File size: 24,837 Bytes
44d9cf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
from __future__ import annotations
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from typing import List, Tuple, Optional, Union
import PIL
from transformers import AutoTokenizer, AutoConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from friday.model.vision_adapter import MLPAdapter
from friday.model.vision_tower import (
SiglipVisionTower,
SiglipVisionTowerS2,
FastVitVisionTower,
FastVitVisionTowerS2
)
from friday.model.language_model.phi4 import (
Phi3Config,
Phi3Model,
Phi3ForCausalLM
)
from friday.constants import (
IMAGE_TOKEN,
IMG_START_TOKEN,
IMG_END_TOKEN,
IGNORE_INDEX
)
DEFAULT_CFG_SPECIAL_TOKENS = {
"image_token_id": 200029,
"image_start_token_id": 200030,
"image_end_token_id": 200031,
}
DEFAULT_CFG_VISION_TOWER = {
"pretrained_model_name_or_path": "kevin510/fast-vit-hd",
"type": "fastvit",
"s2_scales": "512,1024",
"use_s2": True,
"pad_to_square": True,
"freeze": False,
"model_params": { "trust_remote_code": True }
}
DEFAULT_CFG_VISION_ADAPTER = {
"input_dim": 6144,
"hidden_dim": 3072,
"output_dim": 3072,
"layers": 2,
"activation": "gelu",
"freeze": False,
}
class FridayConfig(Phi3Config):
model_type = "friday"
def __init__(self,
base_model_name_or_path: str | None = "microsoft/Phi-4-mini-reasoning",
delay_load=False,
tokenizer_model_max_length=None,
**kwargs
):
base_kwargs = {}
if base_model_name_or_path is not None:
base_cfg = AutoConfig.from_pretrained(
base_model_name_or_path,
trust_remote_code=True, # Phiβ4 uses custom code in the repo
)
base_kwargs = base_cfg.to_dict()
merged = {**base_kwargs, **kwargs}
self.delay_load = delay_load
self.tokenizer_model_max_length = tokenizer_model_max_length
self._cfg_vision_tower = DEFAULT_CFG_VISION_TOWER.copy()
if "cfg_vision_tower" in kwargs:
self._cfg_vision_tower.update(kwargs["cfg_vision_tower"])
self._cfg_vision_adapter = DEFAULT_CFG_VISION_ADAPTER.copy()
if "cfg_vision_adapter" in kwargs:
self._cfg_vision_adapter.update(kwargs["cfg_vision_adapter"])
self._cfg_special_tokens = DEFAULT_CFG_SPECIAL_TOKENS.copy()
if "cfg_special_tokens" in kwargs:
self._cfg_special_tokens.update(kwargs["cfg_special_tokens"])
super().__init__(**merged)
@property
def cfg_vision_tower(self):
return self._cfg_vision_tower
@cfg_vision_tower.setter
def cfg_vision_tower(self, value):
if not value:
raise ValueError("Name cannot be empty")
self._cfg_vision_tower.update(value)
@property
def cfg_vision_adapter(self):
return self._cfg_vision_adapter
@cfg_vision_adapter.setter
def cfg_vision_adapter(self, value):
if not value:
raise ValueError("Name cannot be empty")
self._cfg_vision_adapter.update(value)
@property
def cfg_special_tokens(self):
return self._cfg_special_tokens
@cfg_special_tokens.setter
def cfg_special_tokens(self, value):
if not value:
raise ValueError("Name cannot be empty")
self._cfg_special_tokens.update(value)
class FridayModel(Phi3Model):
config_class = FridayConfig
def __init__(self, config: FridayConfig):
super().__init__(config)
self.cfg_vision_adapter = config.cfg_vision_adapter
self.cfg_vision_tower = config.cfg_vision_tower
self.vision_tower = None
self.mm_projector = None
if not config.delay_load:
self.initialize_vision_modules()
def get_vision_tower(self):
return self.vision_tower
def initialize_vision_modules(self):
if self.vision_tower is not None:
return
if self.cfg_vision_tower.get("type", "siglip").lower() == "siglip":
if self.cfg_vision_tower.get("use_s2", True):
self.vision_tower = SiglipVisionTowerS2(**self.cfg_vision_tower)
else:
self.vision_tower = SiglipVisionTower(**self.cfg_vision_tower)
elif self.cfg_vision_tower.get("type", "siglip").lower() == "fastvit":
if self.cfg_vision_tower.get("use_s2", True):
self.vision_tower = FastVitVisionTowerS2(**self.cfg_vision_tower)
else:
self.vision_tower = FastVitVisionTower(**self.cfg_vision_tower)
else:
raise ValueError(f"Unsupported vision tower type: {self.cfg_vision_tower.get('type', 'siglip')}. Supported types are 'siglip' and 'fastvit'.")
self.vision_tower.load_model()
self.mm_projector = MLPAdapter(**self.cfg_vision_adapter)
if self.cfg_vision_tower.get("freeze", False):
self.set_vision_tower_requires_grad(False)
if self.cfg_vision_adapter.get("freeze", False):
self.set_vision_adapter_requires_grad(False)
def compute_image_features(self, imgs: torch.Tensor) -> torch.Tensor:
features = self.vision_tower(imgs)
if isinstance(features, list):
features = torch.stack(features, dim=1)
return self.mm_projector(features)
def set_vision_tower_requires_grad(self, requires_grad: bool):
if self.vision_tower is not None:
for param in self.vision_tower.parameters():
param.requires_grad = requires_grad
else:
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
def set_vision_adapter_requires_grad(self, requires_grad: bool):
if self.mm_projector is not None:
for param in self.mm_projector.parameters():
param.requires_grad = requires_grad
else:
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
def set_vision_tower_dtype(self, dtype: torch.dtype):
if self.vision_tower is not None:
for p in self.vision_tower.parameters():
p.data = p.data.to(dtype)
else:
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
def set_vision_adapter_dtype(self, dtype: torch.dtype):
if self.mm_projector is not None:
for p in self.mm_projector.parameters():
p.data = p.data.to(dtype)
else:
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
def is_vision_tower_frozen(self):
if self.vision_tower is not None:
return all(not p.requires_grad for p in self.vision_tower.parameters())
else:
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
def is_vision_adapter_frozen(self):
if self.mm_projector is not None:
return all(not p.requires_grad for p in self.mm_projector.parameters())
else:
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
class FridayForCausalLM(Phi3ForCausalLM):
config_class = FridayConfig
def __init__(self, config: FridayConfig):
super().__init__(config)
self.config = config
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.image_token_id = config.cfg_special_tokens["image_token_id"]
self.image_start_id = config.cfg_special_tokens["image_start_token_id"]
self.image_end_id = config.cfg_special_tokens["image_end_token_id"]
self.model = FridayModel(config)
self.post_init()
def get_model(self) -> FridayModel:
return self.model
def get_vision_tower(self) -> SiglipVisionTower:
return self.model.get_vision_tower()
def get_vision_adapter(self) -> MLPAdapter:
return self.model.mm_projector
def get_llm_parameters(self, exclude_lora: bool = False):
return [
p for n, p in self.named_parameters()
if "vision_tower" not in n and "mm_projector" not in n and (not exclude_lora or ("lora_" not in n))
]
def get_llm_named_modules(self):
return {n: m for n, m in self.named_modules() if "vision_tower" not in n and "mm_projector" not in n}
def set_llm_requires_grad(self, requires_grad: bool, exclude_lora: bool = True):
for n, p in self.named_parameters():
if exclude_lora and ("lora_A" in n or "lora_B" in n):
continue
if "vision_tower" in n or "mm_projector" in n:
continue
p.requires_grad = requires_grad
def set_vision_tower_requires_grad(self, requires_grad: bool):
self.model.set_vision_tower_requires_grad(requires_grad)
def set_vision_adapter_requires_grad(self, requires_grad: bool):
self.model.set_vision_adapter_requires_grad(requires_grad)
def set_llm_dtype(self, dtype: torch.dtype):
for p in self.get_llm_parameters():
p.data = p.data.to(dtype)
def set_vision_tower_dtype(self, dtype: torch.dtype):
self.model.set_vision_tower_dtype(dtype)
def set_vision_adapter_dtype(self, dtype: torch.dtype):
self.model.set_vision_adapter_dtype(dtype)
def is_llm_frozen(self):
return all(not p.requires_grad for p in self.get_llm_parameters())
def is_vision_tower_frozen(self):
return self.model.is_vision_tower_frozen()
def is_vision_adapter_frozen(self):
return self.model.is_vision_adapter_frozen()
def initialize_vision_modules(self):
self.model.initialize_vision_modules()
def get_multimodal_input_embeddings(self, input_ids, image_features, return_labels=True) -> torch.Tensor:
emb_start_image_id = self.model.embed_tokens(torch.tensor([self.image_start_id], device=self.device))
emb_end_image_id = self.model.embed_tokens(torch.tensor([self.image_end_id], device=self.device))
id_ignore = torch.tensor([IGNORE_INDEX], device=self.device)
# repetitionβpenalty safety ????
# input_ids[input_ids == self.image_token_id] = 0
# Iterate over each batch item
embeds_list, labels_list = [], []
for batch_id, item_ids in enumerate(input_ids):
image_token_positions = (item_ids == self.image_token_id).nonzero(as_tuple=True)[0]
if len(image_token_positions) != image_features[batch_id].shape[0]:
raise ValueError(
f"Mismatch between number of image tokens ({len(image_token_positions)}) and number of image features ({image_features[batch_id].shape[0]})"
)
cursor = 0
emb_parts, lbl_parts = [], []
for indx_image, image_token_pos in enumerate(image_token_positions):
if image_token_pos > cursor:
span = item_ids[cursor:image_token_pos]
emb_parts.append(self.model.embed_tokens(span))
lbl_parts.append(span)
# <image_start>
emb_parts.append(emb_start_image_id)
lbl_parts.append(id_ignore)
# vision embeddings
image_tokens = image_features[batch_id][indx_image]
if image_tokens.shape[0] == 1 and image_tokens.ndim == 3:
image_tokens = image_tokens.squeeze(0)
emb_parts.append(image_tokens)
lbl_parts.append(id_ignore.repeat(image_tokens.shape[0]))
# <image_end>
emb_parts.append(emb_end_image_id)
lbl_parts.append(id_ignore)
cursor = image_token_pos + 1
# tail text
if cursor < item_ids.shape[0]:
tail = item_ids[cursor:]
emb_parts.append(self.model.embed_tokens(tail))
lbl_parts.append(tail)
embeds_list.append(torch.cat(emb_parts, dim=0))
labels_list.append(torch.cat(lbl_parts, dim=0))
return (embeds_list, labels_list) if return_labels else embeds_list
def prepare_inputs_for_multimodal(
self,
input_ids: torch.LongTensor,
images: List[List[PIL.Image.Image]], # B x N
position_ids: Optional[torch.LongTensor],
attention_mask: Optional[torch.Tensor],
past_key_values: Optional[List[torch.FloatTensor]],
labels: Optional[torch.LongTensor],
) -> Tuple[Optional[torch.Tensor], Optional[torch.LongTensor], Optional[torch.Tensor], Optional[List[torch.FloatTensor]], torch.Tensor, Optional[torch.Tensor]]:
# βββββββββββββββββββ early return (no image / streaming step) βββββββββββββββββββ
# if we have already processed images and are in a streaming step we can skip the multimodal processing
# but we need to ensure the attention mask and position ids are correct
if past_key_values is not None and attention_mask is not None and input_ids.shape[1] == 1:
tgt = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat(
[attention_mask,
torch.ones((attention_mask.size(0),
tgt - attention_mask.size(1)),
dtype=attention_mask.dtype,
device=attention_mask.device)],
dim=1,
)
position_ids = (attention_mask.sum(dim=1, keepdim=True) - 1).long()
return input_ids, position_ids, attention_mask, past_key_values, None, labels
# βββββββββββββββββββββββββββ images: (B, N) βββββββββββββββββββββββββββ
if isinstance(images, list) and isinstance(images[0], list):
# images is a list of lists, each containing multiple images, B x N
# e.g. [[img1, img2], [img3, img4]]
assert len(images) == input_ids.shape[0], f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
image_features = []
for sublst_images in images:
if len(sublst_images) == 0:
image_features.append(torch.zeros((0, self.get_model().mm_projector.output_dim), device=self.device))
else:
if isinstance(sublst_images[0], PIL.Image.Image):
image_features.append(
self.model.compute_image_features(
self.model.vision_tower.preprocess_images(sublst_images, pad_and_stack_tensors=True)
)
)
elif isinstance(sublst_images[0], torch.Tensor):
# This should be a list of tensors of pre-processed images, [(N X 3 X W x H), ...]
image_features.append(
self.model.compute_image_features(sublst_images)
)
elif isinstance(images, list) and isinstance(images[0], PIL.Image.Image):
# images is a list of images for a single batch item, 1 x N
# e.g. [img1, img2, img3]
assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
image_features = [
self.model.compute_image_features(
self.model.vision_tower.preprocess_images(images, pad_and_stack_tensors=True)
)
]
elif isinstance(images, list) and isinstance(images[0], torch.Tensor):
# This should be a list of tensors of pre-processed images, [(N X 3 X W x H), ...]
# The list length should match the batch size
assert input_ids.shape[0] == len(images), f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
image_features = [
self.model.compute_image_features(imgs) for imgs in images
]
elif isinstance(images, PIL.Image.Image):
# images is a single image, 1 x 1
# e.g. img1
assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
image_features = [
self.model.compute_image_features(
self.model.vision_tower.preprocess_images([images])
)
]
else:
raise ValueError(f"Unsupported images format: {type(images)}. Expected list of PIL images, a single PIL image or a Tensor of pre-processed images")
# βββββββββββββββββββββββββββ image_features: (B x N x D) βββββββββββββββββββββββββββ
if isinstance(image_features, list):
assert input_ids.shape[0] == len(image_features), f"Incorrectly formatted image_features: list length should match batch size"
assert isinstance(image_features[0], torch.Tensor), f"Incorrectly formatted image_features: list items should be tensors"
elif isinstance(image_features, torch.Tensor):
assert input_ids.shape[0] == image_features.shape[0], f"Incorrectly formatted image_features: tensor should match batch size"
# βββββββββββββββββββββββββββββ pad handling prelims ββββββββββββββββββββββββββββββ
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
input_ids_nopad = [ids[mask] for ids, mask in zip(input_ids, attention_mask)]
embeds_list, labels_list = self.get_multimodal_input_embeddings(
input_ids_nopad,
image_features,
return_labels=True
)
# βββββββββββββββββββββ truncate then pad back to rectangle ββββββββββββββββββββββ
new_input_embeds = torch.nn.utils.rnn.pad_sequence(
embeds_list,
batch_first=True,
padding_value=0.0
).to(dtype=self.dtype)
new_labels = torch.nn.utils.rnn.pad_sequence(
labels_list,
batch_first=True,
padding_value=IGNORE_INDEX
).long()
if self.config.tokenizer_model_max_length is not None:
new_input_embeds = new_input_embeds[:, :self.config.tokenizer_model_max_length]
new_labels = new_labels[:, :self.config.tokenizer_model_max_length]
# ββββββββββββββββββββββββββββββ attention mask and position ids ββββββββββββββββ
attention_mask = (
torch.arange(new_input_embeds.size(1), device=input_ids.device)
.unsqueeze(0)
< torch.tensor([e.size(0) for e in embeds_list],
device=input_ids.device).unsqueeze(1)
)
raw_pos = attention_mask.cumsum(dim=1) - 1
position_ids = raw_pos.masked_fill(~attention_mask, 0).long()
if not self.training:
new_labels = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
# ------------------------------------------------------------------
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
images: Optional[PIL.Image.Image] = None,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
is_multi_modal = images is not None and not (
(
isinstance(images, list) and (len(images) == 0 or all(i == [] for i in images))
)
)
if inputs_embeds is None and is_multi_modal:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_for_multimodal(
input_ids=input_ids,
images=images,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
labels=labels,
)
if cache_position is not None and inputs_embeds is not None and cache_position.shape[0] != inputs_embeds.shape[1]:
cache_position = torch.arange(inputs_embeds.shape[1], device=self.device)
return Phi3ForCausalLM.forward(
self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs
)
def print_device_configuration(self):
print("*************Device Configuration*********")
if len(self.get_llm_parameters()) > 0:
llm_device = set({str(p.device) for p in self.get_llm_parameters()})
llm_dtype = set({p.dtype for p in self.get_llm_parameters()})
print(f"LLM Parameters:\t\t\tdevice: {llm_device}\tdtype: {llm_dtype}\tfrozen: {self.is_llm_frozen()}")
else:
print("LLM parameters have not been initialized")
if self.get_model().vision_tower is not None:
vt_device = set({str(p.device) for p in self.get_model().vision_tower.parameters()})
vt_dtype = set({p.dtype for p in self.get_model().vision_tower.parameters()})
print(f"Vision Tower Parameters:\tdevice: {vt_device}\tdtype: {vt_dtype}\tfrozen: {self.is_vision_tower_frozen()}")
else:
print("Vision tower parameters have not been initialized")
if self.get_model().mm_projector is not None:
mm_device = set({str(p.device) for p in self.get_model().mm_projector.parameters()})
mm_dtype = set({p.dtype for p in self.get_model().mm_projector.parameters()})
print(f"MM Projector Parameters:\tdevice: {mm_device}\tdtype: {mm_dtype}\tfrozen: {self.is_vision_adapter_frozen()}")
else:
print("MM Projector parameters have not been initialized")
print("******************************************")
def build_tokenizer(base_model_id: str) -> Tuple[AutoTokenizer, dict]:
tok = AutoTokenizer.from_pretrained(base_model_id, padding_side="right")
specials = {t: tok.convert_tokens_to_ids(t) for t in [IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN] if t in tok.vocab}
if len(specials) < 3:
n = tok.add_tokens([IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN], special_tokens=True)
tok.pad_token = tok.eos_token
specials = {
"image": tok.convert_tokens_to_ids(IMAGE_TOKEN),
"start": tok.convert_tokens_to_ids(IMG_START_TOKEN),
"end": tok.convert_tokens_to_ids(IMG_END_TOKEN),
}
return tok, specials
|