in str(weight_dtype) and torch.cuda.get_device_capability()[0] < 10:
w = w.transpose(-1, -2).contiguous().transpose(-1, -2)
return x, w, bias, gs0, gs1
# ---------------
# numerics stuff
# ---------------
def init_precision(out_dtype, act_use_flexpoint, weight_dtype, weight_mxfp, n_expts_tot=1, device="cuda"):
weight_use_flexpoint = weight_dtype.itemsize == 1 and not weight_mxfp
# flexpoint
make_tensor = lambda val0, val1: torch.tensor([val0, val1] * (n_expts_tot // 2) +
([val0]
if n_expts_tot % 2 else []), dtype=torch.float32, device=device)
make_scalar = lambda val: torch.tensor([val], dtype=torch.float32, device=device)
in_flex_data = lambda scale, use_flex: InFlexData(dtype=out_dtype, scale=make_scalar(scale)
) if use_flex else InFlexData()
in_flex_edata = lambda scale0, scale1, use_flex: InFlexData(dtype=weight_dtype, scale=make_tensor(scale0, scale1)
) if use_flex else InFlexData()
out_flex_data = lambda scale, use_flex: OutFlexData(dtype=out_dtype, expected_scale=make_scalar(
scale), actual_scale=make_scalar(0), checksum_scale=make_scalar(0)) if use_flex else OutFlexData()
flex_ctx = FlexCtx(
lhs_data=in_flex_data(1.25, act_use_flexpoint),
rhs_data=in_flex_edata(1.50, 1.25, weight_use_flexpoint),
out_data=out_flex_data(4.00, act_use_flexpoint),
)
return PrecisionConfig(flex_ctx=flex_ctx, acc_scale=2.0 if act_use_flexpoint or weight_use_flexpoint else 1.0,
out_dtype=out_dtype)
def apply_precision(x_tri, w_tri, bias_tri, gs0_tri, gs1_tri, precision_config):
flex_ctx = precision_config.flex_ctx
def apply(x, scale):
if scale is None:
x = x.clone()
elif scale.numel() == 1:
x = x.float() * scale
else:
assert x.ndim == 3
assert scale.numel() == x.shape[0]
x = x.float() * scale[:, None, None]
return x.detach().requires_grad_()
return (
apply(x_tri, flex_ctx.lhs_data.scale),
apply(w_tri, flex_ctx.rhs_data.scale),
apply(bias_tri, None),
None if gs0_tri is None else apply(gs0_tri, None),
None if gs1_tri is None else apply(gs1_tri, None),
)
def dtype_str_to_torch(dtype_str: str) -> torch.dtype:
return torch.uint8 if dtype_str == "float4_e2m1" else getattr(torch, dtype_str)
# Scope to ensure that the opt_flags_constraints are reset after the test
@pytest.fixture
def opt_flags_scope(request):
yield
opt_flags.reset_opt_flags_constraints()
# ---------------
# unit tests
# ---------------
@dataclass
class Case:
m: int
n: int
k: int
mode: str
act_dtype_str: str
weight_dtype_str: str
n_expts_tot: int = 1
n_expts_act: int = 1
n_expt_shards: int = 1
split_k: int = 1
hbm_swizzling: bool = False
epilogue_subtile: Union[int, None] = None
@pytest.mark.parametrize(
", ".join(f.name for f in fields(Case)),
[
tuple(getattr(case, f.name) for f in fields(Case)) for case in [
# Non-mx types:
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4),
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, n_expt_shards=2),
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, n_expt_shards=4),
Case(16, 256, 256, "ragged", "float16", "float16", 4, 1, n_expt_shards=2),
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, split_k=3),
Case(16, 256, 256, "ragged", "float16", "float16", 128, 4, split_k=3),
Case(300, 400, 400, "batched", "float8_e5m2", "float8_e5m2", 5, 1),
Case(16, 256, 256, "batched", "float16", "float16", 5, 1),
Case(16, 256, 256, "ragged", "float16", "float16", 3, 1),
Case(256, 256, 256, "ragged", "float16", "float16", 4, 1),
Case(256, 256, 256, "ragged", "float16", "float16", 4, 1, split_k=3),
Case(300, 400, 400, "batched", "float16", "float16", 5, 1),
Case(300, 400, 400, "ragged", "float16", "float16"),
Case(300, 400, 400, "ragged", "float8_e5m2", "float8_e5m2"),
Case(1000, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 3, 1),
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, epilogue_subtile=1),
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, epilogue_subtile=2),
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, epilogue_subtile=4),
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2),
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, n_expt_shards=2),
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 1, n_expt_shards=2),
Case(600, 400, 400, "ragged", "float8_e5m2", "float8_e5m2", 4, 2, split_k=2),
Case(1000, 400, 400, "ragged", "float16", "float16", 3, 1),
Case(1000, 700, 700, "ragged", "float16", "float16", 8, 2),
Case(1000, 700, 700, "ragged", "float16", "float16", 8, 2, split_k=9),
# mx types:
Case(16, 256, 256, "plain", "bfloat16", "mxfloat4_e2m1", 1, 1),
Case(16, 256, 256, "plain", "bfloat16", "mxfloat4_e2m1", 1, 1, hbm_swizzling=True),
Case(16, 256, 256, "ragged", "bfloat16", "mxfloat4_e2m1", 1, 1),
Case(16, 256, 256, "ragged", "bfloat16", "mxfloat4_e2m1", 1, 1, hbm_swizzling=True),
Case(1000, 700, 700, "batched", "bfloat16", "mxfloat4_e2m1", 8, 2),
Case(1000, 700, 700, "batched", "bfloat16", "mxfloat4_e2m1", 8, 2, hbm_swizzling=True),
Case(1000, 700, 700, "ragged", "bfloat16", "mxfloat4_e2m1", 8, 2, split_k=9),
Case(1000, 512, 256, "ragged", "bfloat16", "mxfloat4_e2m1", 8, 2, split_k=9, hbm_swizzling=True),
Case(300, 400, 400, "ragged", "bfloat16", "mxfloat8_e4m3fn", 8, 4),
Case(300, 400, 400, "ragged", "bfloat16", "mxfloat8_e4m3fn", 8, 4, hbm_swizzling=True),
Case(300, 400, 400, "batched", "bfloat16", "mxfloat8_e5m2", 32, 4),
Case(1000, 700, 2, "batched", "bfloat16", "mxfloat4_e2m1", 8, 2),
Case(1, 2880, 2880, "ragged", "bfloat16", "mxfloat4_e2m1", 128, 4),
Case(16, 256, 256, "ragged", "float8_e5m2", "mxfloat4_e2m1", 128, 4, hbm_swizzling=True),
Case(1000, 704, 832, "batched", "float8_e5m2", "mxfloat4_e2m1", 3, 1, hbm_swizzling=True),
Case(1000, 704, 832, "batched", "float8_e5m2", "mxfloat4_e2m1", 3, 1, hbm_swizzling=True),
Case(1000, 704, 832, "batched", "float8_e5m2", "mxfloat4_e2m1", 3, 1),
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2, split_k=9),
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2, split_k=9, hbm_swizzling=True),
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2),
Case(1000, 704, 800, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 2, hbm_swizzling=True),
Case(300, 400, 400, "ragged", "float8_e5m2", "mxfloat8_e4m3fn", 8, 4),
Case(300, 400, 400, "ragged", "float8_e5m2", "mxfloat8_e4m3fn", 8, 4, hbm_swizzling=True),
Case(300, 400, 832, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 4),
Case(300, 400, 832, "ragged", "float8_e5m2", "mxfloat4_e2m1", 8, 4, hbm_swizzling=True),
Case(300, 400, 400, "batched", "float8_e5m2", "mxfloat8_e4m3fn", 32, 4),
Case(300, 400, 400, "batched", "float8_e5m2", "mxfloat8_e4m3fn", 32, 4, hbm_swizzling=True),
Case(256, 256, 256, "ragged", "float8_e5m2", "mxfloat4_e2m1", 128, 4, hbm_swizzling=True),
Case(256, 256, 256, "ragged", "float8_e5m2", "mxfloat4_e2m1", 128, 4, hbm_swizzling=False),
Case(16, 256, 256, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 128, 4, hbm_swizzling=True),
Case(1000, 704, 800, "batched", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 3, 1, hbm_swizzling=True),
Case(1000, 704, 800, "batched", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 2, 1),
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2, split_k=9),
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2, split_k=9, hbm_swizzling=True),
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2),
Case(1000, 704, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 2, hbm_swizzling=True),
Case(300, 400, 400, "ragged", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 8, 4),
Case(300, 400, 400, "ragged", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 8, 4, hbm_swizzling=True),
Case(300, 400, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 4),
Case(300, 400, 800, "ragged", "mxfloat8_e4m3fn", "mxfloat4_e2m1", 8, 4, hbm_swizzling=True),
Case(300, 400, 400, "batched", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 32, 4),
Case(300, 400, 400, "batched", "mxfloat8_e4m3fn", "mxfloat8_e4m3fn", 32, 4, hbm_swizzling=True),
# AMD
Case(300, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz"),
Case(1000, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 3, 1),
Case(600, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 4, 2),
Case(600, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 4, 2, n_expt_shards=2),
Case(600, 400, 400, "ragged", "float8_e4m3fnuz", "float8_e4m3fnuz", 4, 2, split_k=2),
Case(300, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn"),
Case(1000, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn", 3, 1),
Case(600, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn", 4, 2),
Case(600, 400, 400, "ragged", "float8_e4m3fn", "float8_e4m3fn", 4, 2, n_expt_shards=2),
]
],
)
@pytest.mark.parametrize("block_m", [16, 128])
@pytest.mark.parametrize("do_gather, do_scatter, fused_scatter", [
(False, False, False),
(True, False, False),
(False, True, False),
(True, True, False),
(True, True, True),
])
@pytest.mark.parametrize("has_y_gammas", [False, True])
@pytest.mark.parametrize("is_persistent", [False, True])
def test_op(m, n, k, split_k, do_gather, do_scatter, fused_scatter, has_y_gammas, is_persistent, n_expts_tot,
n_expts_act, n_expt_shards, mode, act_dtype_str, weight_dtype_str, block_m, hbm_swizzling, epilogue_subtile,
device, opt_flags_scope, fresh_knobs):
# TODO: remove when Triton FP8 supports proper RTNE
if is_cuda():
if "float8" in weight_dtype_str and torch.cuda.get_device_capability()[0] < 9:
pytest.skip("Float8 not tested on A100")
if "float16" in act_dtype_str and "mx" in weight_dtype_str and torch.cuda.get_device_capability()[0] >= 10:
pytest.skip("float16 x mx not supported with cuda capability >= 10")
if weight_dtype_str.startswith("mx"):
if "float8" in act_dtype_str and torch.cuda.get_device_capability()[0] < 10:
pytest.skip("float8 x mx not supported with cuda capability < 10")
if act_dtype_str == "mxfloat8_e4m3fn":
if is_persistent:
pytest.skip("mx x mx not supported with persistent kernel")
if n == 2880 and k == 2880 and torch.cuda.get_device_capability()[0] < 9:
pytest.skip("Not enough memory on A100")
elif is_hip():
if "float8" in act_dtype_str and "mx" in weight_dtype_str and not is_hip_cdna4():
pytest.skip("float8 x mx only supported on CDNA4")
if "float8" in act_dtype_str and "mxfloat8" in weight_dtype_str:
pytest.skip("NYI: float8 x mxfloat8 not tested on AMD GPU")
if act_dtype_str.startswith("mx") and weight_dtype_str.startswith("mx"):
pytest.skip("NYI: mx x mx not tested on AMD GPU")
if is_persistent:
pytest.skip("NYI: Persistent kernel not supported on AMD GPU")
if split_k > 1:
pytest.skip("splitK hasn't been fully tested on AMD GPU.")
if "float8_e4m3fnuz" in (weight_dtype_str, act_dtype_str) and not is_hip_cdna3():
pytest.skip("float8_e4m3fnuz only tested on AMD CDNA3 Platform")
if fused_scatter and split_k > 1:
pytest.skip("fused scatter scratchpad not supported with split_k")
if hbm_swizzling:
if is_hip():
pytest.skip("NYI. HBM swizzling just implemented for CUDA.")
if torch.cuda.get_device_capability()[0] < 9:
pytest.skip("NYI. Ampere swizzling.")
if torch.cuda.get_device_capability()[0] < 10:
if "mxfloat4" not in weight_dtype_str:
pytest.skip("NYI. Hopper swizzling just implemented for mxfp4.")
if k % 64 != 0 or n % 64 != 0:
# Automatic padding not implemented for Hopper swizzle
pytest.skip("Hopper swizzling acts on a 64x64 tile (4x1 mma tiles).")
# launch metadata for batched / mx types may not work yet.
test_launch_metadata = (mode == "ragged") and ("mx" not in weight_dtype_str)
torch.manual_seed(0)
block_k = None
if is_persistent and weight_dtype_str.startswith("mx") and torch.cuda.get_device_capability()[0] < 10:
# Override block_k for testing correctness. The default is temporarily 128 for
# performance reasons which doesn't work with persistent matmul.
# TODO: revisit when Triton is better for H100 + MXFP4
block_k = 256
constraints = {
"block_m": block_m,
"block_k": block_k,
"split_k": split_k,
"fused_scatter": fused_scatter,
"is_persistent": is_persistent,
"epilogue_subtile": epilogue_subtile,
}
opt_flags.update_opt_flags_constraints(constraints)
weight_mxfp = weight_dtype_str.startswith("mx")
if weight_mxfp:
weight_dtype_str = weight_dtype_str[2:]
act_mxfp8 = act_dtype_str.startswith("mx")
act_is_float8 = act_dtype_str.startswith("float8")
if act_mxfp8:
act_dtype_str = act_dtype_str[2:]
dequantize_mxfp8_spec = FnSpecs(
FnName.DEQUANTIZE_MXFP8.name, dequantize_mxfp8_fn, (), ()
)
test_bwd = False
weight_dtype = dtype_str_to_torch(weight_dtype_str)
act_dtype = dtype_str_to_torch(act_dtype_str)
precision_opt = init_precision(act_dtype, act_is_float8, weight_dtype, weight_mxfp, n_expts_tot // n_expt_shards, device=device)
# precision_opt.x_pad_trans_requires_flexpoint = False
if mode == "ragged":
m, rdata, gindx, sindx = init_routing_data(m, n_expts_tot, n_expts_act, n_expt_shards, do_gather, do_scatter,
device=device)
else:
rdata = gindx = sindx = None
x_tri, w_tri, bias_tri, gs0_tri, gs1_tri = init_compute_data(m, n, k, gindx, sindx, n_expts_tot, n_expts_act,
n_expt_shards, mode, torch.bfloat16 if act_mxfp8 else act_dtype, #
torch.bfloat16 if weight_mxfp else weight_dtype,
has_y_gammas, requires_grad=test_bwd, device=device)
x_ref, w_ref, bias_ref, gs0_ref, gs1_ref = apply_precision(x_tri, w_tri, bias_tri, gs0_tri, gs1_tri, precision_opt)
if w_tri.shape[0] == 1:
# Test the case when weight has dim 2, i.e., shape (K, N).
w_tri = w_tri.squeeze(0).detach().requires_grad_(test_bwd)
w_ref = w_ref.squeeze(0).detach().requires_grad_(test_bwd)
if weight_mxfp:
mx_axis = w_tri.ndim - 2
# compute layouts
w_layout, w_layout_opts = layout.StridedLayout, dict()
w_scale_layout, w_scale_layout_opts = layout.StridedLayout, dict()
if hbm_swizzling and "float4" in weight_dtype_str:
w_layout, w_layout_opts = layout.make_default_matmul_mxfp4_w_layout(mx_axis=mx_axis)
w_scale_layout, w_scale_layout_opts = layout.make_default_matmul_mxfp4_w_scale_layout(
mx_axis=mx_axis, num_warps=8)
# downcast to mxfp
w_tri, w_scale_tri = downcast_to_mxfp(w_tri, weight_dtype, axis=mx_axis)
w_ref = upcast_from_mxfp(w_tri, w_scale_tri, torch.bfloat16, axis=mx_axis)
w_tri_dtype = FP4 if "float4" in weight_dtype_str else weight_dtype
w_tri = wrap_torch_tensor(w_tri, w_tri_dtype)
w_scale_tri = wrap_torch_tensor(w_scale_tri)
# convert layouts
w_tri = convert_layout(w_tri, w_layout, **w_layout_opts)
w_scale_tri = convert_layout(w_scale_tri, w_scale_layout, **w_scale_layout_opts)
precision_opt.weight_scale = w_scale_tri
epilogue = None
if act_mxfp8:
x_tri, x_mx_scales_tri = downcast_to_mxfp(x_tri, act_dtype, axis=-1)
x_ref = upcast_from_mxfp(x_tri, x_mx_scales_tri, torch.bfloat16, axis=-1)
is_input_batched = x_tri.ndim == 3
y_shape = x_tri.shape if is_input_batched else (1,) + x_tri.shape
n_rows = y_shape[1] if gindx is None or mode == "batched" else gindx.dst_indx.shape[0]
y_shape = (y_shape[0], n_rows, w_tri.shape[-1])
if sindx is None or mode == "batched":
if not is_input_batched:
y_shape = (y_shape[1], y_shape[2])
else:
y_shape = (n_rows // rdata.n_expts_act, y_shape[-1])
y_scale_shape = y_shape[:-1] + (triton.cdiv(y_shape[-1], MXFP_BLOCK_SIZE),)
y_scale = torch.empty(y_scale_shape, dtype=torch.uint8, device=x_tri.device)
precision_opt = replace(precision_opt, act_scale=x_mx_scales_tri, out_scale=y_scale)
epilogue = Epilogue(dequantize_mxfp8_spec, tuple(), tuple(), effective_itemsize=6.0)
else:
y_scale = None
if test_launch_metadata:
def _clobber(t, used_mask):
# Fill the unread part of the tensor with garbage, to be sure that
# we don't actually read from the part.
if len(used_mask) == 1:
return
elif t.element_size() == 1:
t.view(torch.int8)[~used_mask] = 127
else:
t[~used_mask] = torch.inf
if rdata is not None:
n_tokens = rdata.expt_hist.sum().item()
used_expts = (rdata.expt_hist > 0)
_clobber(w_tri, used_expts)
n_w_bytes = used_expts.sum().item() * n * k * w_tri.element_size()
else:
n_tokens = m
n_w_bytes = w_tri.numel() * w_tri.element_size()
if gindx is not None:
used_x_rows = (gindx.dst_indx.view(-1, n_expts_act) != -1).any(dim=1)
_clobber(x_tri, used_x_rows)
n_x_bytes = used_x_rows.sum().item() * k * x_tri.element_size()
elif rdata is not None:
n_x_bytes = n_tokens * k * x_tri.element_size()
else:
n_x_bytes = x_tri.numel() * x_tri.element_size()
nbytes = None
def _hook(launch_metadata):
nonlocal nbytes
metadata = launch_metadata.get()
if "matmul_ogs" in metadata["name"]:
nbytes = metadata["bytes"]
triton.knobs.runtime.launch_enter_hook = _hook
if mode == "batched":
rdata, gindx, sindx = None, None, None
flex = precision_opt.flex_ctx
# triton
try:
tri_y = matmul_ogs(x_tri, w_tri, bias_tri, rdata, gindx, sindx, precision_opt, gammas=gs1_ref, epilogue=epilogue)
except (opt_flags.InapplicableConstraint, NotImplementedError):
pytest.skip("inapplicable opt_flags constraint")
# If split_k > 1, then the intermediate tensor is fp32.
sep_gather = mode == "ragged" and do_gather and n_expts_act > 1 and split_k == 1
sep_scatter = mode == "ragged" and do_scatter and n_expts_act > 1 and split_k == 1
y_scale = flex.out_data.expected_scale if act_is_float8 else 1
if test_launch_metadata:
if gindx is not None:
n_y_bytes = (gindx.src_indx != -1).sum().item() * n * tri_y.element_size()
elif rdata is not None:
n_y_bytes = n_tokens * n * tri_y.element_size()
else:
n_y_bytes = tri_y.numel() * tri_y.element_size()
assert nbytes == n_x_bytes + n_y_bytes + n_w_bytes
triton.knobs.runtime.launch_enter_hook = None
def round_x(x, idx):
return x.to(act_dtype).to(torch.float32) if sep_gather else x
round_y = lambda y: (y / y_scale).to(act_dtype).to(torch.float32) * y_scale if sep_scatter else y
ref_y = matmul_ogs_torch(x_ref, w_ref, bias_ref, #
rdata, gindx, sindx, round_x=round_x, round_y=round_y, gammas=gs1_ref)
scale = lambda val, scal: val if scal is None else val / scal
if n_expt_shards > 1:
if do_scatter:
indx = sindx.dst_indx[sindx.dst_indx != -1]
ref_y = ref_y[indx // n_expts_act, :]
if act_is_float8:
tri_y = tri_y.view(torch.int8)
tri_y = tri_y[indx // n_expts_act, :]
if act_is_float8:
tri_y = tri_y.view(act_dtype)
else:
n_rows = rdata.expt_hist.sum()
assert n_rows > 0
ref_y = ref_y[:n_rows]
tri_y = tri_y[:n_rows]
if act_mxfp8:
tri_y = upcast_from_mxfp(tri_y, precision_opt.out_scale, dtype=torch.bfloat16, axis=-1).to(ref_y.dtype)
ref_y_quant, ref_y_scale = downcast_to_mxfp_torch(ref_y, act_dtype, axis=-1)
ref_y = upcast_from_mxfp_torch(ref_y_quant, ref_y_scale, target_dtype=ref_y.dtype, axis=-1)
maxtol = 4e-1
rmstol = 4e-2
else:
maxtol = None
rmstol = None
assert_close(scale(ref_y, flex.out_data.expected_scale), tri_y, maxtol=maxtol, rmstol=rmstol)
if act_is_float8:
tri_y_scale = flex.out_data.actual_scale.clone()
ref_y_scale = compute_actual_scale(ref_y, tri_y.dtype)
assert (ref_y_scale -
tri_y_scale).abs() < 1e-10, f"ref_y_scale: {ref_y_scale}, tri_y_scale: {tri_y_scale.item()}"
def test_set_idle_sms():
if not is_cuda():
pytest.skip("Only supported on CUDA")
from triton_kernels.matmul_ogs_details.opt_flags import make_opt_flags
num_idle_sms = 24
matmul_ogs_set_idle_sms(num_idle_sms)
flags = make_opt_flags(torch.float32, torch.float32, torch.float32, PrecisionConfig(), \
1024, 1024, 1024, None, True, False, 1)
assert flags.idle_sms == num_idle_sms
@pytest.mark.parametrize("m, n, k, mode", [
(1200, 704, 608, "ragged"),
(800, 800, 400, "batched"),
])
@pytest.mark.parametrize("split_k", [1, 2])
@pytest.mark.parametrize("do_gather, do_scatter, fused_scatter", [
(False, False, False),
(True, False, False),
(False, True, False),
(True, True, False),
(True, True, True),
])
@pytest.mark.parametrize("is_persistent, epilogue_subtile", [
(False, None),
(True, 1),
(True, 4),
])
@pytest.mark.parametrize("swiglu_alpha, swiglu_limit", [
(1.1, 1.4),
(1.0, 1.2),
(0.7, 1.0),
])
def test_fused_act(m, n, k, mode, split_k, do_gather, do_scatter, fused_scatter, is_persistent, epilogue_subtile,
swiglu_alpha, swiglu_limit, device, opt_flags_scope):
if fused_scatter and split_k > 1:
pytest.skip("fused scatter scratchpad not supported with split_k")
torch.manual_seed(0)
constraints = {
"is_persistent": is_persistent,
"epilogue_subtile": epilogue_subtile,
"fused_scatter": fused_scatter,
"split_k": split_k,
}
n_expts_tot, n_expts_act, n_expt_shards = 1, 1, 1
opt_flags.update_opt_flags_constraints(constraints)
weight_dtype, act_dtype = torch.float16, torch.float16
if mode == "ragged":
m, rdata, gindx, sindx = init_routing_data(m, n_expts_tot, n_expts_act, n_expt_shards, do_gather, do_scatter,
device=device)
else:
rdata = gindx = sindx = None
precision_opt = init_precision(act_dtype, str(act_dtype).startswith("torch.float8"), weight_dtype, False, n_expts_tot // n_expt_shards, device=device)
x, w, bias, _, _ = init_compute_data(m, n, k, gindx, sindx, n_expts_tot, n_expts_act, n_expt_shards, mode,
act_dtype, weight_dtype, False, requires_grad=False, device=device)
if mode == "batched":
rdata, gindx, sindx = None, None, None
try:
a = swiglu(matmul_ogs(x, w, bias, rdata, gindx, sindx, precision_opt), swiglu_alpha,
precision_config=SwiGLUPrecisionConfig(swiglu_limit))
b = matmul_ogs(
x, w, bias, rdata, gindx, sindx, precision_opt,
fused_activation=FusedActivation(FnSpecs("swiglu", swiglu_fn, ("alpha", "limit")),
(swiglu_alpha, swiglu_limit), 2))
except opt_flags.InapplicableConstraint:
pytest.skip("inapplicable constraint")
assert_close(a, b)
|