from triton_kernels.routing import routing_torch from triton_kernels.swiglu import swiglu, swiglu_torch, PrecisionConfig from triton_kernels.testing import assert_close import torch import pytest from .test_routing import init_data as init_routing_data # --------------- # initialize data # --------------- def alloc_rand(shape, device, dtype, requires_grad=True): if dtype.itemsize == 1: tmp = 2**-(torch.randint(4, 8, shape, device=device, dtype=torch.float16)) return tmp.to(dtype).requires_grad_(requires_grad) return torch.randn(shape, device=device, dtype=dtype, requires_grad=requires_grad) # --------------- # unit tests # --------------- @pytest.mark.parametrize("M, N", [(1311, 4352)]) @pytest.mark.parametrize("limit", [1e-2, 10]) def test_op(M, N, limit, device, alpha=0.5): torch.manual_seed(2) # initialize expert data n_expts_tot = 6 n_expts_act = 2 logits = init_routing_data(M, n_expts_tot).detach() routing_data, _, _ = routing_torch(logits, n_expts_act) n_tokens = routing_data.expt_hist.sum() # initialize data x = alloc_rand([n_tokens, N], device=device, dtype=torch.bfloat16) precision_config = PrecisionConfig(limit=limit) tri_y = swiglu(x, alpha, precision_config, routing_data) ref_y = swiglu_torch(x, alpha, precision_config) assert_close(tri_y, ref_y)