File size: 35,521 Bytes
4d1b54e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64d4b2
 
 
 
 
 
4d1b54e
 
 
 
a64d4b2
4d1b54e
 
 
 
 
 
a64d4b2
4d1b54e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64d4b2
 
4d1b54e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64d4b2
4d1b54e
 
 
a64d4b2
4d1b54e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d1b54e
 
a64d4b2
 
4d1b54e
 
a64d4b2
 
4d1b54e
 
 
 
 
a64d4b2
 
 
 
 
 
4d1b54e
 
 
 
 
a64d4b2
4d1b54e
 
 
 
a64d4b2
 
 
 
 
 
 
 
4d1b54e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/******************************************************************************
 * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
 ******************************************************************************/

#pragma once

#include "cute/tensor.hpp"

#include <cutlass/cutlass.h>
#include <cutlass/arch/memory.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>

#include "cutlass/arch/grid_dependency_control.h"

#include "seqlen.h"
#include "utils.h"

namespace flash {

using namespace cute;

template <class TileShape_MK_, int kLogMaxSplits_, int kNThreads, int AlignmentLSE_,
          bool Is_even_K, bool Varlen, class Element, class ElementPartial, class ArchTag_>
class FlashAttnFwdCombine {

public:

    // Type Aliases
    using TileShape_MK = TileShape_MK_;
    using ArchTag = ArchTag_;
    static constexpr int kMaxSplits = 1 << kLogMaxSplits_;
    static constexpr int AlignmentLSE = std::min(AlignmentLSE_, int(128 / 8 / sizeof(float)));
    static_assert(AlignmentLSE >= 1);
    static constexpr int kStages = 4;

    static_assert(ArchTag::kMinComputeCapability >= 75);
    static constexpr bool Has_cp_async = ArchTag::kMinComputeCapability >= 80;

    static constexpr uint32_t MaxThreadsPerBlock = kNThreads;
    static constexpr uint32_t MinBlocksPerMultiprocessor = 2;

    static constexpr int kBlockM = get<0>(TileShape_MK{});
    static constexpr int kBlockK = get<1>(TileShape_MK{});

    static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(ElementPartial);
    static_assert(kBlockK % kGmemElemsPerLoad == 0, "kBlockK must be a multiple of kGmemElemsPerLoad");
    static constexpr int kBlockKGmem = kBlockK % 128 == 0 ? 128 : (kBlockK % 64 == 0 ? 64 : 32);
    static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
    static_assert(MaxThreadsPerBlock % kGmemThreadsPerRow == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRow");
    using GmemCopyAtom = std::conditional_t<
        Has_cp_async,
        cute::Copy_Atom<SM80_CP_ASYNC_CACHEGLOBAL<uint128_t>, ElementPartial>,
        cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementPartial>
    >;
    using GmemLayoutAtom = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
                                  Stride<Int<kGmemThreadsPerRow>, _1>>;
    static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0);
    using GmemTiledCopyAccum = decltype(
        make_tiled_copy(GmemCopyAtom{},
                        GmemLayoutAtom{},
                        Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{}));  // Val layout, 4 vals per load
    using GmemTiledCopy = decltype(
        make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
                        GmemLayoutAtom{},
                        Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{}));  // Val layout, 4 vals per load

    using AlignmentTypeLSE = cute::uint_byte_t<static_cast<int>(sizeof(float)) * AlignmentLSE>;
    static constexpr int kGmemElemsPerLoadLSE = sizeof(AlignmentTypeLSE) / sizeof(float);
    static_assert(kBlockM % kGmemElemsPerLoadLSE == 0, "kBlockM must be a multiple of kGmemElemsPerLoadLSE");
    static_assert(kBlockM % 8 == 0, "kBlockM must be a multiple of 8");
    static constexpr int kBlockMSmem = kBlockM % 128 == 0 ? 128 : (kBlockM % 64 == 0 ? 64 : (kBlockM % 32 == 0 ? 32 : (kBlockM % 16 == 0 ? 16 : 8)));
    static constexpr int kGmemThreadsPerRowLSE = kBlockMSmem / kGmemElemsPerLoadLSE;
    static_assert(MaxThreadsPerBlock % kGmemThreadsPerRowLSE == 0, "MaxThreadsPerBlock must be a multiple of kGmemThreadsPerRowLSE");
    using GmemLayoutAtomLSE = Layout<Shape <Int<MaxThreadsPerBlock / kGmemThreadsPerRowLSE>, Int<kGmemThreadsPerRowLSE>>,
                                     Stride<Int<kGmemThreadsPerRowLSE>, _1>>;
    static_assert(kMaxSplits % CUTE_STATIC_V(shape<0>(GmemLayoutAtomLSE{})) == 0);
    using GmemCopyAtomLSE = std::conditional_t<
        Has_cp_async,
        cute::Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<AlignmentTypeLSE>, float>,
        cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<AlignmentLSE * sizeof(float) * 8>, float>
    >;
    using GmemTiledCopyLSE = decltype(
        make_tiled_copy(GmemCopyAtomLSE{},
                        GmemLayoutAtomLSE{},
                        Layout<Shape<_1, Int<kGmemElemsPerLoadLSE>>>{}));  // Val layout, 4 vals per load

    // Otherwise we get IMA when some threads access sLSE, as we're not doing any masking
    static_assert((kBlockM * kMaxSplits * AlignmentLSE) % kNThreads == 0, "kNThreads must divide kBlockM * kMaxSplits * AlignmentLSE");
    // This works for kBlockMSmem = 8, 16, 32, 64, 128, no bank conflicts
    using SmemLSESwizzle = std::conditional_t<
        kBlockMSmem == 8,
        Swizzle<5, 0, 5>,
        std::conditional_t<kBlockMSmem == 16, Swizzle<4, 0, 4>, Swizzle<3, 2, 3>>
    >;
    using SmemLayoutAtomLSE =
        decltype(composition(SmemLSESwizzle{},
                 Layout<Shape<Int<8>, Int<kBlockMSmem>>,
                 Stride<Int<kBlockMSmem>, _1>>{}));
    using SmemLayoutLSE = decltype(tile_to_shape(SmemLayoutAtomLSE{}, Shape<Int<kMaxSplits>, Int<kBlockM>>{}));

    using SmemLayoutO = Layout<Shape<Int<kBlockM>, Int<kBlockK>, Int<kStages>>,
                               Stride<Int<kBlockK>, _1, Int<kBlockM * kBlockK>>>;

    // We want each column (kMaxSplits) to be processed by threads in the same warp.
    // To reduce the number of shuffles, we want as few threads on the same column as possible.
    // E.g., if kBlockM is divisible by 64, and there are 256 threads, we want 4 threads (0, 1, 2, 4) per column
    // have have 64 such quads.
    static_assert(MaxThreadsPerBlock % kBlockMSmem == 0, "MaxThreadsPerBlock must be a multiple of kBlockMSmem");
    static constexpr int kSmemThreadsPerColLSEt = MaxThreadsPerBlock / kBlockMSmem;
    static_assert(cutlass::NumThreadsPerWarp % kSmemThreadsPerColLSEt == 0, "kSmemThreadsPerColLSEt must divide NumThreadsPerWarp");
    using S2RLayoutAtomLSE = Layout<Shape<Int<kSmemThreadsPerColLSEt>, Int<MaxThreadsPerBlock / kSmemThreadsPerColLSEt>>>;
    using S2RTiledCopyLSE = decltype(make_tiled_copy(cute::Copy_Atom<cute::DefaultCopy, float>{}, S2RLayoutAtomLSE{}, Layout<_1>{}));

    using ShapeOPartial = cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>;  // (seqlen, d, num_splits, head, batch)
    using StrideOPartial = cute::Stride<int64_t, _1, int64_t, int64_t, int64_t>;
    using ShapeLSEPartial = cute::Shape<int32_t, int32_t, int32_t, int32_t>;  // (seqlen, num_splits, head, batch)
    using StrideLSEPartial = cute::Stride<_1, int64_t, int64_t, int64_t>;  // (seqlen, num_splits, head, batch)
    using ShapeO = cute::Shape<int32_t, int32_t, int32_t, int32_t>;  // (seqlen, d, head, batch)
    using StrideO = cute::Stride<int64_t, _1, int64_t, int64_t>;
    using ShapeLSE = cute::Shape<int32_t, int32_t, int32_t>;  // (seqlen, head, batch)
    using StrideLSE = cute::Stride<_1, int64_t, int64_t>;  // (seqlen, head, batch)

    struct BlockCoord {
        int block_m;
        int block_k;
        int bidb;
    };

    struct SharedStorage : cute::aligned_struct<128> {
        cute::array_aligned<float, cute::cosize_v<SmemLayoutLSE>> smem_lse_partial;
        cute::array_aligned<int, kBlockM> smem_max_valid_split;
        cute::array_aligned<ElementPartial, cute::cosize_v<SmemLayoutO>> smem_o_partial;
        BlockCoord block_coord;
    };

    static constexpr int SharedStorageSize = sizeof(SharedStorage);

    // Device side arguments
    struct Arguments {
        int b;
        ElementPartial const* const ptr_O_partial;
        ShapeOPartial const shape_O_partial;
        StrideOPartial const stride_O_partial;
        float const* const ptr_LSE_partial;
        ShapeLSEPartial const shape_LSE_partial;
        StrideLSEPartial const stride_LSE_partial;
        Element* const ptr_O;
        StrideO const stride_O;
        float* const ptr_LSE;
        StrideLSE const stride_LSE;
        int const* const cu_seqlens = nullptr;
        int const* const seqused = nullptr;
        int const* const num_splits_dynamic_ptr = nullptr;
        int* const semaphore_to_reset = nullptr;
    };

    // Kernel entry point API
    struct CollectiveParams {
        int b;
        ElementPartial const* const ptr_O_partial;
        ShapeOPartial const shape_O_partial;
        StrideOPartial const stride_O_partial;
        float const* const ptr_LSE_partial;
        ShapeLSEPartial const shape_LSE_partial;
        StrideLSEPartial const stride_LSE_partial;
        Element* const ptr_O;
        StrideO const stride_O;
        float* const ptr_LSE;
        StrideLSE const stride_LSE;
        cutlass::FastDivmod seqlen_divmod, head_divmod;
        int const* const cu_seqlens = nullptr;
        int const* const seqused = nullptr;
        int const* const num_splits_dynamic_ptr = nullptr;
        int* const semaphore_to_reset = nullptr;
    };

    // Convert to underlying arguments. In this case, a simple copy for the aliased type.
    static
    CollectiveParams
    to_underlying_arguments(Arguments const& args) {
        assert(get<1>(args.shape_LSE_partial) <= kMaxSplits);
        return {
            args.b,
            args.ptr_O_partial,
            args.shape_O_partial,
            args.stride_O_partial,
            args.ptr_LSE_partial,
            args.shape_LSE_partial,
            args.stride_LSE_partial,
            args.ptr_O,
            args.stride_O,
            args.ptr_LSE,
            args.stride_LSE,
            cutlass::FastDivmod(get<0>(args.shape_LSE_partial)), cutlass::FastDivmod(get<2>(args.shape_LSE_partial)),
            args.cu_seqlens,
            args.seqused,
            args.num_splits_dynamic_ptr,
            args.semaphore_to_reset
        };
    }

    struct SchedulerArguments {
        int b;
        int seqlen_q;
        int total_q;
        int num_heads;
        int dv;
        int const* cu_seqlens_q;
        int const* seqused_q;
    };

    struct StaticTileScheduler {
        struct Params {};
        static Params to_underlying_arguments(SchedulerArguments const& args) { return {}; }

        SharedStorage& shared_storage;
        CUTE_DEVICE StaticTileScheduler(SharedStorage& shared_storage): shared_storage(shared_storage) {}

        static dim3 get_grid_shape(SchedulerArguments const& args) {
            unsigned int num_blocks_k = cute::ceil_div(args.dv, kBlockK);
            unsigned int num_blocks_m = cute::ceil_div(args.seqlen_q * args.num_heads, kBlockM);
            return {num_blocks_m, num_blocks_k, static_cast<unsigned int>(args.b)};
        }

        CUTE_DEVICE BlockCoord get_block_coord(Params const& params) {
            int block_m = blockIdx.x;
            int block_k = blockIdx.y;
            int bidb = blockIdx.z;
            return {block_m, block_k, bidb};
        }
    };

    struct StaticVarlenTileScheduler {
        //
        // For varlen we have two Scheduling algos:
        //  1) STANDARD, same as StaticTileScheduler
        //  2) LINEARIZE_M_AND_BATCH, this flattens the tiled M dimension and
        //     batch dimension into a linear tile index. The grid is then a
        //     2D grid of (tile_id, k_block). We then map the linear tile id
        //     to (m_block, bidb) in the get_block_coord function. This mapping
        //     is non-trivial since each batch element can have a different
        //     number of m_blocks. This has overhead when computing the block
        //     coordinates, but it is more efficient when prefills and decodes
        //     are mixed since in that case the STANDARD scheduling algo will
        //     have a lot of empty (no work) blocks in the grid.
        //

        enum SchedulingAlgo {
            STANDARD,           // Same as StaticTileScheduler
            LINEARIZE_M_AND_BATCH,  // Linearize the M and batch dimensions into a single tile index
        };

        struct Params {
            int b;
            int num_heads;
            int const* const cu_seqlens_q;
            int const* const seqused_q;
            SchedulingAlgo algo;
        };

        SharedStorage& shared_storage;
        CUTE_DEVICE StaticVarlenTileScheduler(SharedStorage& shared_storage): shared_storage(shared_storage) {}

        static SchedulingAlgo choose_scheduling_algo(SchedulerArguments const& args) {
            // Choose the scheduling algorithm based on how dense the grid of tiles that
            // do actual work is. If the grid is more then 50% sparse, we linearize the M
            // and batch. If the grid is more than 50% dense, we use the standard scheduling
            // algorithm since its more efficient at calculating the block coordinates.
            // NOTE: in varlen case args.seqlen_q is the max seqlen_q across all batches
            // use lower bound to estimate when the density is more than 50%
            int lower_bound_on_non_empty_tiles = cute::ceil_div(args.total_q, kBlockM);
            int grid_size = args.b * cute::ceil_div(args.seqlen_q, kBlockM);
            return 2 * lower_bound_on_non_empty_tiles >= grid_size ? 
                SchedulingAlgo::STANDARD : 
                SchedulingAlgo::LINEARIZE_M_AND_BATCH;
        }

        static Params to_underlying_arguments(SchedulerArguments const& args) { 
            return {
                args.b,
                args.num_heads,
                args.cu_seqlens_q,
                args.seqused_q,
                choose_scheduling_algo(args)
            }; 
        }

        static dim3 get_grid_shape(SchedulerArguments const& args) {
            unsigned int num_blocks_k = cute::ceil_div(args.dv, kBlockK);

            switch (choose_scheduling_algo(args)) {
            case SchedulingAlgo::STANDARD: {
                unsigned int num_blocks_k = cute::ceil_div(args.dv, kBlockK);
                unsigned int num_blocks_m = cute::ceil_div(args.seqlen_q * args.num_heads, kBlockM);
                return {num_blocks_m, num_blocks_k, static_cast<unsigned int>(args.b)};
            }
            case SchedulingAlgo::LINEARIZE_M_AND_BATCH: {
                // rough worst case upper bound on the number of blocks required 
                //  (assuming each batch has an additional partial block)
                unsigned int num_blocks_m = cute::ceil_div(args.total_q * args.num_heads, kBlockM) + args.b;
                return {num_blocks_m, num_blocks_k, 1};
            }}

            // rough worst case upper bound on the number of blocks required 
            //  (assuming each batch has an additional partial block)
            unsigned int num_blocks_m = cute::ceil_div(args.total_q * args.num_heads, kBlockM) + args.b;
            return {num_blocks_m, num_blocks_k, 1};
        }

        CUTE_DEVICE BlockCoord get_block_coord_linearized_m_and_batch(Params const& params) {
            int num_heads = params.num_heads;
            int curr_tile_id = blockIdx.x;

            // Scan through the batches find the batch that contains the current
            // tile_id. Compute using only the first warp of the block.
            if (threadIdx.x < 32) {
                // We compute linearized tile index start and ends for each batch
                // in groups of 32 in parallel
                int group_start_bidb = -(cutlass::NumThreadsPerWarp);
                int group_end_bidb = 0;
                int group_end_tile_id = 0;
                int group_start_tile_id = 0;
                int group_total_num_tiles = 0;

                int local_num_m_blocks = 0;
                int local_num_m_blocks_cumulative = 0;

                do {
                    group_start_bidb += cutlass::NumThreadsPerWarp;
                    group_end_bidb += cutlass::NumThreadsPerWarp;

                    auto get_num_m_blocks = [&](int bidb) {
                        if (bidb >= params.b) return 0;
                        flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{bidb, 0, params.cu_seqlens_q, params.seqused_q};
                        return cute::ceil_div(seqlen_info.seqlen * num_heads, Int<kBlockM>{}());
                    };

                    // Cumulative number of blocks for the next 31 batches
                    local_num_m_blocks = get_num_m_blocks(group_start_bidb + threadIdx.x);
                    local_num_m_blocks_cumulative = warp_prefix_sum(local_num_m_blocks);
                    // Total number of blocks for the next 32 batches
                    group_total_num_tiles = warp_shfl_get_last(local_num_m_blocks_cumulative);
                    
                    group_start_tile_id = group_end_tile_id;
                    group_end_tile_id += group_total_num_tiles;
                } while (curr_tile_id >= group_end_tile_id && group_end_bidb < params.b);
                
                int local_batch_end_tile_id = group_start_tile_id + local_num_m_blocks_cumulative;
                // Find the last batch idx in the group where `local_batch_end_tile_id <= curr_tile_id`
                // these values below are now common to all threads in the warp
                int batch_idx_in_group = warp_last_true_laneid(local_batch_end_tile_id <= curr_tile_id);
                int batch_num_m_blocks = warp_shfl_get(local_num_m_blocks, batch_idx_in_group);
                int batch_m_start_tile_id = group_start_tile_id + (batch_idx_in_group > 0 ? 
                    warp_shfl_get(local_num_m_blocks_cumulative, batch_idx_in_group - 1) : 0);
                
                int bidb = group_start_bidb + batch_idx_in_group;
                int block_m = curr_tile_id - batch_m_start_tile_id;
                // NOTE(lucas): not sure why this causes a block_k unused warning
                //  just inlined `blockIdx.y` to suppress the warning
                // int block_k = blockIdx.y;
                // shared_storage.block_coord = {block_m, block_k, bidb};
                BlockCoord block_coord{block_m, static_cast<int>(blockIdx.y), bidb};
                if (threadIdx.x == 0) { shared_storage.block_coord = block_coord; }
            }

            __syncthreads();
            return shared_storage.block_coord;
        }


        CUTE_DEVICE BlockCoord get_block_coord_standard(Params const& params) {
            int block_m = blockIdx.x;
            int block_k = blockIdx.y;
            int bidb = blockIdx.z;
            return {block_m, block_k, bidb};
        }

        CUTE_DEVICE BlockCoord get_block_coord(Params const& params) {
            switch (params.algo) {
                case SchedulingAlgo::STANDARD:
                    return get_block_coord_standard(params);
                case SchedulingAlgo::LINEARIZE_M_AND_BATCH:
                    return get_block_coord_linearized_m_and_batch(params);
            }
            return {0, 0, 0};  // Should never reach here
        }
    };

    using TileScheduler = std::conditional_t<
        Varlen,
        StaticVarlenTileScheduler,
        StaticTileScheduler
    >;

    using SchedulerParams = typename TileScheduler::Params;

    struct Params {
        CollectiveParams params;
        SchedulerParams scheduler_params;
    };

    CUTLASS_DEVICE
    void
    operator()(Params const& kernel_params, char* smem_buf) {
        CollectiveParams const& params = kernel_params.params;

        SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);
        TileScheduler tile_scheduler{shared_storage};

        Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.smem_lse_partial.data()), SmemLayoutLSE{});
        Tensor sMaxValidSplit = make_tensor(make_smem_ptr(shared_storage.smem_max_valid_split.data()), Shape<Int<kBlockM>>{});
        Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o_partial.data()), SmemLayoutO{});

        int const thread_idx = threadIdx.x;

        BlockCoord block_coord = tile_scheduler.get_block_coord(kernel_params.scheduler_params);

        int const m_block = block_coord.block_m;
        int const k_block = block_coord.block_k;
        int const batch = block_coord.bidb;

        if (params.semaphore_to_reset && threadIdx.x == 0 && blockIdx.x == gridDim.x - 1 && blockIdx.y == gridDim.y - 1 && blockIdx.z == gridDim.z - 1) {
            cutlass::arch::wait_on_dependent_grids();
            *params.semaphore_to_reset = 0;
        }

        flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{batch, size<0>(params.shape_LSE_partial), params.cu_seqlens, params.seqused};
        int const offset = seqlen_info.offset;
        int const seqlen = seqlen_info.seqlen;
        int max_idx = seqlen * get<2>(params.shape_LSE_partial);

        bool block_coord_valid = 
            block_coord.block_m < cute::ceil_div(max_idx, Int<kBlockM>{}) &&
            block_coord.bidb < params.b;
        if (!block_coord_valid) { return; }

        int const num_splits = params.num_splits_dynamic_ptr ? params.num_splits_dynamic_ptr[batch] : get<1>(params.shape_LSE_partial);
        if (num_splits <= 1) { return; }

        cutlass::FastDivmod seqlen_divmod_dynamic(seqlen);

        // Step 1: load LSE_partial from gmem -> smem
        Tensor mLSEpartial = make_tensor(make_gmem_ptr(params.ptr_LSE_partial + offset * get<0>(params.stride_LSE_partial)),
                                         select<1, 0, 2, 3>(params.shape_LSE_partial),
                                         select<1, 0, 2, 3>(params.stride_LSE_partial))(_, _, _, !Varlen ? batch : 0);  // (num_splits, seqlen, head)
        Tensor mLSEpartial_copy = cute::tiled_divide(mLSEpartial, Shape<_1, Int<kGmemElemsPerLoadLSE>>{});
        GmemTiledCopyLSE gmem_tiled_copy_LSE;
        auto gmem_thr_copy_LSE = gmem_tiled_copy_LSE.get_thread_slice(thread_idx);
        Tensor tLSEsLSE = gmem_thr_copy_LSE.partition_D(sLSE);

        // Construct identity layout for sLSE
        Tensor cLSE = make_identity_tensor(make_shape(size<0>(sLSE), size<1>(sLSE)));    // (NUM_SPLITS, BLK_M) -> (num_splits, blk_m)
        // Repeat the partitioning with identity layouts
        Tensor tLSEcLSE = gmem_thr_copy_LSE.partition_S(cLSE);

        cutlass::arch::wait_on_dependent_grids();

        #pragma unroll
        for (int m = 0; m < size<2>(tLSEcLSE); ++m) {
            int mi = int(get<1>(tLSEcLSE(_0{}, _0{}, m)));
            int idx = m_block * kBlockM + mi;
            if (idx < max_idx) {
                int m_idx, bidh;
                if constexpr (!Varlen) {
                    bidh = params.seqlen_divmod.divmod(m_idx, idx);
                } else {
                    bidh = seqlen_divmod_dynamic.divmod(m_idx, idx);
                }
                Tensor mLSEpartial_cur_copy = mLSEpartial_copy(_, _, m_idx, bidh);
                #pragma unroll
                for (int s = 0; s < size<1>(tLSEcLSE); ++s) {
                    int si = get<0>(tLSEcLSE(_0{}, s, _0{}));
                    // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast<float *>(&(tLSEsLSE(_0{}, s, m))), reinterpret_cast<int>(&(tLSEsLSE(_0{}, s, m))) / 4 % 32);}
                    if (si < num_splits) {
                        cute::copy(gmem_tiled_copy_LSE, mLSEpartial_cur_copy(_, si), tLSEsLSE(_, s, m));
                    } else {
                        cute::fill(tLSEsLSE(_, s, m), -INFINITY);
                    }
                }
            } else {
                // We don't need to zero out the rest of the LSEs, as we will not write the output to gmem
                // cute::fill(tLSEsLSE(_, _, m), -INFINITY);
            }
        }
        if constexpr (Has_cp_async) { cute::cp_async_fence(); }

        // Step 2: Load O_partial from gmem -> smem for split = 0, 1, ..., kStages - 2.
        // We want these async loads to be in flight as we compute the LSE.
        GmemTiledCopyAccum gmem_tiled_copy_O_partial;
        auto gmem_thr_copy_O_partial = gmem_tiled_copy_O_partial.get_thread_slice(thread_idx);
        // Construct identity layout for gO
        Tensor cO = cute::make_identity_tensor(TileShape_MK{});  // (BLK_M,BLK_K) -> (blk_m,blk_k)
        // Repeat the partitioning with identity layouts
        Tensor tOcO = gmem_thr_copy_O_partial.partition_D(cO);
        Tensor mOpartial = make_tensor(make_gmem_ptr(params.ptr_O_partial + offset * get<0>(params.stride_O_partial)),
                                       params.shape_O_partial, params.stride_O_partial)(_, _, _, _, !Varlen ? batch : 0);  // (seqlen, d, num_splits, head)

        // Precompute these values to avoid recomputing them in the loop
        Tensor tOmidx = make_tensor<int>(make_shape(size<1>(tOcO)));
        Tensor tObidh = make_tensor<int>(make_shape(size<1>(tOcO)));
        Tensor tOrOptr = make_tensor<ElementPartial const*>(make_shape(size<1>(tOcO)));
        #pragma unroll
        for (int m = 0; m < size<1>(tOcO); ++m) {
            int mi = get<0>(tOcO(_0{}, m, _0{}));
            int idx = m_block * kBlockM + mi;
            if constexpr (!Varlen) {
                tObidh(m) = params.seqlen_divmod.divmod(tOmidx(m), idx);
            } else {
                tObidh[m] = seqlen_divmod_dynamic.divmod(tOmidx(m), idx);
            }
            tOrOptr[m] = &mOpartial(tOmidx(m), k_block * kBlockK, _0{}, tObidh(m));
            if (idx >= max_idx) {
                tObidh[m] = -1;
            }
        }

        Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOcO)));
        if constexpr (!(Is_even_K)) {
            #pragma unroll
            for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O_partial) - k_block * kBlockK; }
        }

        Tensor tOsOpartial = gmem_thr_copy_O_partial.partition_D(sO);

        auto load_O_partial = [&] (int split, int stage) {
            Tensor tOsOpartial_cur = tOsOpartial(_, _, _, stage);
            #pragma unroll
            for (int m = 0; m < size<1>(tOcO); ++m) {
                if (tObidh(m) >= 0)  {
                    Tensor mOpartial_cur = make_tensor(make_gmem_ptr(tOrOptr[m]), mOpartial(_0{}, _, _, _0{}).layout());
                    Tensor mOpartial_cur_copy = cute::tiled_divide(mOpartial_cur, Shape<Int<kGmemElemsPerLoad>>{});
                    #pragma unroll
                    for (int k = 0; k < size<2>(tOcO); ++k) {
                        int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad;
                        if (Is_even_K || tOpO(k)) {
                            cute::copy(gmem_tiled_copy_O_partial, mOpartial_cur_copy(_, k_idx, split), tOsOpartial_cur(_, m, k));
                        }
                    }
                }
            }
        };

        for (int s = 0; s < kStages - 1; ++s) {
            if (s < num_splits) { load_O_partial(s, s); }
            if constexpr (Has_cp_async) { cute::cp_async_fence(); }
        }

        // Step 3: load and transpose LSE_partial from smem -> rmem
        if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait<kStages - 1>(); }
        __syncthreads();

        S2RTiledCopyLSE s2r_tiled_copy_LSE;
        auto s2r_thr_copy_LSE = s2r_tiled_copy_LSE.get_thread_slice(thread_idx);
        Tensor ts2rsLSE = s2r_thr_copy_LSE.partition_S(sLSE);
        Tensor ts2rrLSE = make_fragment_like(ts2rsLSE);
        cute::copy(s2r_tiled_copy_LSE, ts2rsLSE, ts2rrLSE);

        // Step 4: compute the final LSE along the split dimension
        Tensor lse_sum = make_tensor<float>(make_shape(size<2>(ts2rrLSE)));
        Tensor ts2rcLSE = s2r_thr_copy_LSE.partition_D(cLSE);
        // We compute the max valid split for each row to short-circuit the computation later
        Tensor max_valid_split = make_tensor<int>(make_shape(size<2>(ts2rrLSE)));
        static_assert(CUTE_STATIC_V(size<0>(ts2rrLSE)) == 1);
        #pragma unroll
        for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
            float lse_max = ts2rrLSE(_0{}, _0{}, m);
            #pragma unroll
            for (int s = 1; s < size<1>(ts2rrLSE); ++s) { lse_max = max(lse_max, ts2rrLSE(_0{}, s, m)); }
            MaxOp<float> max_op;
            lse_max = Allreduce<kSmemThreadsPerColLSEt>::run(lse_max, max_op);
            int max_valid_idx = -1;
            #pragma unroll
            for (int s = 0; s < size<1>(ts2rrLSE); ++s) {
                if (ts2rrLSE(_0{}, s, m) != -INFINITY) { max_valid_idx = get<0>(ts2rcLSE(_0{}, s, _0{})); }
            }
            MaxOp<int> max_int_op;
            max_valid_split[m] = Allreduce<kSmemThreadsPerColLSEt>::run(max_valid_idx, max_int_op);
            float lse_max_cur = lse_max == -INFINITY ? 0.0f : lse_max;  // In case all local LSEs are -inf
            float lse_sum_cur = 0.f;
            #pragma unroll
            for (int s = 0; s < size<1>(ts2rrLSE); ++s) {
                float scale = expf(ts2rrLSE(_0{}, s, m) - lse_max_cur);
                lse_sum_cur += scale;
                // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && thread_idx < 32) { printf("thread_idx = %d, m = %d, s = %d, addr = %p, bank = %d\n", thread_idx, m, s, reinterpret_cast<float *>(&(ts2rsLSE(_0{}, s, m))), reinterpret_cast<int>(&(ts2rsLSE(_0{}, s, m))) / 4 % 32);}
                // ts2rsLSE(_0{}, m, s) = scale;
                ts2rrLSE(_0{}, s, m) = scale;
            }
            SumOp<float> sum_op;
            lse_sum_cur = Allreduce<kSmemThreadsPerColLSEt>::run(lse_sum_cur, sum_op);
            lse_sum(m) = logf(lse_sum_cur) + lse_max;
            float inv_sum = (lse_sum_cur == 0.f || lse_sum_cur != lse_sum_cur) ? 0.f : 1.f / lse_sum_cur;
            #pragma unroll
            for (int s = 0; s < size<1>(ts2rrLSE); ++s) { ts2rrLSE(_0{}, s, m) *= inv_sum; }
        }
        // Store the scales exp(lse - lse_logsum) back to smem
        cute::copy(s2r_tiled_copy_LSE, ts2rrLSE, ts2rsLSE);

        // Store max_valid_split to smem
        #pragma unroll
        for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
            if (get<0>(ts2rcLSE(_0{}, _0{}, m)) == 0) {  // Only the thread responsible for s=0 writes to smem
                int mi = int(get<1>(ts2rcLSE(_0{}, _0{}, m)));
                if (mi < kBlockM) { sMaxValidSplit[mi] = max_valid_split[m]; }
            }
        }

        // Step 5: store final LSE back to gmem
        if (k_block == 0) {
            auto shape_LSE = select<0, 2, 3>(params.shape_LSE_partial);
            Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset * get<0>(params.stride_LSE)), shape_LSE, params.stride_LSE)(_, _, !Varlen ? batch : 0);
            #pragma unroll
            for (int m = 0; m < size<2>(ts2rrLSE); ++m) {
                if (get<0>(ts2rcLSE(_0{}, _0{}, m)) == 0) {  // Only the thread responsible for s=0 writes to gmem
                    int mi = int(get<1>(ts2rcLSE(_0{}, _0{}, m)));
                    int idx = m_block * kBlockM + mi;
                    if (idx < max_idx) {
                        int m_idx, bidh;
                        if constexpr (!Varlen) {
                            bidh = params.seqlen_divmod.divmod(m_idx, idx);
                        } else {
                            bidh = seqlen_divmod_dynamic.divmod(m_idx, idx);
                        }
                        // printf("thread_idx = %d, m = %d, mi = %d, idx = %d, m_idx = %d, bidh = %d, bidb = %d, lse_sum = %f\n", thread_idx, m, mi, idx, m_idx, bidh, bidb, lse_sum(m));
                        mLSE(m_idx, bidh) = lse_sum(m);
                    }
                }
            }
        }

        // Step 6: read O_partial from gmem -> smem -> rmem and accumulate the final O
        __syncthreads();
        int thr_max_valid_split = sMaxValidSplit[get<0>(tOcO(_0{}, _0{}, _0{}))];
        #pragma unroll
        for (int m = 1; m < size<1>(tOcO); ++m) { thr_max_valid_split = max(thr_max_valid_split, sMaxValidSplit[get<0>(tOcO(_0{}, m, _0{}))]); }
        Layout tOrOpartial_layout = gmem_thr_copy_O_partial.partition_S(make_tensor<ElementPartial>(TileShape_MK{})).layout();
        Tensor tOrOpartial = make_fragment_like<ElementPartial>(tOrOpartial_layout);
        Tensor tOrO = make_fragment_like<float>(tOrOpartial);
        clear(tOrO);
        int stage_load = kStages - 1, stage_compute = 0;
        #pragma unroll 4 // Already tuned for speed
        for (int s = 0; s <= thr_max_valid_split; ++s) {
            Tensor scale = make_tensor<float>(make_shape(size<1>(tOrOpartial)));
            #pragma unroll
            for (int m = 0; m < size<1>(tOrOpartial); ++m) { scale(m) = sLSE(s, get<0>(tOcO(_0{}, m, _0{}))); }

            if (s + kStages - 1 <= thr_max_valid_split) { load_O_partial(s + kStages - 1, stage_load); }
            if constexpr (Has_cp_async) { cute::cp_async_fence(); }
            stage_load = stage_load < kStages - 1 ? stage_load + 1 : 0;
            if constexpr (Has_cp_async) { cutlass::arch::cp_async_wait<kStages - 1>(); }
            // We don't need __syncthreads() because each thread is just reading its own data from smem
            cute::copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementPartial>{},
                       tOsOpartial(_, _, _, stage_compute), tOrOpartial);
            stage_compute = stage_compute < kStages - 1 ? stage_compute + 1 : 0;

            #pragma unroll
            for (int m = 0; m < size<1>(tOrOpartial); ++m) {
                if (tObidh(m) >= 0 && scale(m) > 0.f) {
                    #pragma unroll
                    for (int k = 0; k < size<2>(tOrOpartial); ++k) {
                        if (Is_even_K || tOpO(k)) {
                            Tensor rOpartial = make_tensor_like<float>(tOrOpartial(_, m, k));
                            flash::convert_type_out(tOrOpartial(_, m, k), rOpartial);
                            #pragma unroll
                            for (int i = 0; i < size<0>(tOrOpartial); ++i) {
                                tOrO(i, m, k) += scale(m) * rOpartial[i];
                            }
                        }
                    }
                }
            }
        }

        // Step 7: Write the final O to gmem
        Tensor rO = make_tensor_like<Element>(tOrO);
        flash::convert_type_out(tOrO, rO);
        auto shape_O = make_shape(get<0>(params.shape_O_partial), get<1>(params.shape_O_partial) - k_block * kBlockK, get<3>(params.shape_O_partial), get<4>(params.shape_O_partial));
        Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset * get<0>(params.stride_O) + k_block * kBlockK * get<1>(params.stride_O)),
                                shape_O, params.stride_O)(_, _, _, !Varlen ? batch : 0);
        Tensor mO_copy = cute::tiled_divide(mO, Shape<_1, Int<kGmemElemsPerLoad>>{});
        GmemTiledCopy gmem_tiled_copy_O;
        auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);

        #pragma unroll
        for (int m = 0; m < size<1>(tOcO); ++m) {
            if (tObidh(m) >= 0)  {
                #pragma unroll
                for (int k = 0; k < size<2>(tOcO); ++k) {
                    int k_idx = get<1>(tOcO(_0{}, _0{}, k)) / kGmemElemsPerLoad;
                    if (Is_even_K || tOpO(k)) {
                        cute::copy(gmem_tiled_copy_O, rO(_, m, k), mO_copy(_, tOmidx(m), k_idx, tObidh(m)));
                    }
                }
            }
        }

    }

};

} // namespace flash