File size: 48,562 Bytes
f14f6e2
 
3ab8676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d0825c
3ab8676
 
 
 
 
 
 
 
 
 
 
 
 
6019dc7
 
 
3ab8676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c003f1
3ab8676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
from __future__ import annotations

# Model Constants
IMAGE_TOKEN = "<image>"
IMG_START_TOKEN   = "<img_start>"
IMG_END_TOKEN     = "<img_end>"
IGNORE_INDEX      = -100
PAD_FOR_EOS       = -300





import torch
import torch.nn.functional as F

from PIL import Image


import torch

def mask_token_segment(
               start_id: int,
               end_id: int,
               input_ids: torch.Tensor,
               fill_value: int = -100):
    """
    Replace *every* token from each `start_id` **through** its matching `end_id`
    (boundaries included) with `fill_value`.  Any spans that start with some
    other token are left untouched.

    Works on CUDA, TorchScript, batched via vmap, etc.β€”no Python loops.
    """
    if input_ids.dim() != 1:
        raise ValueError("`input_ids` must be 1-D")

    device = input_ids.device
    n       = input_ids.size(0)

    # where the *target* start-tokens and end-tokens sit
    start_pos = (input_ids == start_id).nonzero(as_tuple=True)[0]      # ascending
    end_pos   = (input_ids == end_id).nonzero(as_tuple=True)[0]        # ascending

    if start_pos.numel() == 0:
        return input_ids.clone()

    # ── pair every start with the first end that comes *after* it ────────────────
    # searchsorted gives the insertion index into the (sorted) end positions
    idx_in_end = torch.searchsorted(end_pos, start_pos, right=False)

    have_match = idx_in_end < end_pos.size(0)                # safety: drop unmatched
    start_pos  = start_pos[have_match]
    end_pos    = end_pos[idx_in_end[have_match]]

    # (rare) guard against pathological orderings
    keep = end_pos > start_pos
    start_pos, end_pos = start_pos[keep], end_pos[keep]

    if start_pos.numel() == 0:
        return input_ids

    # ── differential β€œscan-line” trick to build the span mask in O(N) ───────────
    # +1 at each start index, -1 at the element *after* each end
    delta = torch.zeros(n + 1, dtype=torch.int8, device=device)
    delta[start_pos]        += 1
    delta[end_pos + 1]      -= 1          # +1 is safe because delta is length n+1

    inside = torch.cumsum(delta[:-1], dim=0) > 0   # boolean mask, incl. boundaries

    # ── apply ────────────────────────────────────────────────────────────────────
    out = input_ids.clone()
    out[inside] = fill_value
    return out



def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                print(name, 'no ignore status')
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


# Borrowed from peft.util.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
    if bias == "none":
        to_return = {k: t for k, t in named_params if "lora_" in k}
    elif bias == "all":
        to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
    elif bias == "lora_only":
        to_return = {}
        maybe_lora_bias = {}
        lora_bias_names = set()
        for k, t in named_params:
            if "lora_" in k:
                to_return[k] = t
                bias_name = k.split("lora_")[0] + "bias"
                lora_bias_names.add(bias_name)
            elif "bias" in k:
                maybe_lora_bias[k] = t
        for k, t in maybe_lora_bias:
            if bias_name in lora_bias_names:
                to_return[bias_name] = t
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
    return to_return


def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
    to_return = {k: t for k, t in named_params if "lora_" not in k}
    if require_grad_only:
        to_return = {k: t for k, t in to_return.items() if t.requires_grad}
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def find_all_linear_names(modules):
    lora_module_names = set()
    for name, module in modules():
        if isinstance(module, torch.nn.Linear):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if 'lm_head' in lora_module_names:  # needed for 16-bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result

def pad_and_stack(img_list, pad_value=0.0):
    """
    img_list : list[Tensor]  each (C, H, W) already *normalised*
    pad_value: float or tuple/list of 3 floats (one per channel)
               Use 0.0 if your processor has already centred to mean 0.
    Returns
    -------
    batch : Tensor  (B, C, H_max, W_max)
    """

    # 1. target square size ---------------------------------------------------
    h_max = max(t.shape[1] for t in img_list)
    w_max = max(t.shape[2] for t in img_list)
    H, W  = max(h_max, w_max), max(h_max, w_max)

    # 2. create padded copies -------------------------------------------------
    padded = []
    for img in img_list:
        c, h, w = img.shape
        canvas   = img.new_full((c, H, W), pad_value)     # filled with mean/zeros
        canvas[:, :h, :w] = img                    # top-left corner
        padded.append(canvas)

    return torch.stack(padded, 0)                  # (B,C,H,W)





#  ------------------------------------------------------------------------------------------
#  Copyright (c) 2024 Baifeng Shi.
#  All rights reserved.
#
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------

import torch

def split_chessboard(x, num_split):
    """
        x: b * c * h * w
        Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension
    """
    B, C, H, W = x.shape
    assert H % num_split == 0 and W % num_split == 0
    h, w = H // num_split, W // num_split
    x_split = torch.cat([x[:, :, i*h:(i+1)*h, j*w:(j+1)*w] for i in range(num_split) for j in range(num_split)], dim=0)
    return x_split

def merge_chessboard(x, num_split):
    """
        x: b * c * h * w
        Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square.
        (inverse of split_chessboard)
    """
    B, C, H, W = x.shape
    assert B % (num_split**2) == 0
    b = B // (num_split**2)
    x_merge = torch.cat([torch.cat([x[(i*num_split + j)*b:(i*num_split + j + 1)*b] for j in range(num_split)], dim=-1)
                         for i in range(num_split)], dim=-2)
    return x_merge

def batched_forward(model, x, batch_size=-1):
    if batch_size == -1:
        return model(x)
    else:
        x_batched = x.split(batch_size)
        outs = [model(x) for x in x_batched]
        return torch.cat(outs, dim=0)







#  ------------------------------------------------------------------------------------------
#  Copyright (c) 2024 Baifeng Shi.
#  All rights reserved.
#
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------

import math
import torch
import torch.nn.functional as F
from einops import rearrange

def multiscale_forward(model, input, scales=None, img_sizes=None, max_split_size=None, resize_output_to_idx=0, num_prefix_token=0,
            output_shape='bnc', split_forward=False):

    # print(f"Input shape: {input.shape}")

    assert input.dim() == 4, "Input image must be in the shape of BxCxHxW."
    assert input.shape[2] == input.shape[3], "Currently only square images are supported."
    assert output_shape in ['bnc', 'bchw'], "Output shape should be either BxNxC (e.g., ViT) or BxCxHxW (e.g., ConvNet)."
    assert output_shape == 'bnc' or num_prefix_token == 0, "For ConvNet there shouldn't be any prefix token."

    b, c, input_size, _ = input.shape

    # image size for each scale
    assert scales is not None or img_sizes is not None, "Please assign either scales or img_sizes."
    img_sizes = img_sizes or [int(input_size * scale) for scale in scales]

    # prepare multiscale inputs
    max_split_size = max_split_size or input_size   # The maximum size of each split of image. Set as the input size by default
    num_splits = [math.ceil(size / max_split_size) for size in img_sizes]   # number of splits each scale
    input_multiscale = []
    for size, num_split in zip(img_sizes, num_splits):
        x = F.interpolate(input.to(torch.float32), size=size, mode='bicubic').to(input.dtype)
        x = split_chessboard(x, num_split=num_split)
        input_multiscale.append(x)

    # run feedforward on each scale
    outs_multiscale = [batched_forward(model, x, b) if split_forward else model(x) for x in input_multiscale]
    if num_prefix_token > 0:
        outs_prefix_multiscale = [out[:, :num_prefix_token] for out in outs_multiscale]
        outs_multiscale = [out[:, num_prefix_token:] for out in outs_multiscale]
    if output_shape == 'bnc':
        outs_multiscale = [rearrange(out, 'b (h w) c -> b c h w', h=int(out.shape[1] ** 0.5), w=int(out.shape[1] ** 0.5))
                           for out in outs_multiscale]

    # merge outputs of different splits for each scale separately
    outs_multiscale = [merge_chessboard(out, num_split=num_split) for num_split, out in zip(num_splits, outs_multiscale)]

    # interpolate outputs from different scales and concat together
    output_size = outs_multiscale[resize_output_to_idx].shape[-2]
    out = torch.cat([F.interpolate(outs_multiscale[i].to(torch.float32), size=output_size,
                                   mode='area').to(outs_multiscale[i].dtype)
                     for i in range(len(outs_multiscale))], dim=1)
    if output_shape == 'bnc':
        out = rearrange(out, 'b c h w -> b (h w) c')
    if num_prefix_token > 0:
        # take the mean of prefix tokens from different splits for each scale
        outs_prefix_multiscale = [torch.stack(out.split(b, dim=0), dim=0).mean(dim=0) for out in outs_prefix_multiscale]
        out_prefix_multiscale = torch.cat(outs_prefix_multiscale, dim=-1)
        out = torch.cat([out_prefix_multiscale, out], dim=1)

    return out





import torch
import torch.nn as nn

class MLPAdapter(nn.Module):

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, activation='gelu', checkpoint_path=None, device=None, **kwargs):
        """
        Initialize the MLPAdapter with the given dimensions and activation function.

        Args:
            input_dim (int): Input dimension.
            hidden_dim (int): Hidden dimension.
            output_dim (int): Output dimension.
            layers (int): Number of layers in the MLP.
            activation (str): Activation function to use ('gelu' or 'relu').
        """
        super().__init__()
        self.num_layers = num_layers
        self.activation = activation
        self.output_dim = output_dim

        # Define the first layer
        layers_list = [nn.Linear(input_dim, hidden_dim, device=device)]
        if activation == 'gelu':
            layers_list.append(nn.GELU())
        elif activation == 'relu':
            layers_list.append(nn.ReLU())
        else:
            raise ValueError("Unsupported activation function. Use 'gelu' or 'relu'.")
        
        # Define the subsequent layers
        for _ in range(1, num_layers):
            layers_list.append(nn.Linear(hidden_dim, hidden_dim, device=device))
            if activation == 'gelu':
                layers_list.append(nn.GELU())
            elif activation == 'relu':
                layers_list.append(nn.ReLU())
        
        # Define the final output layer
        layers_list.append(nn.Linear(hidden_dim, output_dim, device=device))
        self.mlp = nn.Sequential(*layers_list)

        # Load checkpoint if provided
        if checkpoint_path:
            self.load_state_dict(torch.load(checkpoint_path, map_location=device), strict=False)
            print(f"Loaded MLPAdapter from {checkpoint_path}")
        
        if device:
            self.to(device)

    def forward(self, x):
        """
        Forward pass through the MLPAdapter.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            torch.Tensor: Output tensor after passing through the MLP.
        """
        return self.mlp(x)
    



import torch
import torch.nn as nn
import torch.nn.functional as F

import PIL.Image
from typing import List

from transformers import AutoModel, AutoImageProcessor


class FastVitVisionTower(nn.Module):
    def __init__(self, pretrained_model_name_or_path, model_params={}, pad_to_square=True, **kwargs):
        super().__init__()

        self.is_loaded = False
        self.pretrained_model_name_or_path = pretrained_model_name_or_path
        self.model_params = model_params
        self.pad_to_square = pad_to_square
        self.load_model()

    @property
    def output_dim(self):
        return self.vision_tower.config.embed_dim if self.vision_tower else None
    
    def load_model(self):
        if self.is_loaded:
            return
        self.image_processor = AutoImageProcessor.from_pretrained(self.pretrained_model_name_or_path)
        self.image_processor.crop_size = self.image_processor.size
        self.vision_tower = AutoModel.from_pretrained(
            self.pretrained_model_name_or_path,
            **self.model_params,
        )
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True
    
    def preprocess_images(self, imgs: List[PIL.Image.Image], pad_and_stack_tensors=True) -> torch.Tensor:
        img_mean = tuple(int(x * 255) for x in self.image_processor.image_mean)
        if self.pad_to_square:
            imgs = [expand2square(img, img_mean) for img in imgs]
        
        imgs = [self.image_processor(img, do_resize=True, do_center_crop=False, return_tensors="pt")['pixel_values'][0] for img in imgs]
        

        if pad_and_stack_tensors:
            imgs = pad_and_stack(imgs, pad_value=0.0)
            imgs = imgs.to(dtype=torch.float32, device=self.device)
        
        return imgs

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.vision_tower(
                    image.to(device=self.device, dtype=self.dtype).unsqueeze(0)
                )
                image_features.append(image_feature)
        else:
            image_features = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype),
            )

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.embed_dim, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.embed_dim

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


class FastVitVisionTowerS2(FastVitVisionTower):
    def __init__(self, pretrained_model_name_or_path, s2_scales, model_params={}, **kwargs):
        self.s2_scales = list(map(int, s2_scales.split(',')))
        self.s2_scales.sort()
        self.s2_split_size = self.s2_scales[0]
        self.s2_image_size = self.s2_scales[-1]

        super().__init__(pretrained_model_name_or_path, model_params)

        self.multiscale_forward = multiscale_forward
    
    @property
    def output_dim(self):
        return (2*self.vision_tower.config.embed_dim) if self.vision_tower else None

    def load_model(self):
        if self.is_loaded:
            return
        
        super().load_model()
        self.image_processor.size = self.image_processor.crop_size = {
            "height": self.s2_image_size,
            "width":  self.s2_image_size
        }

    def forward_feature(self, images):
        image_size = self.vision_tower.config.image_size
        if images.shape[2] != image_size or images.shape[3] != image_size:
            images = F.interpolate(
                images,
                size=(image_size, image_size),
                mode="bilinear",
                align_corners=False,
                antialias=True
            )    

        return self.vision_tower(
            images.to(device=self.device, dtype=self.dtype),
        )

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.multiscale_forward(
                    self.forward_feature, 
                    image.unsqueeze(0),
                    img_sizes=self.s2_scales, 
                    max_split_size=self.s2_split_size
                )
                image_features.append(image_feature)
        else:
            image_features = self.multiscale_forward(
                self.forward_feature, 
                images, 
                img_sizes=self.s2_scales,
                max_split_size=self.s2_split_size
            )

        return image_features

    @property
    def hidden_size(self):
        return self.config.embed_dim * len(self.s2_scales)





import torch
import torch.nn as nn

import PIL.Image
from typing import List

from transformers import SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig


class SiglipVisionTower(nn.Module):
    def __init__(self, pretrained_model_name_or_path, model_params={}, pad_to_square=True, **kwargs):
        super().__init__()

        self.is_loaded = False
        self.pretrained_model_name_or_path = pretrained_model_name_or_path
        self.model_params = model_params
        self.pad_to_square = pad_to_square
        self.select_layer = -2
        self.load_model()

    @property
    def output_dim(self):
        return self.vision_tower.config.hidden_size if self.vision_tower else None
    
    def load_model(self):
        if self.is_loaded:
            return
        self.image_processor = SiglipImageProcessor.from_pretrained(self.pretrained_model_name_or_path)
        self.image_processor.crop_size = self.image_processor.size
        self.vision_tower = SiglipVisionModel.from_pretrained(
            self.pretrained_model_name_or_path,
            **self.model_params,
        )
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True
    
    def preprocess_images(self, imgs: List[PIL.Image.Image], pad_and_stack_tensors=True) -> torch.Tensor:
        img_mean = tuple(int(x * 255) for x in self.image_processor.image_mean)
        if self.pad_to_square:
            imgs = [expand2square(img, img_mean) for img in imgs]
        imgs = [self.image_processor(img, return_tensors="pt")['pixel_values'][0] for img in imgs]

        if pad_and_stack_tensors:
            imgs = pad_and_stack(imgs, pad_value=0.0)
            imgs = imgs.to(dtype=torch.float32, device=self.device)
        
        return imgs

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]

        return image_features

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                                                      output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype),
                                                   output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


class SiglipVisionTowerS2(SiglipVisionTower):
    def __init__(self, pretrained_model_name_or_path, s2_scales, model_params={}, **kwargs):
        self.s2_scales = list(map(int, s2_scales.split(',')))
        self.s2_scales.sort()
        self.s2_split_size = self.s2_scales[0]
        self.s2_image_size = self.s2_scales[-1]

        super().__init__(pretrained_model_name_or_path, model_params)

        self.multiscale_forward = multiscale_forward

        self.image_processor.size['height'] = self.image_processor.size['width'] = self.s2_image_size
        self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
    
    @property
    def output_dim(self):
        return (2*self.vision_tower.config.hidden_size) if self.vision_tower else None

    def load_model(self):
        if self.is_loaded:
            return
        
        super().load_model()
        self.image_processor.size['height'] = self.image_processor.size['width'] = self.s2_image_size
        self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size

    def forward_feature(self, images):
        image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype),
                                               output_hidden_states=True)
        image_features = self.feature_select(image_forward_outs).to(images.dtype)
        return image_features

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.multiscale_forward(
                    self.forward_feature, 
                    image.unsqueeze(0),
                    img_sizes=self.s2_scales, 
                    max_split_size=self.s2_split_size
                )
                image_features.append(image_feature)
        else:
            image_features = self.multiscale_forward(
                self.forward_feature, 
                images, 
                img_sizes=self.s2_scales,
                max_split_size=self.s2_split_size
            )

        return image_features

    @property
    def hidden_size(self):
        return self.config.hidden_size * len(self.s2_scales)







import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms

from typing import List, Tuple, Optional, Union

import PIL

from transformers import AutoTokenizer, AutoConfig
from transformers.modeling_outputs import CausalLMOutputWithPast

from .configuration_phi3 import Phi3Config
from .modeling_phi3 import Phi3Model, Phi3ForCausalLM


DEFAULT_CFG_SPECIAL_TOKENS = {
    "image_token_id": 200029,
    "image_start_token_id": 200030,
    "image_end_token_id": 200031,
}
DEFAULT_CFG_VISION_TOWER = {
    "pretrained_model_name_or_path": "kevin510/fast-vit-hd",
    "type": "fastvit",
    "s2_scales": "512,1024",
    "use_s2": True,
    "pad_to_square": True,
    "freeze": False,
    "model_params": { "trust_remote_code": True }
}
DEFAULT_CFG_VISION_ADAPTER = {
    "input_dim": 6144,
    "hidden_dim": 3072,
    "output_dim": 3072,
    "layers": 2,
    "activation": "gelu",
    "freeze": False,
}


class FridayConfig(Phi3Config):
    model_type = "friday"

    def __init__(self, 
            base_model_name_or_path: str | None = "microsoft/Phi-4-mini-reasoning",
            delay_load=False, 
            tokenizer_model_max_length=None,
            **kwargs
        ):
        base_kwargs = {}
        if base_model_name_or_path is not None:
            base_cfg = Phi3Config.from_pretrained(
                base_model_name_or_path,
                trust_remote_code=True,   # Phi‑4 uses custom code in the repo
            )
            base_kwargs = base_cfg.to_dict()

        merged = {**base_kwargs, **kwargs}
        self.delay_load = delay_load
        self.tokenizer_model_max_length = tokenizer_model_max_length

        self._cfg_vision_tower = DEFAULT_CFG_VISION_TOWER.copy()
        if "cfg_vision_tower" in kwargs:
            self._cfg_vision_tower.update(kwargs["cfg_vision_tower"])

        self._cfg_vision_adapter = DEFAULT_CFG_VISION_ADAPTER.copy()
        if "cfg_vision_adapter" in kwargs:
            self._cfg_vision_adapter.update(kwargs["cfg_vision_adapter"])

        self._cfg_special_tokens = DEFAULT_CFG_SPECIAL_TOKENS.copy()
        if "cfg_special_tokens" in kwargs:
            self._cfg_special_tokens.update(kwargs["cfg_special_tokens"])

        super().__init__(**merged)
        
    
    @property
    def cfg_vision_tower(self):
        return self._cfg_vision_tower

    @cfg_vision_tower.setter
    def cfg_vision_tower(self, value):
        if not value:
            raise ValueError("Name cannot be empty")
        self._cfg_vision_tower.update(value)
    

    @property
    def cfg_vision_adapter(self):
        return self._cfg_vision_adapter
    
    @cfg_vision_adapter.setter
    def cfg_vision_adapter(self, value):
        if not value:
            raise ValueError("Name cannot be empty")
        self._cfg_vision_adapter.update(value)
    
    @property
    def cfg_special_tokens(self):
        return self._cfg_special_tokens
    
    @cfg_special_tokens.setter
    def cfg_special_tokens(self, value):
        if not value:
            raise ValueError("Name cannot be empty")
        self._cfg_special_tokens.update(value)


class FridayModel(Phi3Model):
    config_class = FridayConfig
    
    def __init__(self, config: FridayConfig):
        super().__init__(config)

        self.cfg_vision_adapter = config.cfg_vision_adapter
        self.cfg_vision_tower = config.cfg_vision_tower

        self.vision_tower = None
        self.mm_projector    = None
        if not config.delay_load:
            self.initialize_vision_modules()
    
    def get_vision_tower(self):
        return self.vision_tower
    
    def initialize_vision_modules(self):
        if self.vision_tower is not None:
            return

        if self.cfg_vision_tower.get("type", "siglip").lower() == "siglip":
            if self.cfg_vision_tower.get("use_s2", True):
                self.vision_tower = SiglipVisionTowerS2(**self.cfg_vision_tower)
            else:
                self.vision_tower = SiglipVisionTower(**self.cfg_vision_tower)
        elif self.cfg_vision_tower.get("type", "siglip").lower() == "fastvit":
            if self.cfg_vision_tower.get("use_s2", True):
                self.vision_tower = FastVitVisionTowerS2(**self.cfg_vision_tower)
            else:
                self.vision_tower = FastVitVisionTower(**self.cfg_vision_tower)
        else:
            raise ValueError(f"Unsupported vision tower type: {self.cfg_vision_tower.get('type', 'siglip')}. Supported types are 'siglip' and 'fastvit'.")
        
        self.vision_tower.load_model()
        self.mm_projector = MLPAdapter(**self.cfg_vision_adapter)

        if self.cfg_vision_tower.get("freeze", False):
            self.set_vision_tower_requires_grad(False)
        
        if self.cfg_vision_adapter.get("freeze", False):
            self.set_vision_adapter_requires_grad(False)
    
    def compute_image_features(self, imgs: torch.Tensor) -> torch.Tensor:
        features = self.vision_tower(imgs)
        if isinstance(features, list):
            features = torch.stack(features, dim=1)
        return self.mm_projector(features)
    
    def set_vision_tower_requires_grad(self, requires_grad: bool):
        if self.vision_tower is not None:
            for param in self.vision_tower.parameters():
                param.requires_grad = requires_grad
        else:
            raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
    
    def set_vision_adapter_requires_grad(self, requires_grad: bool):
        if self.mm_projector is not None:
            for param in self.mm_projector.parameters():
                param.requires_grad = requires_grad
        else:
            raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
    
    def set_vision_tower_dtype(self, dtype: torch.dtype):
        if self.vision_tower is not None:
            for p in self.vision_tower.parameters():
                p.data = p.data.to(dtype)
        else:
            raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
    
    def set_vision_adapter_dtype(self, dtype: torch.dtype):
        if self.mm_projector is not None:
            for p in self.mm_projector.parameters():
                p.data = p.data.to(dtype)
        else:
            raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")
    
    def is_vision_tower_frozen(self):
        if self.vision_tower is not None:
            return all(not p.requires_grad for p in self.vision_tower.parameters())
        else:
            raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.")
    
    def is_vision_adapter_frozen(self):
        if self.mm_projector is not None:
            return all(not p.requires_grad for p in self.mm_projector.parameters())
        else:
            raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.")


class FridayForCausalLM(Phi3ForCausalLM):
    config_class = FridayConfig

    def __init__(self, config: FridayConfig):
        super().__init__(config)

        self.config = config
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.image_token_id = config.cfg_special_tokens["image_token_id"]
        self.image_start_id       = config.cfg_special_tokens["image_start_token_id"]
        self.image_end_id         = config.cfg_special_tokens["image_end_token_id"]

        self.model = FridayModel(config)
        self.post_init()
    
    def get_model(self) -> FridayModel:
        return self.model
    
    def get_vision_tower(self) -> SiglipVisionTower:
        return self.model.get_vision_tower()
    
    def get_vision_adapter(self) -> MLPAdapter:
        return self.model.mm_projector

    def get_llm_parameters(self, exclude_lora: bool = False):
        return [
            p for n, p in self.named_parameters() 
            if "vision_tower" not in n and "mm_projector" not in n and (not exclude_lora or ("lora_" not in n))
        ]

    def get_llm_named_modules(self):
        return {n: m for n, m in self.named_modules() if "vision_tower" not in n and "mm_projector" not in n}
    
    def set_llm_requires_grad(self, requires_grad: bool, exclude_lora: bool = True):
        for n, p in self.named_parameters():
            if exclude_lora and ("lora_A" in n or "lora_B" in n):
                continue
            if "vision_tower" in n or "mm_projector" in n:
                continue
            p.requires_grad = requires_grad
    
    def set_vision_tower_requires_grad(self, requires_grad: bool):
        self.model.set_vision_tower_requires_grad(requires_grad)

    def set_vision_adapter_requires_grad(self, requires_grad: bool):
        self.model.set_vision_adapter_requires_grad(requires_grad)
    
    def set_llm_dtype(self, dtype: torch.dtype):
        for p in self.get_llm_parameters():
            p.data = p.data.to(dtype)

    def set_vision_tower_dtype(self, dtype: torch.dtype):
        self.model.set_vision_tower_dtype(dtype)
    
    def set_vision_adapter_dtype(self, dtype: torch.dtype):
        self.model.set_vision_adapter_dtype(dtype)
    
    def is_llm_frozen(self):
        return all(not p.requires_grad for p in self.get_llm_parameters())
    
    def is_vision_tower_frozen(self):
        return self.model.is_vision_tower_frozen()
    
    def is_vision_adapter_frozen(self):
        return self.model.is_vision_adapter_frozen()
    
    
    
    def initialize_vision_modules(self):
        self.model.initialize_vision_modules()
    
    def get_multimodal_input_embeddings(self, input_ids, image_features, return_labels=True) -> torch.Tensor:
        emb_start_image_id = self.model.embed_tokens(torch.tensor([self.image_start_id], device=self.device))
        emb_end_image_id   = self.model.embed_tokens(torch.tensor([self.image_end_id], device=self.device))
        id_ignore = torch.tensor([IGNORE_INDEX], device=self.device)

        # repetition‑penalty safety ????
        # input_ids[input_ids == self.image_token_id] = 0

        
        # Iterate over each batch item
        embeds_list, labels_list = [], []
        for batch_id, item_ids in enumerate(input_ids):
            
            image_token_positions = (item_ids == self.image_token_id).nonzero(as_tuple=True)[0]
            if len(image_token_positions) != image_features[batch_id].shape[0]:
                raise ValueError(
                    f"Mismatch between number of image tokens ({len(image_token_positions)}) and number of image features ({image_features[batch_id].shape[0]})"
                )


            cursor = 0
            emb_parts, lbl_parts = [], []
            for indx_image, image_token_pos in enumerate(image_token_positions):
                if image_token_pos > cursor:
                    span = item_ids[cursor:image_token_pos]
                    emb_parts.append(self.model.embed_tokens(span))
                    lbl_parts.append(span)

                # <image_start>
                emb_parts.append(emb_start_image_id)
                lbl_parts.append(id_ignore)

                # vision embeddings
                image_tokens = image_features[batch_id][indx_image]
                if image_tokens.shape[0] == 1 and image_tokens.ndim == 3:
                    image_tokens = image_tokens.squeeze(0)
                emb_parts.append(image_tokens)
                lbl_parts.append(id_ignore.repeat(image_tokens.shape[0]))

                # <image_end>
                emb_parts.append(emb_end_image_id)
                lbl_parts.append(id_ignore)

                cursor = image_token_pos + 1
            
            # tail text
            if cursor < item_ids.shape[0]:
                tail = item_ids[cursor:]
                emb_parts.append(self.model.embed_tokens(tail))
                lbl_parts.append(tail)
            
            embeds_list.append(torch.cat(emb_parts, dim=0))
            labels_list.append(torch.cat(lbl_parts, dim=0))
    
        return (embeds_list, labels_list) if return_labels else embeds_list

    def prepare_inputs_for_multimodal(
        self,
        input_ids: torch.LongTensor,
        images: List[List[PIL.Image.Image]], # B x N
        position_ids: Optional[torch.LongTensor],
        attention_mask: Optional[torch.Tensor],
        past_key_values: Optional[List[torch.FloatTensor]],
        labels: Optional[torch.LongTensor],
    ) -> Tuple[Optional[torch.Tensor], Optional[torch.LongTensor], Optional[torch.Tensor], Optional[List[torch.FloatTensor]], torch.Tensor, Optional[torch.Tensor]]:
        
        # ─────────────────── early return (no image / streaming step) ───────────────────
        # if we have already processed images and are in a streaming step we can skip the multimodal processing
        # but we need to ensure the attention mask and position ids are correct

        if past_key_values is not None and attention_mask is not None and input_ids.shape[1] == 1:
            tgt = past_key_values[-1][-1].shape[-2] + 1
            attention_mask = torch.cat(
                [attention_mask,
                torch.ones((attention_mask.size(0),
                            tgt - attention_mask.size(1)),
                            dtype=attention_mask.dtype,
                            device=attention_mask.device)],
                dim=1,
            )
            position_ids = (attention_mask.sum(dim=1, keepdim=True) - 1).long()

            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        # ─────────────────────────── images: (B, N) ───────────────────────────
        if isinstance(images, list) and isinstance(images[0], list):
            # images is a list of lists, each containing multiple images, B x N
            # e.g. [[img1, img2], [img3, img4]]
            assert len(images) == input_ids.shape[0], f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
            image_features = []
            for sublst_images in images:
                if len(sublst_images) == 0:
                    image_features.append(torch.zeros((0, self.get_model().mm_projector.output_dim), device=self.device))
                else:
                    if isinstance(sublst_images[0], PIL.Image.Image):
                        image_features.append(
                            self.model.compute_image_features(
                                self.model.vision_tower.preprocess_images(sublst_images, pad_and_stack_tensors=True)
                            )
                        )
                    elif isinstance(sublst_images[0], torch.Tensor):
                        # This should be a list of tensors of pre-processed images, [(N X 3 X W x H), ...]
                        image_features.append(
                            self.model.compute_image_features(sublst_images)
                        )
        elif isinstance(images, list) and isinstance(images[0], PIL.Image.Image):
            # images is a list of images for a single batch item, 1 x N
            # e.g. [img1, img2, img3]
            assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
            image_features = [
                self.model.compute_image_features(
                    self.model.vision_tower.preprocess_images(images, pad_and_stack_tensors=True)
                )
            ]
        elif isinstance(images, list) and isinstance(images[0], torch.Tensor):
            # This should be a list of tensors of pre-processed images, [(N X 3 X W x H), ...]
            # The list length should match the batch size
            assert input_ids.shape[0] == len(images), f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
            image_features = [
                self.model.compute_image_features(imgs) for imgs in images
            ]
        elif isinstance(images, PIL.Image.Image):
            # images is a single image, 1 x 1
            # e.g. img1
            assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}"
            image_features = [
                self.model.compute_image_features(
                    self.model.vision_tower.preprocess_images([images])
                )
            ]
        else:
            raise ValueError(f"Unsupported images format: {type(images)}. Expected list of PIL images, a single PIL image or a Tensor of pre-processed images")
        
        # ─────────────────────────── image_features: (B x N x D) ───────────────────────────
        if isinstance(image_features, list):
            assert input_ids.shape[0] == len(image_features), f"Incorrectly formatted image_features: list length should match batch size"
            assert isinstance(image_features[0], torch.Tensor), f"Incorrectly formatted image_features: list items should be tensors"
        elif isinstance(image_features, torch.Tensor):
            assert input_ids.shape[0] == image_features.shape[0], f"Incorrectly formatted image_features: tensor should match batch size"
        

        # ───────────────────────────── pad handling prelims ──────────────────────────────
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)

        input_ids_nopad = [ids[mask] for ids, mask in zip(input_ids, attention_mask)]
        embeds_list, labels_list = self.get_multimodal_input_embeddings(
            input_ids_nopad,
            image_features,
            return_labels=True
        )

        # ───────────────────── truncate then pad back to rectangle ──────────────────────
        new_input_embeds = torch.nn.utils.rnn.pad_sequence(
            embeds_list,
            batch_first=True,
            padding_value=0.0
        ).to(dtype=self.dtype)

        new_labels = torch.nn.utils.rnn.pad_sequence(
            labels_list,
            batch_first=True,
            padding_value=IGNORE_INDEX
        ).long()

        if self.config.tokenizer_model_max_length is not None:
            new_input_embeds = new_input_embeds[:, :self.config.tokenizer_model_max_length]
            new_labels       = new_labels[:, :self.config.tokenizer_model_max_length]

        
        

        # ────────────────────────────── attention mask and position ids ────────────────
        
        attention_mask = (
            torch.arange(new_input_embeds.size(1), device=input_ids.device)
                  .unsqueeze(0)
            < torch.tensor([e.size(0) for e in embeds_list],
                           device=input_ids.device).unsqueeze(1)
        )

        raw_pos = attention_mask.cumsum(dim=1) - 1
        position_ids = raw_pos.masked_fill(~attention_mask, 0).long()

        if not self.training:
            new_labels = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels

    
    
    # ------------------------------------------------------------------
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            cache_position: Optional[torch.LongTensor] = None,
            logits_to_keep: Union[int, torch.Tensor] = 0,
            images: Optional[PIL.Image.Image] = None,
            **kwargs: Unpack[KwargsForCausalLM],
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        is_multi_modal = images is not None and not (
            (
                isinstance(images, list) and (len(images) == 0 or all(i == [] for i in images))
            )
        )


        if inputs_embeds is None and is_multi_modal:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_for_multimodal(
                input_ids=input_ids,
                images=images,
                position_ids=position_ids,
                attention_mask=attention_mask,
                past_key_values=past_key_values,
                labels=labels,
            )

            if cache_position is not None and inputs_embeds is not None and cache_position.shape[0] != inputs_embeds.shape[1]:
                cache_position = torch.arange(inputs_embeds.shape[1], device=self.device)
        
        
        return Phi3ForCausalLM.forward(
            self,
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **kwargs
        )
    
    def print_device_configuration(self):
        print("*************Device Configuration*********")
        if len(self.get_llm_parameters()) > 0:
            llm_device = set({str(p.device) for p in self.get_llm_parameters()})
            llm_dtype = set({p.dtype for p in self.get_llm_parameters()})
            print(f"LLM Parameters:\t\t\tdevice: {llm_device}\tdtype: {llm_dtype}\tfrozen: {self.is_llm_frozen()}")
        else:
            print("LLM parameters have not been initialized")
        
        if self.get_model().vision_tower is not None:
            vt_device = set({str(p.device) for p in self.get_model().vision_tower.parameters()})
            vt_dtype = set({p.dtype for p in self.get_model().vision_tower.parameters()})
            print(f"Vision Tower Parameters:\tdevice: {vt_device}\tdtype: {vt_dtype}\tfrozen: {self.is_vision_tower_frozen()}")
        else:
            print("Vision tower parameters have not been initialized")

        if self.get_model().mm_projector is not None:
            mm_device = set({str(p.device) for p in self.get_model().mm_projector.parameters()})
            mm_dtype = set({p.dtype for p in self.get_model().mm_projector.parameters()})
            print(f"MM Projector Parameters:\tdevice: {mm_device}\tdtype: {mm_dtype}\tfrozen: {self.is_vision_adapter_frozen()}")
        else:
            print("MM Projector parameters have not been initialized")
        print("******************************************")



def build_tokenizer(base_model_id: str) -> Tuple[AutoTokenizer, dict]:
    tok = AutoTokenizer.from_pretrained(base_model_id, padding_side="right")
    specials = {t: tok.convert_tokens_to_ids(t) for t in [IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN] if t in tok.vocab}
    if len(specials) < 3:
        n = tok.add_tokens([IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN], special_tokens=True)
        tok.pad_token = tok.eos_token
        specials = {
            "image": tok.convert_tokens_to_ids(IMAGE_TOKEN),
            "start": tok.convert_tokens_to_ids(IMG_START_TOKEN),
            "end": tok.convert_tokens_to_ids(IMG_END_TOKEN),
        }
    return tok, specials