/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include #include "flash.h" inline bool use_one_mma_wg(Flash_fwd_params const& params) { return params.arch >= 90 && params.d == 128 && params.seqlen_q * (!params.pack_gqa ? 1 : params.h / params.h_k) <= 64; }; inline bool should_pack_gqa(bool varlen_q, int seqlen_q, int qhead_per_khead, int blockM) { // If varlen, we don't actually know seqlen_q but only max_seqlen_q. if (varlen_q) return true; // Heuristic: PackGQA is a bit slower but can help if seqlen_q is small or not near a multiple of kBlockM auto round_up = [](int a, int b) { return (a + b - 1) / b * b; }; float nopack_gqa_efficiency = float(seqlen_q) / float(round_up(seqlen_q, blockM)); float pack_gqa_efficiency = float(seqlen_q * qhead_per_khead) / float(round_up(seqlen_q * qhead_per_khead, blockM)); return nopack_gqa_efficiency < 0.9 * pack_gqa_efficiency; }; // Find the number of splits that maximizes the occupancy. For example, if we have // batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is // better than having 3 splits (efficiency = 0.67). However, we also don't want too many // splits as that would incur more HBM reads/writes. // So we find the best efficiency, then find the smallest number of splits that gets 85% // of the best efficiency. inline int num_splits_heuristic(int total_mblocks, int num_SMs, int num_n_blocks, int num_m_blocks, int size_one_kv_head, bool is_causal_or_local, int max_splits) { // If we have enough to almost fill the SMs, then just use 1 split // However, in the case of super long seqlen where each head of KV doesn't even fit into // L2 (we assume that L2 size is 50MB), we want to split. if (total_mblocks >= 0.8f * num_SMs) { int const size_l2 = 50 * 1024 * 1024; // Only split if there are enough queries to go over the KV at least twice // Don't split if causal if (size_one_kv_head > size_l2 && num_m_blocks >= num_SMs * 2 && !is_causal_or_local) { return std::min((size_one_kv_head + size_l2 - 1) / size_l2, max_splits); } else { return 1; } } // If num_n_blocks is too small, use 1 split. For example, we never split for hdim = 128 and seqlen_k = 512. if (num_n_blocks <= 4) { return 1; } max_splits = std::min({max_splits, num_SMs, num_n_blocks}); float max_efficiency = 0.f; std::vector efficiency; efficiency.reserve(max_splits); for (int num_splits = 1; num_splits <= max_splits; num_splits++) { float n_waves = float(total_mblocks * num_splits) / num_SMs; float eff = n_waves / ceil(n_waves); // printf("num_splits = %d, eff = %f\n", num_splits, eff); if (eff > max_efficiency) { max_efficiency = eff; } efficiency.push_back(eff); } for (int num_splits = 1; num_splits <= max_splits; num_splits++) { if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) { // printf("num_splits chosen = %d\n", num_splits); return num_splits; } } return 1; }