File size: 115,070 Bytes
ee09fe7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 |
# coding=utf-8
# Copyright 2025 SparkAudio & The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SparkTTS model."""
import os
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, remove_weight_norm # Needed for modules
import torchaudio # Needed for mel transformer in BiCodec
import numpy as np # Needed for BiCodecTokenizer logic
from pathlib import Path
from typing import Optional, Union, Tuple, List, Dict, Any
from collections import namedtuple # For Perceiver
from functools import wraps, partial # For Perceiver/FSQ
from contextlib import nullcontext # For FSQ
from huggingface_hub import snapshot_download
from safetensors.torch import load_file # For BiCodec loading
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast # LLM output type
from transformers.generation import GenerationMixin
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto.modeling_auto import AutoModelForCausalLM
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor # Needed for from_pretrained
from transformers.utils import logging
from transformers import AutoTokenizer # Needed for token parser test
from einops import rearrange, repeat, pack, unpack # Needed for modules
from einops.layers.torch import Rearrange # Needed for modules
from packaging import version # Needed for Perceiver
from torch import Tensor, int32, einsum
from torch.amp import autocast
from einops import rearrange, reduce, pack, unpack
from numpy.lib.stride_tricks import sliding_window_view
import soxr
import soundfile
# Import custom config
from .configuration_spark_tts import SparkTTSConfig, SparkTTSBiCodecConfig
logger = logging.get_logger(__name__)
# =============================================================================
# >> START: PASTE CODE FROM sparktts/modules/* HERE <<
# =============================================================================
# IMPORTANT: All classes defined in sparktts/modules/* (layers, samper, vocos,
# fsq, residual_fsq, ecapa_tdnn, pooling_layers, perceiver_encoder,
# speaker_encoder, feat_encoder, feat_decoder, wave_generator,
# factorized_vector_quantize) need to be pasted or defined *within* this file
# so they can be found when `trust_remote_code=True` is used.
# Example placeholder comment:
# --- Paste sparktts/modules/blocks/layers.py content here ---
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
# Scripting this brings model speed up 1.4x
@torch.jit.script
def snake(x, alpha):
shape = x.shape
x = x.reshape(shape[0], shape[1], -1)
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
x = x.reshape(shape)
return x
class Snake1d(nn.Module):
def __init__(self, channels):
super().__init__()
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
def forward(self, x):
return snake(x, self.alpha)
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Snake1d(dim),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
y = self.block(x)
pad = (x.shape[-1] - y.shape[-1]) // 2
if pad > 0:
x = x[..., pad:-pad]
return x + y
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
# --- Paste sparktts/modules/blocks/samper.py content here ---
class SamplingBlock(nn.Module):
"""Sampling block for upsampling or downsampling"""
def __init__(
self,
dim: int,
groups: int = 1,
upsample_scale: int = 1,
downsample_scale: int = 1,
) -> None:
"""
Args:
dim: input dimension
groups: number of groups
upsample_scale: upsampling scale
downsample_scale: downsampling scale
"""
super(SamplingBlock, self).__init__()
self.upsample_scale = upsample_scale
self.downsample_scale = downsample_scale
if self.upsample_scale > 1:
self.de_conv_upsampler = nn.Sequential(
nn.LeakyReLU(0.2),
nn.ConvTranspose1d(
dim,
dim,
kernel_size=upsample_scale * 2,
stride=upsample_scale,
padding=upsample_scale // 2 + upsample_scale % 2,
output_padding=upsample_scale % 2,
groups=groups,
),
)
if self.downsample_scale > 1:
self.conv_downsampler = nn.Sequential(
nn.LeakyReLU(0.2),
nn.Conv1d(
dim,
dim,
kernel_size=2 * downsample_scale,
stride=downsample_scale,
padding=downsample_scale // 2 + downsample_scale % 2,
groups=groups,
),
)
@staticmethod
def repeat_upsampler(x, upsample_scale):
return x.repeat_interleave(upsample_scale, dim=2)
@staticmethod
def skip_downsampler(x, downsample_scale):
return F.avg_pool1d(x, kernel_size=downsample_scale, stride=downsample_scale)
def forward(self, x):
x = x.transpose(1, 2)
if self.upsample_scale > 1:
repeat_res = self.repeat_upsampler(x, self.upsample_scale)
deconv_res = self.de_conv_upsampler(x)
upmerge_res = repeat_res + deconv_res
else:
upmerge_res = x
repeat_res = x
if self.downsample_scale > 1:
conv_res = self.conv_downsampler(upmerge_res)
skip2_res = self.skip_downsampler(upmerge_res, self.downsample_scale)
skip1_res = self.skip_downsampler(repeat_res, self.downsample_scale)
else:
conv_res = upmerge_res
skip2_res = upmerge_res
skip1_res = repeat_res
final_res = conv_res + skip1_res + skip2_res
return final_res
# --- Paste sparktts/modules/blocks/vocos.py content here ---
class ConvNeXtBlock(nn.Module):
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
Args:
dim (int): Number of input channels.
intermediate_dim (int): Dimensionality of the intermediate layer.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional LayerNorm. Defaults to None.
"""
def __init__(
self,
dim: int,
intermediate_dim: int,
layer_scale_init_value: float,
condition_dim: Optional[int] = None,
):
super().__init__()
self.dwconv = nn.Conv1d(
dim, dim, kernel_size=7, padding=3, groups=dim
) # depthwise conv
self.adanorm = condition_dim is not None
if condition_dim:
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
else:
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, intermediate_dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(intermediate_dim, dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
if layer_scale_init_value > 0
else None
)
def forward(
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
) -> torch.Tensor:
residual = x
x = self.dwconv(x)
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
if self.adanorm:
assert cond_embedding_id is not None
x = self.norm(x, cond_embedding_id)
else:
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
x = residual + x
return x
class AdaLayerNorm(nn.Module):
"""
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
Args:
condition_dim (int): Dimension of the condition.
embedding_dim (int): Dimension of the embeddings.
"""
def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.dim = embedding_dim
self.scale = nn.Linear(condition_dim, embedding_dim)
self.shift = nn.Linear(condition_dim, embedding_dim)
torch.nn.init.ones_(self.scale.weight)
torch.nn.init.zeros_(self.shift.weight)
def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor:
scale = self.scale(cond_embedding)
shift = self.shift(cond_embedding)
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
x = x * scale.unsqueeze(1) + shift.unsqueeze(1)
return x
class ResBlock1(nn.Module):
"""
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
but without upsampling layers.
Args:
dim (int): Number of input channels.
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
Defaults to (1, 3, 5).
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
Defaults to 0.1.
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
Defaults to None.
"""
def __init__(
self,
dim: int,
kernel_size: int = 3,
dilation: Tuple[int, int, int] = (1, 3, 5),
lrelu_slope: float = 0.1,
layer_scale_init_value: Optional[float] = None,
):
super().__init__()
self.lrelu_slope = lrelu_slope
self.convs1 = nn.ModuleList(
[
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[0],
padding=self.get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[1],
padding=self.get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=dilation[2],
padding=self.get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs2 = nn.ModuleList(
[
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
),
weight_norm(
nn.Conv1d(
dim,
dim,
kernel_size,
1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
),
]
)
self.gamma = nn.ParameterList(
[
(
nn.Parameter(
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
)
if layer_scale_init_value is not None
else None
),
(
nn.Parameter(
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
)
if layer_scale_init_value is not None
else None
),
(
nn.Parameter(
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
)
if layer_scale_init_value is not None
else None
),
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
xt = c1(xt)
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
xt = c2(xt)
if gamma is not None:
xt = gamma * xt
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
@staticmethod
def get_padding(kernel_size: int, dilation: int = 1) -> int:
return int((kernel_size * dilation - dilation) / 2)
class Backbone(nn.Module):
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Args:
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
C denotes output features, and L is the sequence length.
Returns:
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
and H denotes the model dimension.
"""
raise NotImplementedError("Subclasses must implement the forward method.")
class VocosBackbone(Backbone):
"""
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
Args:
input_channels (int): Number of input features channels.
dim (int): Hidden dimension of the model.
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
num_layers (int): Number of ConvNeXtBlock layers.
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
None means non-conditional model. Defaults to None.
"""
def __init__(
self,
input_channels: int,
dim: int,
intermediate_dim: int,
num_layers: int,
layer_scale_init_value: Optional[float] = None,
condition_dim: Optional[int] = None,
):
super().__init__()
self.input_channels = input_channels
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
self.adanorm = condition_dim is not None
if condition_dim:
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
else:
self.norm = nn.LayerNorm(dim, eps=1e-6)
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
self.convnext = nn.ModuleList(
[
ConvNeXtBlock(
dim=dim,
intermediate_dim=intermediate_dim,
layer_scale_init_value=layer_scale_init_value,
condition_dim=condition_dim,
)
for _ in range(num_layers)
]
)
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor:
x = self.embed(x)
if self.adanorm:
assert condition is not None
x = self.norm(x.transpose(1, 2), condition)
else:
x = self.norm(x.transpose(1, 2))
x = x.transpose(1, 2)
for conv_block in self.convnext:
x = conv_block(x, condition)
x = self.final_layer_norm(x.transpose(1, 2))
return x
class VocosResNetBackbone(Backbone):
"""
Vocos backbone module built with ResBlocks.
Args:
input_channels (int): Number of input features channels.
dim (int): Hidden dimension of the model.
num_blocks (int): Number of ResBlock1 blocks.
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
"""
def __init__(
self,
input_channels,
dim,
num_blocks,
layer_scale_init_value=None,
):
super().__init__()
self.input_channels = input_channels
self.embed = weight_norm(
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
)
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
self.resnet = nn.Sequential(
*[
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
for _ in range(num_blocks)
]
)
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
x = self.embed(x)
x = self.resnet(x)
x = x.transpose(1, 2)
return x
# --- Paste sparktts/modules/fsq/finite_scalar_quantization.py content here ---
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg
return None
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
# tensor helpers
def round_ste(z: Tensor) -> Tensor:
"""Round with straight through gradients."""
zhat = z.round()
return z + (zhat - z).detach()
# main class
class FSQ(nn.Module):
def __init__(
self,
levels: List[int],
dim: int | None = None,
num_codebooks=1,
keep_num_codebooks_dim: bool | None = None,
scale: float | None = None,
allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64),
channel_first: bool = False,
projection_has_bias: bool = True,
return_indices=True,
force_quantization_f32=True,
):
super().__init__()
_levels = torch.tensor(levels, dtype=int32)
self.register_buffer("_levels", _levels, persistent=False)
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
self.register_buffer("_basis", _basis, persistent=False)
self.scale = scale
codebook_dim = len(levels)
self.codebook_dim = codebook_dim
effective_codebook_dim = codebook_dim * num_codebooks
self.num_codebooks = num_codebooks
self.effective_codebook_dim = effective_codebook_dim
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
self.dim = default(dim, len(_levels) * num_codebooks)
self.channel_first = channel_first
has_projections = self.dim != effective_codebook_dim
self.project_in = (
nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias)
if has_projections
else nn.Identity()
)
self.project_out = (
nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias)
if has_projections
else nn.Identity()
)
self.has_projections = has_projections
self.return_indices = return_indices
if return_indices:
self.codebook_size = self._levels.prod().item()
implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size))
self.register_buffer(
"implicit_codebook", implicit_codebook, persistent=False
)
self.allowed_dtypes = allowed_dtypes
self.force_quantization_f32 = force_quantization_f32
def bound(self, z, eps: float = 1e-3):
"""Bound `z`, an array of shape (..., d)."""
half_l = (self._levels - 1) * (1 + eps) / 2
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
shift = (offset / half_l).atanh()
return (z + shift).tanh() * half_l - offset
def quantize(self, z):
"""Quantizes z, returns quantized zhat, same shape as z."""
quantized = round_ste(self.bound(z))
half_width = self._levels // 2 # Renormalize to [-1, 1].
return quantized / half_width
def _scale_and_shift(self, zhat_normalized):
half_width = self._levels // 2
return (zhat_normalized * half_width) + half_width
def _scale_and_shift_inverse(self, zhat):
half_width = self._levels // 2
return (zhat - half_width) / half_width
def _indices_to_codes(self, indices):
level_indices = self.indices_to_level_indices(indices)
codes = self._scale_and_shift_inverse(level_indices)
return codes
def codes_to_indices(self, zhat):
"""Converts a `code` to an index in the codebook."""
assert zhat.shape[-1] == self.codebook_dim
zhat = self._scale_and_shift(zhat)
return (zhat * self._basis).sum(dim=-1).to(int32)
def indices_to_level_indices(self, indices):
"""Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings"""
indices = rearrange(indices, "... -> ... 1")
codes_non_centered = (indices // self._basis) % self._levels
return codes_non_centered
def indices_to_codes(self, indices):
"""Inverse of `codes_to_indices`."""
assert exists(indices)
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
codes = self._indices_to_codes(indices)
if self.keep_num_codebooks_dim:
codes = rearrange(codes, "... c d -> ... (c d)")
codes = self.project_out(codes)
if is_img_or_video or self.channel_first:
codes = rearrange(codes, "b ... d -> b d ...")
return codes
def forward(self, z):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension
c - number of codebook dim
"""
is_img_or_video = z.ndim >= 4
need_move_channel_last = is_img_or_video or self.channel_first
# standardize image or video into (batch, seq, dimension)
if need_move_channel_last:
z = rearrange(z, "b d ... -> b ... d")
z, ps = pack_one(z, "b * d")
assert (
z.shape[-1] == self.dim
), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"
z = self.project_in(z)
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
# whether to force quantization step to be full precision or not
force_f32 = self.force_quantization_f32
quantization_context = (
partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext
)
with quantization_context():
orig_dtype = z.dtype
if force_f32 and orig_dtype not in self.allowed_dtypes:
z = z.float()
codes = self.quantize(z)
# returning indices could be optional
indices = None
if self.return_indices:
indices = self.codes_to_indices(codes)
codes = rearrange(codes, "b n c d -> b n (c d)")
codes = codes.type(orig_dtype)
# project out
out = self.project_out(codes)
# reconstitute image or video dimensions
if need_move_channel_last:
out = unpack_one(out, ps, "b * d")
out = rearrange(out, "b ... d -> b d ...")
indices = maybe(unpack_one)(indices, ps, "b * c")
if not self.keep_num_codebooks_dim and self.return_indices:
indices = maybe(rearrange)(indices, "... 1 -> ...")
# return quantized output and indices
return out, indices
# --- Paste sparktts/modules/fsq/residual_fsq.py content here ---
import random
import torch.distributed as dist
from einx import get_at
def round_up_multiple(num, mult):
return ceil(num / mult) * mult
def is_distributed():
return dist.is_initialized() and dist.get_world_size() > 1
def get_maybe_sync_seed(device, max_size=10_000):
rand_int = torch.randint(0, max_size, (), device=device)
if is_distributed():
dist.all_reduce(rand_int)
return rand_int.item()
class ResidualFSQ(nn.Module):
"""Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf"""
def __init__(
self,
*,
levels: List[int],
num_quantizers,
dim=None,
is_channel_first=False,
quantize_dropout=False,
quantize_dropout_cutoff_index=0,
quantize_dropout_multiple_of=1,
**kwargs,
):
super().__init__()
codebook_dim = len(levels)
dim = default(dim, codebook_dim)
requires_projection = codebook_dim != dim
self.project_in = (
nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
)
self.project_out = (
nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
)
self.has_projections = requires_projection
self.is_channel_first = is_channel_first
self.num_quantizers = num_quantizers
self.levels = levels
self.layers = nn.ModuleList([])
levels_tensor = torch.Tensor(levels)
scales = []
for ind in range(num_quantizers):
scales.append((levels_tensor - 1) ** -ind)
fsq = FSQ(levels=levels, dim=codebook_dim, **kwargs)
self.layers.append(fsq)
assert all([not fsq.has_projections for fsq in self.layers])
self.codebook_size = self.layers[0].codebook_size
self.register_buffer("scales", torch.stack(scales), persistent=False)
self.quantize_dropout = quantize_dropout and num_quantizers > 1
assert quantize_dropout_cutoff_index >= 0
self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index
self.quantize_dropout_multiple_of = quantize_dropout_multiple_of # encodec paper proposes structured dropout, believe this was set to 4
@property
def codebooks(self):
codebooks = [layer.implicit_codebook for layer in self.layers]
codebooks = torch.stack(codebooks, dim=0)
return codebooks
def get_codes_from_indices(self, indices):
batch, quantize_dim = indices.shape[0], indices.shape[-1]
# may also receive indices in the shape of 'b h w q' (accept_image_fmap)
indices, ps = pack([indices], "b * q")
# because of quantize dropout, one can pass in indices that are coarse
# and the network should be able to reconstruct
if quantize_dim < self.num_quantizers:
assert (
self.quantize_dropout > 0.0
), "quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations"
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value=-1)
# take care of quantizer dropout
mask = indices == -1
indices = indices.masked_fill(
mask, 0
) # have it fetch a dummy code to be masked out later
all_codes = get_at("q [c] d, b n q -> q b n d", self.codebooks, indices)
# mask out any codes that were dropout-ed
all_codes = all_codes.masked_fill(rearrange(mask, "b n q -> q b n 1"), 0.0)
# scale the codes
scales = rearrange(self.scales, "q d -> q 1 1 d")
all_codes = all_codes * scales
# if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
(all_codes,) = unpack(all_codes, ps, "q b * d")
return all_codes
def get_output_from_indices(self, indices):
codes = self.get_codes_from_indices(indices)
codes_summed = reduce(codes, "q ... -> ...", "sum")
return self.project_out(codes_summed)
def forward(self, x, return_all_codes=False, rand_quantize_dropout_fixed_seed=None):
num_quant, quant_dropout_multiple_of, device = (
self.num_quantizers,
self.quantize_dropout_multiple_of,
x.device,
)
# handle channel first
if self.is_channel_first:
x = rearrange(x, "b d ... -> b ... d")
x, ps = pack([x], "b * d")
# maybe project in
x = self.project_in(x)
quantized_out = 0.0
residual = x
all_indices = []
should_quantize_dropout = self.training and self.quantize_dropout
# sample a layer index at which to dropout further residual quantization
# also prepare null indices
if should_quantize_dropout:
# check if seed is manually passed in
if not exists(rand_quantize_dropout_fixed_seed):
rand_quantize_dropout_fixed_seed = get_maybe_sync_seed(device)
rand = random.Random(rand_quantize_dropout_fixed_seed)
rand_quantize_dropout_index = rand.randrange(
self.quantize_dropout_cutoff_index, num_quant
)
if quant_dropout_multiple_of != 1:
rand_quantize_dropout_index = (
round_up_multiple(
rand_quantize_dropout_index + 1, quant_dropout_multiple_of
)
- 1
)
null_indices = torch.full(
x.shape[:2], -1.0, device=device, dtype=torch.long
)
# go through the layers
with autocast("cuda", enabled=False):
for quantizer_index, (layer, scale) in enumerate(
zip(self.layers, self.scales)
):
if (
should_quantize_dropout
and quantizer_index > rand_quantize_dropout_index
):
all_indices.append(null_indices)
continue
quantized, indices = layer(residual / scale)
quantized = quantized * scale
residual = residual - quantized.detach()
quantized_out = quantized_out + quantized
all_indices.append(indices)
# project out, if needed
quantized_out = self.project_out(quantized_out)
# stack all indices
all_indices = torch.stack(all_indices, dim=-1)
# channel first out
if self.is_channel_first:
(quantized_out,) = unpack(quantized_out, ps, "b * d")
(all_indices,) = unpack(all_indices, ps, "b * d")
quantized_out = rearrange(quantized_out, "b ... d -> b d ...")
all_indices = rearrange(all_indices, "b ... d -> b d ...")
# return
ret = (quantized_out, all_indices)
if not return_all_codes:
return ret
# whether to return all codes from all codebooks across layers
all_codes = self.get_codes_from_indices(all_indices)
# will return all codes in shape (quantizer, batch, sequence length, codebook dimension)
return (*ret, all_codes)
# grouped residual fsq
class GroupedResidualFSQ(nn.Module):
def __init__(self, *, dim, groups=1, accept_image_fmap=False, **kwargs):
super().__init__()
self.dim = dim
self.groups = groups
assert (dim % groups) == 0
dim_per_group = dim // groups
self.accept_image_fmap = accept_image_fmap
self.rvqs = nn.ModuleList([])
for _ in range(groups):
self.rvqs.append(ResidualFSQ(dim=dim_per_group, **kwargs))
self.codebook_size = self.rvqs[0].codebook_size
@property
def codebooks(self):
return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs))
@property
def split_dim(self):
return 1 if self.accept_image_fmap else -1
def get_codes_from_indices(self, indices):
codes = tuple(
rvq.get_codes_from_indices(chunk_indices)
for rvq, chunk_indices in zip(self.rvqs, indices)
)
return torch.stack(codes)
def get_output_from_indices(self, indices):
outputs = tuple(
rvq.get_output_from_indices(chunk_indices)
for rvq, chunk_indices in zip(self.rvqs, indices)
)
return torch.cat(outputs, dim=self.split_dim)
def forward(self, x, return_all_codes=False):
shape, split_dim, device = x.shape, self.split_dim, x.device
assert shape[split_dim] == self.dim
# split the feature dimension into groups
x = x.chunk(self.groups, dim=split_dim)
forward_kwargs = dict(
return_all_codes=return_all_codes,
rand_quantize_dropout_fixed_seed=(
get_maybe_sync_seed(device) if self.training else None
),
)
# invoke residual vq on each group
out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x))
out = tuple(zip(*out))
# otherwise, get all the zipped outputs and combine them
quantized, all_indices, *maybe_all_codes = out
quantized = torch.cat(quantized, dim=split_dim)
all_indices = torch.stack(all_indices)
ret = (quantized, all_indices, *maybe_all_codes)
return ret
# --- Paste sparktts/modules/speaker/pooling_layers.py content here ---
class TAP(nn.Module):
"""
Temporal average pooling, only first-order mean is considered
"""
def __init__(self, in_dim=0, **kwargs):
super(TAP, self).__init__()
self.in_dim = in_dim
def forward(self, x):
pooling_mean = x.mean(dim=-1)
# To be compatable with 2D input
pooling_mean = pooling_mean.flatten(start_dim=1)
return pooling_mean
def get_out_dim(self):
self.out_dim = self.in_dim
return self.out_dim
class TSDP(nn.Module):
"""
Temporal standard deviation pooling, only second-order std is considered
"""
def __init__(self, in_dim=0, **kwargs):
super(TSDP, self).__init__()
self.in_dim = in_dim
def forward(self, x):
# The last dimension is the temporal axis
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7)
pooling_std = pooling_std.flatten(start_dim=1)
return pooling_std
def get_out_dim(self):
self.out_dim = self.in_dim
return self.out_dim
class TSTP(nn.Module):
"""
Temporal statistics pooling, concatenate mean and std, which is used in
x-vector
Comment: simple concatenation can not make full use of both statistics
"""
def __init__(self, in_dim=0, **kwargs):
super(TSTP, self).__init__()
self.in_dim = in_dim
def forward(self, x):
# The last dimension is the temporal axis
pooling_mean = x.mean(dim=-1)
pooling_std = torch.sqrt(torch.var(x, dim=-1) + 1e-7)
pooling_mean = pooling_mean.flatten(start_dim=1)
pooling_std = pooling_std.flatten(start_dim=1)
stats = torch.cat((pooling_mean, pooling_std), 1)
return stats
def get_out_dim(self):
self.out_dim = self.in_dim * 2
return self.out_dim
class ASTP(nn.Module):
""" Attentive statistics pooling: Channel- and context-dependent
statistics pooling, first used in ECAPA_TDNN.
"""
def __init__(self,
in_dim,
bottleneck_dim=128,
global_context_att=False,
**kwargs):
super(ASTP, self).__init__()
self.in_dim = in_dim
self.global_context_att = global_context_att
# Use Conv1d with stride == 1 rather than Linear, then we don't
# need to transpose inputs.
if global_context_att:
self.linear1 = nn.Conv1d(
in_dim * 3, bottleneck_dim,
kernel_size=1) # equals W and b in the paper
else:
self.linear1 = nn.Conv1d(
in_dim, bottleneck_dim,
kernel_size=1) # equals W and b in the paper
self.linear2 = nn.Conv1d(bottleneck_dim, in_dim,
kernel_size=1) # equals V and k in the paper
def forward(self, x):
"""
x: a 3-dimensional tensor in tdnn-based architecture (B,F,T)
or a 4-dimensional tensor in resnet architecture (B,C,F,T)
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
"""
if len(x.shape) == 4:
x = x.reshape(x.shape[0], x.shape[1] * x.shape[2], x.shape[3])
assert len(x.shape) == 3
if self.global_context_att:
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
context_std = torch.sqrt(
torch.var(x, dim=-1, keepdim=True) + 1e-7).expand_as(x)
x_in = torch.cat((x, context_mean, context_std), dim=1)
else:
x_in = x
# DON'T use ReLU here! ReLU may be hard to converge.
alpha = torch.tanh(
self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in))
alpha = torch.softmax(self.linear2(alpha), dim=2)
mean = torch.sum(alpha * x, dim=2)
var = torch.sum(alpha * (x**2), dim=2) - mean**2
std = torch.sqrt(var.clamp(min=1e-7))
return torch.cat([mean, std], dim=1)
def get_out_dim(self):
self.out_dim = 2 * self.in_dim
return self.out_dim
class MHASTP(torch.nn.Module):
""" Multi head attentive statistics pooling
Reference:
Self Multi-Head Attention for Speaker Recognition
https://arxiv.org/pdf/1906.09890.pdf
"""
def __init__(self,
in_dim,
layer_num=2,
head_num=2,
d_s=1,
bottleneck_dim=64,
**kwargs):
super(MHASTP, self).__init__()
assert (in_dim % head_num
) == 0 # make sure that head num can be divided by input_dim
self.in_dim = in_dim
self.head_num = head_num
d_model = int(in_dim / head_num)
channel_dims = [bottleneck_dim for i in range(layer_num + 1)]
if d_s > 1:
d_s = d_model
else:
d_s = 1
self.d_s = d_s
channel_dims[0], channel_dims[-1] = d_model, d_s
heads_att_trans = []
for i in range(self.head_num):
att_trans = nn.Sequential()
for i in range(layer_num - 1):
att_trans.add_module(
'att_' + str(i),
nn.Conv1d(channel_dims[i], channel_dims[i + 1], 1, 1))
att_trans.add_module('tanh' + str(i), nn.Tanh())
att_trans.add_module(
'att_' + str(layer_num - 1),
nn.Conv1d(channel_dims[layer_num - 1], channel_dims[layer_num],
1, 1))
heads_att_trans.append(att_trans)
self.heads_att_trans = nn.ModuleList(heads_att_trans)
def forward(self, input):
"""
input: a 3-dimensional tensor in xvector architecture
or a 4-dimensional tensor in resnet architecture
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
"""
if len(input.shape) == 4: # B x F x T
input = input.reshape(input.shape[0],
input.shape[1] * input.shape[2],
input.shape[3])
assert len(input.shape) == 3
bs, f_dim, t_dim = input.shape
chunks = torch.chunk(input, self.head_num, 1)
# split
chunks_out = []
# for i in range(self.head_num):
# att_score = self.heads_att_trans[i](chunks[i])
for i, layer in enumerate(self.heads_att_trans):
att_score = layer(chunks[i])
alpha = F.softmax(att_score, dim=-1)
mean = torch.sum(alpha * chunks[i], dim=2)
var = torch.sum(alpha * chunks[i]**2, dim=2) - mean**2
std = torch.sqrt(var.clamp(min=1e-7))
chunks_out.append(torch.cat((mean, std), dim=1))
out = torch.cat(chunks_out, dim=1)
return out
def get_out_dim(self):
self.out_dim = 2 * self.in_dim
return self.out_dim
class MQMHASTP(torch.nn.Module):
""" An attentive pooling
Reference:
multi query multi head attentive statistics pooling
https://arxiv.org/pdf/2110.05042.pdf
Args:
in_dim: the feature dimension of input
layer_num: the number of layer in the pooling layer
query_num: the number of querys
head_num: the number of heads
bottleneck_dim: the bottleneck dimension
SA (H = 1, Q = 1, n = 2, d_s = 1) ref:
https://www.danielpovey.com/files/2018_interspeech_xvector_attention.pdf
MHA (H > 1, Q = 1, n = 1, d_s = 1) ref:
https://arxiv.org/pdf/1906.09890.pdf
AS (H = 1, Q > 1, n = 2, d_s = 1) ref:
https://arxiv.org/pdf/1803.10963.pdf
VSA (H = 1, Q > 1, n = 2, d_s = d_h) ref:
http://www.interspeech2020.org/uploadfile/pdf/Mon-2-10-5.pdf
"""
def __init__(self,
in_dim,
layer_num=2,
query_num=2,
head_num=8,
d_s=2,
bottleneck_dim=64,
**kwargs):
super(MQMHASTP, self).__init__()
self.n_query = nn.ModuleList([
MHASTP(in_dim,
layer_num=layer_num,
head_num=head_num,
d_s=d_s,
bottleneck_dim=bottleneck_dim) for i in range(query_num)
])
self.query_num = query_num
self.in_dim = in_dim
def forward(self, input):
"""
input: a 3-dimensional tensor in xvector architecture
or a 4-dimensional tensor in resnet architecture
0-dim: batch-dimension, last-dim: time-dimension (frame-dimension)
"""
if len(input.shape) == 4: # B x F x T
input = input.reshape(input.shape[0],
input.shape[1] * input.shape[2],
input.shape[3])
assert len(input.shape) == 3
res = []
for i, layer in enumerate(self.n_query):
res.append(layer(input))
out = torch.cat(res, dim=-1)
return out
def get_out_dim(self):
self.out_dim = self.in_dim * 2 * self.query_num
return self.out_dim
# --- Paste sparktts/modules/speaker/ecapa_tdnn.py content here ---
class Res2Conv1dReluBn(nn.Module):
"""
in_channels == out_channels == channels
"""
def __init__(
self,
channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
scale=4,
):
super().__init__()
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
self.scale = scale
self.width = channels // scale
self.nums = scale if scale == 1 else scale - 1
self.convs = []
self.bns = []
for i in range(self.nums):
self.convs.append(
nn.Conv1d(
self.width,
self.width,
kernel_size,
stride,
padding,
dilation,
bias=bias,
)
)
self.bns.append(nn.BatchNorm1d(self.width))
self.convs = nn.ModuleList(self.convs)
self.bns = nn.ModuleList(self.bns)
def forward(self, x):
out = []
spx = torch.split(x, self.width, 1)
sp = spx[0]
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
# Order: conv -> relu -> bn
if i >= 1:
sp = sp + spx[i]
sp = conv(sp)
sp = bn(F.relu(sp))
out.append(sp)
if self.scale != 1:
out.append(spx[self.nums])
out = torch.cat(out, dim=1)
return out
""" Conv1d + BatchNorm1d + ReLU
"""
class Conv1dReluBn(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias
)
self.bn = nn.BatchNorm1d(out_channels)
def forward(self, x):
return self.bn(F.relu(self.conv(x)))
""" The SE connection of 1D case.
"""
class SE_Connect(nn.Module):
def __init__(self, channels, se_bottleneck_dim=128):
super().__init__()
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
def forward(self, x):
out = x.mean(dim=2)
out = F.relu(self.linear1(out))
out = torch.sigmoid(self.linear2(out))
out = x * out.unsqueeze(2)
return out
""" SE-Res2Block of the ECAPA-TDNN architecture.
"""
class SE_Res2Block(nn.Module):
def __init__(self, channels, kernel_size, stride, padding, dilation, scale):
super().__init__()
self.se_res2block = nn.Sequential(
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
Res2Conv1dReluBn(
channels, kernel_size, stride, padding, dilation, scale=scale
),
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
SE_Connect(channels),
)
def forward(self, x):
return x + self.se_res2block(x)
class ECAPA_TDNN(nn.Module):
def __init__(
self,
channels=512,
feat_dim=80,
embed_dim=192,
pooling_func="ASTP",
global_context_att=False,
emb_bn=False,
):
super().__init__()
self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2)
self.layer2 = SE_Res2Block(
channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8
)
self.layer3 = SE_Res2Block(
channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8
)
self.layer4 = SE_Res2Block(
channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8
)
cat_channels = channels * 3
out_channels = 512 * 3
self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1)
self.pool = globals()[pooling_func](
in_dim=out_channels, global_context_att=global_context_att
)
self.pool_out_dim = self.pool.get_out_dim()
self.bn = nn.BatchNorm1d(self.pool_out_dim)
self.linear = nn.Linear(self.pool_out_dim, embed_dim)
self.emb_bn = emb_bn
if emb_bn: # better in SSL for SV
self.bn2 = nn.BatchNorm1d(embed_dim)
else:
self.bn2 = nn.Identity()
def forward(self, x, return_latent=False):
x = x.permute(0, 2, 1) # (B,T,F) -> (B,F,T)
out1 = self.layer1(x)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3)
out = torch.cat([out2, out3, out4], dim=1)
latent = F.relu(self.conv(out))
out = self.bn(self.pool(latent))
out = self.linear(out)
if self.emb_bn:
out = self.bn2(out)
if return_latent:
return out, latent
return out
def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=1024,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
emb_bn=emb_bn,
)
def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=1024,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
global_context_att=True,
emb_bn=emb_bn,
)
def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=512,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
emb_bn=emb_bn,
)
def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=512,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
global_context_att=True,
emb_bn=emb_bn,
)
# --- Paste sparktts/modules/speaker/perceiver_encoder.py content here ---
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# main class
class Attend(nn.Module):
def __init__(self, dropout=0.0, causal=False, use_flash=False):
super().__init__()
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
self.causal = causal
self.register_buffer("mask", None, persistent=False)
self.use_flash = use_flash
assert not (
use_flash and version.parse(torch.__version__) < version.parse("2.0.0")
), "in order to use flash attention, you must be using pytorch 2.0 or above"
# determine efficient attention configs for cuda and cpu
self.config = namedtuple(
"EfficientAttentionConfig",
["enable_flash", "enable_math", "enable_mem_efficient"],
)
self.cpu_config = self.config(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not use_flash:
return
device_properties = torch.cuda.get_device_properties(torch.device("cuda"))
if device_properties.major == 8 and device_properties.minor == 0:
print_once(
"A100 GPU detected, using flash attention if input tensor is on cuda"
)
self.cuda_config = self.config(True, False, False)
else:
print_once(
"Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda"
)
self.cuda_config = self.config(False, True, True)
def get_mask(self, n, device):
if exists(self.mask) and self.mask.shape[-1] >= n:
return self.mask[:n, :n]
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
self.register_buffer("mask", mask, persistent=False)
return mask
def flash_attn(self, q, k, v, mask=None):
_, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if k.ndim == 3:
k = rearrange(k, "b ... -> b 1 ...").expand_as(q)
if v.ndim == 3:
v = rearrange(v, "b ... -> b 1 ...").expand_as(q)
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
if exists(mask):
mask = rearrange(mask, "b j -> b 1 1 j")
mask = mask.expand(-1, heads, q_len, -1)
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=self.causal,
)
return out
def forward(self, q, k, v, mask=None):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, device = q.shape[-2], q.device
scale = q.shape[-1] ** -0.5
if self.use_flash:
return self.flash_attn(q, k, v, mask=mask)
kv_einsum_eq = "b j d" if k.ndim == 3 else "b h j d"
# similarity
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
# key padding mask
if exists(mask):
mask = rearrange(mask, "b j -> b 1 1 j")
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max)
# causal mask
if self.causal:
causal_mask = self.get_mask(n, device)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
# attention
attn = sim.softmax(dim=-1)
attn = self.attn_dropout(attn)
# aggregate values
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
return out
def Sequential(*mods):
return nn.Sequential(*filter(exists, mods))
class RMSNorm(nn.Module):
def __init__(self, dim, scale=True, dim_cond=None):
super().__init__()
self.cond = exists(dim_cond)
self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(dim)) if scale else None
def forward(self, x, cond=None):
gamma = default(self.gamma, 1)
out = F.normalize(x, dim=-1) * self.scale * gamma
if not self.cond:
return out
assert exists(cond)
gamma, beta = self.to_gamma_beta(cond).chunk(2, dim=-1)
gamma, beta = map(lambda t: rearrange(t, "b d -> b 1 d"), (gamma, beta))
return out * gamma + beta
class CausalConv1d(nn.Conv1d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
(kernel_size,) = self.kernel_size
(dilation,) = self.dilation
(stride,) = self.stride
assert stride == 1
self.causal_padding = dilation * (kernel_size - 1)
def forward(self, x):
causal_padded_x = F.pad(x, (self.causal_padding, 0), value=0.0)
return super().forward(causal_padded_x)
class GEGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.gelu(gate) * x
def FeedForward(dim, mult=4, causal_conv=False):
dim_inner = int(dim * mult * 2 / 3)
conv = None
if causal_conv:
conv = nn.Sequential(
Rearrange("b n d -> b d n"),
CausalConv1d(dim_inner, dim_inner, 3),
Rearrange("b d n -> b n d"),
)
return Sequential(
nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim)
)
class Attention(nn.Module):
def __init__(
self,
dim,
*,
dim_context=None,
causal=False,
dim_head=64,
heads=8,
dropout=0.0,
use_flash=False,
cross_attn_include_queries=False,
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
self.cross_attn_include_queries = cross_attn_include_queries
dim_inner = dim_head * heads
dim_context = default(dim_context, dim)
self.attend = Attend(causal=causal, dropout=dropout, use_flash=use_flash)
self.to_q = nn.Linear(dim, dim_inner, bias=False)
self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias=False)
self.to_out = nn.Linear(dim_inner, dim, bias=False)
def forward(self, x, context=None, mask=None):
h, has_context = self.heads, exists(context)
context = default(context, x)
if has_context and self.cross_attn_include_queries:
context = torch.cat((x, context), dim=-2)
q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim=-1))
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
out = self.attend(q, k, v, mask=mask)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
class PerceiverResampler(nn.Module):
def __init__(
self,
*,
dim,
depth=2,
dim_context=None,
num_latents=32,
dim_head=64,
heads=8,
ff_mult=4,
use_flash_attn=False,
):
super().__init__()
dim_context = default(dim_context, dim)
self.proj_context = (
nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity()
)
self.latents = nn.Parameter(torch.randn(num_latents, dim))
nn.init.normal_(self.latents, std=0.02)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
Attention(
dim=dim,
dim_head=dim_head,
heads=heads,
use_flash=use_flash_attn,
cross_attn_include_queries=True,
),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
self.norm = RMSNorm(dim)
def forward(self, x, mask=None):
batch = x.shape[0]
x = self.proj_context(x)
latents = repeat(self.latents, "n d -> b n d", b=batch)
for attn, ff in self.layers:
latents = attn(latents, x, mask=mask) + latents
latents = ff(latents) + latents
return self.norm(latents)
# --- Paste sparktts/modules/speaker/speaker_encoder.py content here ---
class SpeakerEncoder(nn.Module):
"""
Args:
input_dim (int): acoustic feature dimension
out_dim (int): output dimension of x-vector and d-vector
latent_dim (int): latent dimension before quantization
token_num (int): sequence length of speaker tokens
fsq_levels (List[int]): number of levels for each quantizer
fsq_num_quantizers (int): number of quantizers
Return:
speaker_embs: (B, T2, out_dim)
"""
def __init__(
self,
input_dim: int = 100,
out_dim: int = 512,
latent_dim: int = 128,
token_num: int = 32,
fsq_levels: List[int] = [4, 4, 4, 4, 4, 4],
fsq_num_quantizers: int = 1,
):
super(SpeakerEncoder, self).__init__()
self.speaker_encoder = ECAPA_TDNN_GLOB_c512(
feat_dim=input_dim, embed_dim=out_dim
)
self.perceiver_sampler = PerceiverResampler(
dim=latent_dim, dim_context=512 * 3, num_latents=token_num
)
self.quantizer = ResidualFSQ(
levels=fsq_levels,
num_quantizers=fsq_num_quantizers,
dim=latent_dim,
is_channel_first=True,
quantize_dropout=False,
)
self.project = nn.Linear(latent_dim * token_num, out_dim)
def get_codes_from_indices(self, indices: torch.Tensor) -> torch.Tensor:
zq = self.quantizer.get_codes_from_indices(indices.transpose(1, 2))
return zq.transpose(1, 2)
def get_indices(self, mels: torch.Tensor) -> torch.Tensor:
mels = mels.transpose(1, 2)
x = self.perceiver_sampler(mels).transpose(1, 2)
zq, indices = self.quantizer(x)
return indices
def forward(self, mels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
mels: (B, D_mel, T1)
Return:
x_vector: (B, out_dim)
d_vector: (B, out_dim)
"""
# mels = mels.transpose(1,2)
x_vector, features = self.speaker_encoder(mels, True)
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
zq, indices = self.quantizer(x) # zq: (B, latent_dim, T2, latent_dim)
x = zq.reshape(zq.shape[0], -1)
d_vector = self.project(x)
return x_vector, d_vector
def tokenize(self, mels: torch.Tensor) -> torch.Tensor:
"""tokenize the input mel spectrogram"""
_, features = self.speaker_encoder(mels, True)
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
zq, indices = self.quantizer(x)
return indices
def detokenize(self, indices: torch.Tensor) -> torch.Tensor:
"""detokenize the input indices to d-vector"""
zq = self.quantizer.get_output_from_indices(indices.transpose(1, 2)).transpose(1, 2)
x = zq.reshape(zq.shape[0], -1)
d_vector = self.project(x)
return d_vector
# --- Paste sparktts/modules/encoder_decoder/feat_encoder.py content here ---
class Encoder(nn.Module):
"""Encoder module with convnext and downsampling blocks"""
def __init__(
self,
input_channels: int,
vocos_dim: int,
vocos_intermediate_dim: int,
vocos_num_layers: int,
out_channels: int,
sample_ratios: List[int] = [1, 1],
):
super().__init__()
"""
Encoder module with VocosBackbone and sampling blocks.
Args:
sample_ratios (List[int]): sample ratios
example: [2, 2] means downsample by 2x and then upsample by 2x
"""
self.encoder = VocosBackbone(
input_channels=input_channels,
dim=vocos_dim,
intermediate_dim=vocos_intermediate_dim,
num_layers=vocos_num_layers,
condition_dim=None,
)
modules = [
nn.Sequential(
SamplingBlock(
dim=vocos_dim,
groups=vocos_dim,
downsample_scale=ratio,
),
VocosBackbone(
input_channels=vocos_dim,
dim=vocos_dim,
intermediate_dim=vocos_intermediate_dim,
num_layers=2,
condition_dim=None,
),
)
for ratio in sample_ratios
]
self.downsample = nn.Sequential(*modules)
self.project = nn.Linear(vocos_dim, out_channels)
def forward(self, x: torch.Tensor, *args):
"""
Args:
x (torch.Tensor): (batch_size, input_channels, length)
Returns:
x (torch.Tensor): (batch_size, encode_channels, length)
"""
x = self.encoder(x)
x = self.downsample(x)
x = self.project(x)
return x.transpose(1, 2)
# --- Paste sparktts/modules/encoder_decoder/feat_decoder.py content here ---
class Decoder(nn.Module):
"""Decoder module with convnext and upsampling blocks
Args:
sample_ratios (List[int]): sample ratios
example: [2, 2] means downsample by 2x and then upsample by 2x
"""
def __init__(
self,
input_channels: int,
vocos_dim: int,
vocos_intermediate_dim: int,
vocos_num_layers: int,
out_channels: int,
condition_dim: int = None,
sample_ratios: List[int] = [1, 1],
use_tanh_at_final: bool = False,
):
super().__init__()
self.linear_pre = nn.Linear(input_channels, vocos_dim)
modules = [
nn.Sequential(
SamplingBlock(
dim=vocos_dim,
groups=vocos_dim,
upsample_scale=ratio,
),
VocosBackbone(
input_channels=vocos_dim,
dim=vocos_dim,
intermediate_dim=vocos_intermediate_dim,
num_layers=2,
condition_dim=None,
),
)
for ratio in sample_ratios
]
self.downsample = nn.Sequential(*modules)
self.vocos_backbone = VocosBackbone(
input_channels=vocos_dim,
dim=vocos_dim,
intermediate_dim=vocos_intermediate_dim,
num_layers=vocos_num_layers,
condition_dim=condition_dim,
)
self.linear = nn.Linear(vocos_dim, out_channels)
self.use_tanh_at_final = use_tanh_at_final
def forward(self, x: torch.Tensor, c: torch.Tensor = None):
"""encoder forward.
Args:
x (torch.Tensor): (batch_size, input_channels, length)
Returns:
x (torch.Tensor): (batch_size, encode_channels, length)
"""
x = self.linear_pre(x.transpose(1, 2))
x = self.downsample(x).transpose(1, 2)
x = self.vocos_backbone(x, condition=c)
x = self.linear(x).transpose(1, 2)
if self.use_tanh_at_final:
x = torch.tanh(x)
return x
# --- Paste sparktts/modules/encoder_decoder/wave_generator.py content here ---
class DecoderBlock(nn.Module):
def __init__(
self,
input_dim: int = 16,
output_dim: int = 8,
kernel_size: int = 2,
stride: int = 1,
):
super().__init__()
self.block = nn.Sequential(
Snake1d(input_dim),
WNConvTranspose1d(
input_dim,
output_dim,
kernel_size=kernel_size,
stride=stride,
padding=(kernel_size - stride) // 2,
),
ResidualUnit(output_dim, dilation=1),
ResidualUnit(output_dim, dilation=3),
ResidualUnit(output_dim, dilation=9),
)
def forward(self, x):
return self.block(x)
class WaveGenerator(nn.Module):
def __init__(
self,
input_channel,
channels,
rates,
kernel_sizes,
d_out: int = 1,
):
super().__init__()
# Add first conv layer
layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)]
# Add upsampling + MRF blocks
for i, (kernel_size, stride) in enumerate(zip(kernel_sizes, rates)):
input_dim = channels // 2**i
output_dim = channels // 2 ** (i + 1)
layers += [DecoderBlock(input_dim, output_dim, kernel_size, stride)]
# Add final conv layer
layers += [
Snake1d(output_dim),
WNConv1d(output_dim, d_out, kernel_size=7, padding=3),
nn.Tanh(),
]
self.model = nn.Sequential(*layers)
self.apply(init_weights)
def forward(self, x):
return self.model(x)
# --- Paste sparktts/modules/vq/factorized_vector_quantize.py content here ---
def ema_inplace(moving_avg, new, decay):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
class FactorizedVectorQuantize(nn.Module):
def __init__(
self,
input_dim: int,
codebook_size: int,
codebook_dim: int,
commitment: float,
codebook_loss_weight: float = 1.0,
decay: float = 0.99,
threshold_ema_dead_code: float = 2,
momentum: float = 0.99,
**kwargs,
):
super().__init__()
self.input_dim = input_dim
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.commitment = commitment
self.codebook_loss_weight = codebook_loss_weight
self.decay = decay
self.threshold_ema_dead_code = threshold_ema_dead_code
self.momentum = momentum
if input_dim != self.codebook_dim:
self.in_project = WNConv1d(input_dim, self.codebook_dim, kernel_size=1)
self.out_project = WNConv1d(self.codebook_dim, input_dim, kernel_size=1)
else:
self.in_project = nn.Identity()
self.out_project = nn.Identity()
self.codebook = nn.Embedding(self.codebook_size, self.codebook_dim)
self.register_buffer("cluster_size", torch.zeros(self.codebook_size))
def forward(self, z: torch.Tensor) -> Dict[str, Any]:
"""Quantized the input tensor using a fixed codebook and returns
the corresponding codebook vectors
Parameters
----------
z : Tensor[B x D x T]
Returns
-------
Tensor[B x D x T]
Quantized continuous representation of input
Tensor[1]
Commitment loss to train encoder to predict vectors closer to codebook
entries
Tensor[1]
Codebook loss to update the codebook
Tensor[B x T]
Codebook indices (quantized discrete representation of input)
Tensor[B x D x T]
Projected latents (continuous representation of input before quantization)
"""
# transpose since we use linear
# Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim
z_e = self.in_project(z)
z_q, indices, dists = self.decode_latents(z_e)
# statistic the usage of codes
embed_onehot = F.one_hot(indices, self.codebook_size).type(z_e.dtype)
avg_probs = torch.mean(embed_onehot.reshape(-1, self.codebook_size), dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
active_num = (embed_onehot.sum(0).sum(0) > 0).sum()
if self.training:
# We do the expiry of code at that point as buffers are in sync
# and all the workers will take the same decision.
ema_inplace(self.cluster_size, embed_onehot.sum(0).sum(0), self.decay)
active_num = sum(self.cluster_size > self.threshold_ema_dead_code)
if self.training:
commit_loss = (
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
* self.commitment
)
codebook_loss = (
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
* self.codebook_loss_weight
)
else:
commit_loss = torch.zeros(0, device=z.device)
codebook_loss = torch.zeros(0, device=z.device)
z_q = (
z_e + (z_q - z_e).detach()
) # noop in forward pass, straight-through gradient estimator in backward pass
z_q = self.out_project(z_q)
vq_loss = (commit_loss + codebook_loss).mean()
return {
"z_q": z_q,
"indices": indices,
"dists": dists,
"vq_loss": vq_loss,
"perplexity": perplexity,
"active_num": active_num.float(),
}
def vq2emb(self, vq, out_proj=True):
emb = self.embed_code(vq)
if out_proj:
emb = self.out_project(emb)
return emb
def tokenize(self, z: torch.Tensor) -> torch.Tensor:
"""tokenize the input tensor"""
z_e = self.in_project(z)
_, indices, _ = self.decode_latents(z_e)
return indices
def detokenize(self, indices):
"""detokenize the input indices"""
z_q = self.decode_code(indices)
z_q = self.out_project(z_q)
return z_q
def get_emb(self):
return self.codebook.weight
def embed_code(self, embed_id):
return F.embedding(embed_id, self.codebook.weight)
def decode_code(self, embed_id):
return self.embed_code(embed_id).transpose(1, 2)
def decode_latents(self, latents):
encodings = rearrange(latents, "b d t -> (b t) d")
codebook = self.codebook.weight
# L2 normalize encodings and codebook
encodings = F.normalize(encodings)
codebook = F.normalize(codebook)
# Compute euclidean distance between encodings and codebook,
# with L2 normalization, the distance is equal to cosine distance
dist = (
encodings.pow(2).sum(1, keepdim=True)
- 2 * encodings @ codebook.t()
+ codebook.pow(2).sum(1, keepdim=True).t()
)
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
z_q = self.decode_code(indices)
return z_q, indices, dist
# =============================================================================
# >> END: PASTE CODE FROM sparktts/modules/* HERE <<
# =============================================================================
# =============================================================================
# >> START: PASTE CODE FROM sparktts/models/bicodec.py HERE <<
# =============================================================================
# IMPORTANT: The BiCodec class definition needs to be here.
# Modify its loading mechanism as suggested.
class BiCodec(nn.Module):
def __init__(
self,
mel_params: Dict[str, Any],
encoder: nn.Module,
decoder: nn.Module,
quantizer: nn.Module,
speaker_encoder: nn.Module,
prenet: nn.Module,
postnet: nn.Module,
**kwargs
) -> None:
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.quantizer = quantizer
self.speaker_encoder = speaker_encoder
self.prenet = prenet
self.postnet = postnet
self.init_mel_transformer(mel_params)
@classmethod
def load_from_config_and_checkpoint(cls, model_dir: Path, bicodec_config_object: SparkTTSBiCodecConfig) -> "BiCodec":
"""
Loads the BiCodec model using a SparkTTSBiCodecConfig object and a checkpoint file.
Args:
model_dir (Path): Path to the directory containing the model checkpoint ('model.safetensors').
bicodec_config_object (SparkTTSBiCodecConfig): The nested config object from SparkTTSConfig.
Returns:
BiCodec: The initialized BiCodec model.
"""
ckpt_path = model_dir / 'model.safetensors'
if not ckpt_path.exists():
ckpt_path_bin = model_dir / 'pytorch_model.bin'
if ckpt_path_bin.exists():
ckpt_path = ckpt_path_bin
else:
raise FileNotFoundError(f"BiCodec checkpoint not found at {model_dir / 'model.safetensors'} or potential fallbacks.")
# Instantiate components using specific attributes from the nested config objects
mel_params_config = bicodec_config_object.mel_params
encoder_cfg = bicodec_config_object.encoder_config
decoder_cfg = bicodec_config_object.decoder_config # WaveGenerator config
quantizer_cfg = bicodec_config_object.quantizer_config
speaker_encoder_cfg = bicodec_config_object.speaker_encoder_config
prenet_cfg = bicodec_config_object.prenet_config
postnet_cfg = bicodec_config_object.postnet_config
# Pass only the arguments expected by each module's __init__
mel_params = mel_params_config.to_dict() # Mel params might be needed as dict
encoder = Encoder(
input_channels=encoder_cfg.input_channels,
vocos_dim=encoder_cfg.vocos_dim,
vocos_intermediate_dim=encoder_cfg.vocos_intermediate_dim,
vocos_num_layers=encoder_cfg.vocos_num_layers,
out_channels=encoder_cfg.out_channels,
sample_ratios=encoder_cfg.sample_ratios,
)
quantizer = FactorizedVectorQuantize(
input_dim=quantizer_cfg.input_dim,
codebook_size=quantizer_cfg.codebook_size,
codebook_dim=quantizer_cfg.codebook_dim,
commitment=quantizer_cfg.commitment,
codebook_loss_weight=quantizer_cfg.codebook_loss_weight,
decay=quantizer_cfg.decay,
threshold_ema_dead_code=quantizer_cfg.threshold_ema_dead_code,
# Add any other kwargs FactorizedVectorQuantize expects from its config
)
prenet = Decoder( # Assuming Prenet uses the Decoder class structure
input_channels=prenet_cfg.input_channels,
vocos_dim=prenet_cfg.vocos_dim,
vocos_intermediate_dim=prenet_cfg.vocos_intermediate_dim,
vocos_num_layers=prenet_cfg.vocos_num_layers,
out_channels=prenet_cfg.out_channels,
condition_dim=prenet_cfg.condition_dim,
sample_ratios=prenet_cfg.sample_ratios,
use_tanh_at_final=prenet_cfg.use_tanh_at_final,
)
postnet = Decoder( # Assuming Postnet uses the Decoder class structure
input_channels=postnet_cfg.input_channels,
vocos_dim=postnet_cfg.vocos_dim,
vocos_intermediate_dim=postnet_cfg.vocos_intermediate_dim,
vocos_num_layers=postnet_cfg.vocos_num_layers,
out_channels=postnet_cfg.out_channels,
# condition_dim=postnet_cfg.condition_dim, # Postnet might not have condition_dim
# sample_ratios=postnet_cfg.sample_ratios, # Postnet might not have sample_ratios
use_tanh_at_final=postnet_cfg.use_tanh_at_final,
)
decoder = WaveGenerator( # This is the actual audio decoder
input_channel=decoder_cfg.input_channel,
channels=decoder_cfg.channels,
rates=decoder_cfg.rates,
kernel_sizes=decoder_cfg.kernel_sizes,
# d_out is likely fixed to 1 internally in WaveGenerator, not configured
)
speaker_encoder = SpeakerEncoder(
input_dim=speaker_encoder_cfg.input_dim,
out_dim=speaker_encoder_cfg.out_dim,
latent_dim=speaker_encoder_cfg.latent_dim,
token_num=speaker_encoder_cfg.token_num,
fsq_levels=speaker_encoder_cfg.fsq_levels,
fsq_num_quantizers=speaker_encoder_cfg.fsq_num_quantizers,
)
# Instantiate the BiCodec model itself
model = cls(
mel_params=mel_params, # Pass the dict here
encoder=encoder,
decoder=decoder,
quantizer=quantizer,
speaker_encoder=speaker_encoder,
prenet=prenet,
postnet=postnet,
)
# --- State Dict Loading ---
logger.info(f"Loading BiCodec state dict from: {ckpt_path}")
if str(ckpt_path).endswith(".safetensors"):
state_dict = load_file(ckpt_path, device="cpu") # Load to CPU first
else:
state_dict = torch.load(ckpt_path, map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if missing_keys:
logger.warning(f"BiCodec Missing keys: {missing_keys}")
if unexpected_keys:
logger.warning(f"BiCodec Unexpected keys: {unexpected_keys}")
model.eval()
model.remove_weight_norm() # Important step from original code
logger.info("BiCodec loaded successfully.")
return model
#
# # --- Paste the rest of the BiCodec methods here ---
# # forward, tokenize, detokenize, init_mel_transformer, remove_weight_norm
def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]:
"""
Performs a forward pass through the model.
Args:
batch (dict): A dictionary containing features, reference waveform, and target waveform.
Returns:
dict: A dictionary containing the reconstruction, features, and other metrics.
"""
feat = batch["feat"]
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
z = self.encoder(feat.transpose(1, 2))
vq_outputs = self.quantizer(z)
x_vector, d_vector = self.speaker_encoder(mel.transpose(1, 2))
conditions = d_vector
with_speaker_loss = False
x = self.prenet(vq_outputs["z_q"], conditions)
pred_feat = self.postnet(x)
x = x + conditions.unsqueeze(-1)
wav_recon = self.decoder(x)
return {
"vq_loss": vq_outputs["vq_loss"],
"perplexity": vq_outputs["perplexity"],
"cluster_size": vq_outputs["active_num"],
"recons": wav_recon,
"pred_feat": pred_feat,
"x_vector": x_vector,
"d_vector": d_vector,
"audios": batch["wav"].unsqueeze(1),
"with_speaker_loss": with_speaker_loss,
}
@torch.no_grad()
def tokenize(self, batch: Dict[str, Any]):
"""
Tokenizes the input audio into semantic and global tokens.
Args:
batch (dict): The input audio features and reference waveform.
Returns:
tuple: Semantic tokens and global tokens.
"""
feat = batch["feat"]
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
z = self.encoder(feat.transpose(1, 2))
semantic_tokens = self.quantizer.tokenize(z)
global_tokens = self.speaker_encoder.tokenize(mel.transpose(1, 2))
return semantic_tokens, global_tokens
@torch.no_grad()
def detokenize(self, semantic_tokens, global_tokens):
"""
Detokenizes the semantic and global tokens into a waveform.
Args:
semantic_tokens (tensor): Semantic tokens.
global_tokens (tensor): Global tokens.
Returns:
tensor: Reconstructed waveform.
"""
z_q = self.quantizer.detokenize(semantic_tokens)
d_vector = self.speaker_encoder.detokenize(global_tokens)
x = self.prenet(z_q, d_vector)
x = x + d_vector.unsqueeze(-1)
wav_recon = self.decoder(x)
return wav_recon
def init_mel_transformer(self, config: Dict[str, Any]):
"""
Initializes the MelSpectrogram transformer based on the provided configuration.
Args:
config (dict): Configuration parameters for MelSpectrogram.
"""
import torchaudio.transforms as TT
self.mel_transformer = TT.MelSpectrogram(
config["sample_rate"],
config["n_fft"],
config["win_length"],
config["hop_length"],
config["mel_fmin"],
config["mel_fmax"],
n_mels=config["num_mels"],
power=1,
norm="slaney",
mel_scale="slaney",
)
def remove_weight_norm(self):
"""Removes weight normalization from all layers."""
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError:
pass # The module didn't have weight norm
self.apply(_remove_weight_norm)
# =============================================================================
# >> END: PASTE CODE FROM sparktts/models/bicodec.py HERE <<
# =============================================================================
# =============================================================================
# >> START: PASTE CODE FROM sparktts/utils/audio.py HERE (if needed by model) <<
# =============================================================================
# Functions like audio_volume_normalize, load_audio, etc., are typically part
# of the Processor. However, if any are directly used *within* the BiCodec or
# other model components pasted above, they need to be defined here too.
# It seems `get_ref_clip` logic might be needed if `BiCodecTokenizer` logic is embedded.
# Example placeholder comment:
def audio_volume_normalize(audio: np.ndarray, coeff: float = 0.2) -> np.ndarray:
"""
Normalize the volume of an audio signal.
Parameters:
audio (numpy array): Input audio signal array.
coeff (float): Target coefficient for normalization, default is 0.2.
Returns:
numpy array: The volume-normalized audio signal.
"""
# Sort the absolute values of the audio signal
temp = np.sort(np.abs(audio))
# If the maximum value is less than 0.1, scale the array to have a maximum of 0.1
if temp[-1] < 0.1:
scaling_factor = max(
temp[-1], 1e-3
) # Prevent division by zero with a small constant
audio = audio / scaling_factor * 0.1
# Filter out values less than 0.01 from temp
temp = temp[temp > 0.01]
L = temp.shape[0] # Length of the filtered array
# If there are fewer than or equal to 10 significant values, return the audio without further processing
if L <= 10:
return audio
# Compute the average of the top 10% to 1% of values in temp
volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)])
# Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10
audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10)
# Ensure the maximum absolute value in the audio does not exceed 1
max_value = np.max(np.abs(audio))
if max_value > 1:
audio = audio / max_value
return audio
def load_audio(
adfile: Path,
sampling_rate: int = None,
length: int = None,
volume_normalize: bool = False,
segment_duration: int = None,
) -> np.ndarray:
r"""Load audio file with target sampling rate and lsength
Args:
adfile (Path): path to audio file.
sampling_rate (int, optional): target sampling rate. Defaults to None.
length (int, optional): target audio length. Defaults to None.
volume_normalize (bool, optional): whether perform volume normalization. Defaults to False.
segment_duration (int): random select a segment with duration of {segment_duration}s.
Defualt to None which means the whole audio will be used.
Returns:
audio (np.ndarray): audio
"""
audio, sr = soundfile.read(adfile)
if len(audio.shape) > 1:
audio = audio[:, 0]
if sampling_rate is not None and sr != sampling_rate:
audio = soxr.resample(audio, sr, sampling_rate, quality="VHQ")
sr = sampling_rate
if segment_duration is not None:
seg_length = int(sr * segment_duration)
audio = random_select_audio_segment(audio, seg_length)
# Audio volume normalize
if volume_normalize:
audio = audio_volume_normalize(audio)
# check the audio length
if length is not None:
assert abs(audio.shape[0] - length) < 1000
if audio.shape[0] > length:
audio = audio[:length]
else:
audio = np.pad(audio, (0, int(length - audio.shape[0])))
return audio
def random_select_audio_segment(audio: np.ndarray, length: int) -> np.ndarray:
"""get an audio segment given the length
Args:
audio (np.ndarray):
length (int): audio length = sampling_rate * duration
"""
if audio.shape[0] < length:
audio = np.pad(audio, (0, int(length - audio.shape[0])))
start_index = random.randint(0, audio.shape[0] - length)
end_index = int(start_index + length)
return audio[start_index:end_index]
# =============================================================================
# >> END: PASTE CODE FROM sparktts/utils/audio.py HERE (if needed by model) <<
# =============================================================================
class SparkTTSModel(PreTrainedModel, GenerationMixin):
"""
Spark-TTS model integrating a Language Model (LLM) for sequence generation,
a Wav2Vec2 model for feature extraction, and a BiCodec model for audio
tokenization and synthesis. Designed for compatibility with the Hugging Face ecosystem.
"""
config_class = SparkTTSConfig
base_model_prefix = "spark_tts" # Or perhaps "llm" if generation focuses there
main_input_name = "input_ids" # Crucial for GenerationMixin
def __init__(
self,
config: SparkTTSConfig,
llm: Optional[PreTrainedModel] = None,
wav2vec2_model: Optional[PreTrainedModel] = None,
wav2vec2_processor: Optional[Wav2Vec2FeatureExtractor] = None, # Store processor too
bicodec: Optional[nn.Module] = None, # Should be the loaded BiCodec instance
):
super().__init__(config)
self.config = config # Stores the main SparkTTSConfig
# Store the sub-components
self.llm = llm
self.wav2vec2_model = wav2vec2_model
self.wav2vec2_processor = wav2vec2_processor # Store the processor used for features
self.bicodec = bicodec
# Ensure Wav2Vec2 is configured for hidden states needed by BiCodec's feature extractor
if self.wav2vec2_model:
self.wav2vec2_model.config.output_hidden_states = True
# Post initialization checks (optional but good practice)
if not all([self.llm, self.wav2vec2_model, self.wav2vec2_processor, self.bicodec]):
logger.warning(
"SparkTTSModel initialized without all sub-components. "
"Ensure `from_pretrained` is used for loading a complete model."
)
def get_input_embeddings(self):
"""Returns the input embeddings of the LLM."""
if self.llm:
return self.llm.get_input_embeddings()
return None
def set_input_embeddings(self, value):
"""Sets the input embeddings of the LLM."""
if self.llm:
self.llm.set_input_embeddings(value)
def _prepare_wav2vec2_features(self, wav: torch.Tensor) -> torch.Tensor:
"""
Extracts Wav2Vec2 features required by BiCodec.
Input wav should be a batch of waveforms [B, T_audio].
"""
if not self.wav2vec2_model or not self.wav2vec2_processor:
raise ValueError("Wav2Vec2 model or processor not loaded.")
# Get target device and dtype from the Wav2Vec2 model
target_device = self.wav2vec2_model.device
target_dtype = self.wav2vec2_model.dtype # Get the model's dtype (e.g., bfloat16)
# Input wav tensor might be float32, processor usually expects float32
wav_for_processor = wav.to(device=target_device, dtype=torch.float32)
# Process using the Wav2Vec2FeatureExtractor
# The processor typically outputs float32
inputs = self.wav2vec2_processor(
wav_for_processor,
sampling_rate=self.config.sample_rate, # Use config SR
return_tensors="pt",
padding=True,
)
input_values = inputs.input_values.to(target_device) # Move to device
# --- Cast the input_values to the model's expected dtype ---
input_values = input_values.to(dtype=target_dtype)
# ----------------------------------------------------------
# --- CRITICAL CHECK AND FIX ---
# Ensure input_values is 2D [Batch, Length] before passing to the model
if input_values.ndim == 3 and input_values.shape[1] == 1:
logger.warning(f"Processor returned 3D input_values {input_values.shape}. Squeezing the channel dimension.")
input_values = input_values.squeeze(1)
elif input_values.ndim != 2:
raise ValueError(f"Expected input_values from processor to be 2D [Batch, Length], but got shape {input_values.shape}")
# --- END CHECK AND FIX ---
# Extract features using the Wav2Vec2Model
with torch.no_grad(): # Feature extraction should not require gradients here
# Now the input dtype matches the model's parameter dtype
feat_outputs = self.wav2vec2_model(input_values)
# Combine specific hidden states as per original BiCodecTokenizer logic
if not feat_outputs.hidden_states:
raise ValueError("Wav2Vec2 model did not return hidden states. Ensure config.output_hidden_states=True.")
if len(feat_outputs.hidden_states) < 17:
# Wav2Vec2-large-xlsr has 24 layers + initial embeddings = 25 states
logger.warning(f"Wav2Vec2 model returned {len(feat_outputs.hidden_states)} hidden states. Expected at least 17 for default BiCodec indices (11, 14, 16). Check model architecture or BiCodec indices if this is unexpected.")
# Attempt to proceed if possible, otherwise raise error if indices are out of bounds
idx1, idx2, idx3 = 11, 14, 16
if not (0 <= idx1 < len(feat_outputs.hidden_states) and \
0 <= idx2 < len(feat_outputs.hidden_states) and \
0 <= idx3 < len(feat_outputs.hidden_states)):
raise ValueError(f"Required hidden state indices ({idx1}, {idx2}, {idx3}) are out of bounds for the {len(feat_outputs.hidden_states)} hidden states returned.")
else:
idx1, idx2, idx3 = 11, 14, 16
feats_mix = (
feat_outputs.hidden_states[idx1] +
feat_outputs.hidden_states[idx2] +
feat_outputs.hidden_states[idx3]
) / 3
# Ensure the output features also match the expected downstream dtype (e.g., bicodec)
# Usually okay if subsequent layers also use the same target_dtype
return feats_mix.to(dtype=target_dtype) # Return features in the target dtype # Shape: [B, T_feats, D_feats]
@torch.no_grad()
def tokenize_audio(self, wav: torch.Tensor, ref_wav: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Tokenizes audio using the BiCodec model.
Args:
wav (torch.Tensor): The main audio waveform [B, T_audio]. (Should be float32 initially)
ref_wav (torch.Tensor): The reference audio waveform [B, T_ref_audio]. (Should be float32 initially)
Returns:
Tuple[torch.Tensor, torch.Tensor]: global_tokens, semantic_tokens
"""
if not self.bicodec:
raise ValueError("BiCodec model not loaded.")
# 1. Extract Wav2Vec2 features for the main audio
# _prepare_wav2vec2_features now handles internal dtype casting for w2v model
feats = self._prepare_wav2vec2_features(wav) # Returns features in model's target dtype
# 2. Prepare batch for BiCodec
# Ensure tensors are on the BiCodec's device AND correct dtype
# Get device and dtype from a BiCodec submodule parameter
bicodec_param = next(self.bicodec.parameters())
target_device = bicodec_param.device
target_dtype = bicodec_param.dtype # Get BiCodec's dtype
batch = {
# Cast inputs to BiCodec's expected dtype
"wav": wav.to(device=target_device, dtype=target_dtype),
"ref_wav": ref_wav.to(device=target_device, dtype=target_dtype),
"feat": feats.to(device=target_device, dtype=target_dtype), # Ensure feats are also correct dtype
}
# 3. Call BiCodec's tokenize method
semantic_tokens, global_tokens = self.bicodec.tokenize(batch)
return global_tokens, semantic_tokens
@torch.no_grad()
def detokenize_audio(self, global_tokens: torch.Tensor, semantic_tokens: torch.Tensor) -> np.ndarray:
"""
Detokenizes audio tokens back to a waveform using BiCodec.
Args:
global_tokens (torch.Tensor): Global tokens [B, ...].
semantic_tokens (torch.Tensor): Semantic tokens [B, ...].
Returns:
np.ndarray: The reconstructed waveform [T_audio_out] if B=1, or [B, T_audio_out] if B > 1,
with dtype float32 and values clipped to [-1, 1].
"""
if not self.bicodec:
raise ValueError("BiCodec model not loaded.")
target_device = next(self.bicodec.parameters()).device
# Adjust shapes as expected by BiCodec.detokenize if needed
if global_tokens.ndim == 2: # Example adjustment
global_tokens = global_tokens.unsqueeze(1)
logger.debug(f"DEBUG: Detokenizing audio with global tokens {global_tokens.shape}, semantic tokens {semantic_tokens.shape}")
wav_rec = self.bicodec.detokenize(
semantic_tokens.to(target_device),
global_tokens.to(target_device)
) # Output tensor likely float32 or model's dtype
# Convert to numpy, ensure float32, clip
wav_rec_np = wav_rec.detach().cpu().numpy().astype(np.float32) # Ensure float32
wav_rec_np = np.clip(wav_rec_np, -1.0, 1.0) # Clip values
logger.debug(f"DEBUG: Wav rec shape after detach and clip: {wav_rec_np.shape}") # Shape is likely (B, C, T) e.g., (1, 1, 24640)
# ==============================================================
# CORRECTED SQUEEZE LOGIC
# ==============================================================
# Remove all dimensions of size 1 (batch and channel if they are 1)
# This handles both B=1, C=1 -> (T,) and potentially B>1, C=1 -> (B, T)
# If C > 1, it would return (B, C, T) or (C, T) if B=1.
# soundfile handles (T,) and (T, C) correctly.
output_wav = wav_rec_np.squeeze()
# ==============================================================
logger.debug(f"DEBUG: Final output wav shape after squeeze: {output_wav.shape}")
# Ensure the output is at least 1D even if squeeze removes everything (e.g., single sample output)
if output_wav.ndim == 0:
output_wav = np.expand_dims(output_wav, axis=0)
return output_wav
def prepare_inputs_for_generation(
self, input_ids: torch.LongTensor, past_key_values: Optional[list] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs
) -> dict:
"""
Prepares inputs for the generation process (standard method for GenerationMixin).
"""
# Add position_ids and handle past_key_values for causal LM generation
# This is a standard implementation for causal LMs.
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"position_ids": position_ids,
# Add any other inputs the LLM's forward method expects
}
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
# Add other potential inputs for the LLM (position_ids, past_key_values, etc.)
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
The forward pass primarily delegates to the underlying LLM.
It takes tokenized text/audio prompts as input_ids.
"""
if not self.llm:
raise ValueError("LLM component not loaded.")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Pass arguments directly to the LLM's forward method
outputs = self.llm(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs # Should be CausalLMOutputWithPast or tuple
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[bool, str]] = None,
revision: str = "main",
use_safetensors: Optional[bool] = None,
# New args from base class signature to pass down if relevant
state_dict = None,
device_map = None,
low_cpu_mem_usage = None,
torch_dtype = "auto",
quantization_config = None,
trust_remote_code = None,
# Add other relevant args from base class if needed: subfolder, variant, etc.
subfolder: str = "", # Keep subfolder arg for overall loading logic
variant: Optional[str] = None,
**kwargs,
):
# --- Argument Handling & Initial Setup ---
if device_map:
logger.warning("`device_map` is not directly supported for this composite model. Use .to(device) after loading.")
if low_cpu_mem_usage:
logger.info("`low_cpu_mem_usage` is set, but simplified loading is used. Memory usage might not be optimized.")
if trust_remote_code is None:
logger.warning("Loading SparkTTSModel requires custom code. Setting `trust_remote_code=True`.")
trust_remote_code = True
elif not trust_remote_code:
raise ValueError("Loading SparkTTSModel requires `trust_remote_code=True`.")
kwargs.pop("output_loading_info", None)
kwargs.pop("_from_auto", None)
kwargs.pop("attn_implementation", None)
# --- 1. Resolve the main model directory ---
if state_dict is not None:
raise ValueError("Explicitly passing `state_dict` is not supported for this composite model.")
if pretrained_model_name_or_path is None:
raise ValueError("`pretrained_model_name_or_path` must be provided.")
is_local = Path(pretrained_model_name_or_path).is_dir()
if local_files_only and not is_local:
raise ValueError(f"Cannot find local directory at {pretrained_model_name_or_path} when `local_files_only=True`.")
if is_local:
resolved_model_path = Path(pretrained_model_name_or_path)
logger.info(f"Loading model from local directory: {resolved_model_path}")
else:
logger.info(f"{pretrained_model_name_or_path} is not a local directory. Assuming Hub ID and downloading.")
try:
# Use snapshot_download to get all necessary files
# REMOVED subfolder=subfolder from this call
resolved_model_path_str = snapshot_download(
repo_id=str(pretrained_model_name_or_path),
cache_dir=cache_dir,
force_download=force_download,
local_files_only=local_files_only,
token=token,
revision=revision,
allow_patterns=[
"*.json", "*.safetensors", "*.bin", "*.yaml", "*.txt",
"README.md", ".gitattributes",
"LLM/*", "BiCodec/*", "wav2vec2-large-xlsr-53/*"
],
ignore_patterns=["*.git*", "*.h5", "*.ot", "*.msgpack"],
repo_type="model", # Explicitly set repo_type
# max_workers=..., # Can adjust workers if needed
# user_agent=..., # Can add user agent
)
resolved_model_path = Path(resolved_model_path_str)
logger.info(f"Model files downloaded to cache: {resolved_model_path}")
except Exception as e:
# Catch potential TypeErrors from snapshot_download if args change again
if isinstance(e, TypeError) and 'unexpected keyword argument' in str(e):
logger.error(f"snapshot_download() received an unexpected keyword argument. Check huggingface_hub version compatibility. Error: {e}")
raise OSError(
f"Failed to download model '{pretrained_model_name_or_path}' (revision: '{revision}') from Hugging Face Hub. "
f"Error: {e}"
)
if not resolved_model_path.is_dir():
raise EnvironmentError(f"Resolved model path is not a directory: {resolved_model_path}")
# If subfolder was specified for from_pretrained, adjust the path *after* download
if subfolder:
resolved_model_path_with_subfolder = resolved_model_path / subfolder
if not resolved_model_path_with_subfolder.is_dir():
raise EnvironmentError(f"Subfolder '{subfolder}' not found within the resolved path: {resolved_model_path}")
resolved_model_path = resolved_model_path_with_subfolder # Update path to include subfolder
logger.info(f"Using subfolder within resolved path: {resolved_model_path}")
# --- 2. Load the main configuration ---
if not isinstance(config, PretrainedConfig):
# Load config from the potentially subfolder-adjusted path
config_path = config if config is not None else resolved_model_path
try:
loaded_config, model_kwargs = SparkTTSConfig.from_pretrained(
config_path, # Load from the final resolved path
*model_args,
cache_dir=cache_dir,
force_download=force_download if not is_local else False,
local_files_only=local_files_only or is_local,
token=token,
revision=revision, # Pass revision for config loading too
trust_remote_code=trust_remote_code,
subfolder="", # Config is expected at the root of resolved_model_path
return_unused_kwargs=True,
**kwargs,
)
config = loaded_config
kwargs = model_kwargs
except OSError as e:
raise OSError(f"Cannot load config from {config_path}. Check `config.json` exists and is correctly formatted. Error: {e}")
# --- Determine final torch_dtype ---
final_torch_dtype = torch_dtype
if final_torch_dtype == "auto":
final_torch_dtype = getattr(config, "torch_dtype", None)
if isinstance(final_torch_dtype, str) and final_torch_dtype != "auto":
try:
final_torch_dtype = getattr(torch, final_torch_dtype)
except AttributeError:
logger.warning(f"Invalid torch_dtype string: {final_torch_dtype}. Falling back to default.")
final_torch_dtype = None
elif final_torch_dtype == "auto":
final_torch_dtype = None
# --- Helper function to resolve component paths relative to the final resolved_model_path ---
def _resolve_sub_path(sub_path_str):
p = Path(sub_path_str)
if p.is_absolute():
if not p.exists(): logger.warning(f"Absolute path specified for sub-component does not exist: {p}")
return str(p)
else:
# Resolve relative to the potentially subfolder-adjusted main model path
resolved = resolved_model_path / p
if not resolved.exists():
resolved_alt = resolved_model_path / sub_path_str.lstrip('./')
if resolved_alt.exists():
resolved = resolved_alt
else:
raise FileNotFoundError(f"Could not resolve sub-component path: {resolved} (relative to {resolved_model_path})")
return str(resolved)
# --- Component Loading Arguments ---
component_loading_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"local_files_only": local_files_only,
"token": token,
"revision": revision, # Pass revision to component loaders
"trust_remote_code": trust_remote_code,
"torch_dtype": final_torch_dtype,
"use_safetensors": use_safetensors,
"quantization_config": quantization_config if quantization_config else None,
"variant": variant,
**kwargs, # Pass remaining kwargs
}
# --- 3. Load Sub-components ---
# (LLM, Wav2Vec2, BiCodec loading logic remains the same as previous version)
# --- Load LLM ---
llm_path = _resolve_sub_path(config.llm_model_name_or_path)
logger.info(f"Loading LLM from resolved path: {llm_path}")
try:
# Pass subfolder="" because llm_path is now absolute or correctly relative
llm = AutoModelForCausalLM.from_pretrained(
llm_path, subfolder="", **component_loading_kwargs
)
except Exception as e:
raise OSError(f"Failed to load LLM from {llm_path}: {e}")
# --- Load Wav2Vec2 ---
w2v_path = _resolve_sub_path(config.wav2vec2_model_name_or_path)
logger.info(f"Loading Wav2Vec2 components from resolved path: {w2v_path}")
try:
# Load extractor without full component_loading_kwargs if they cause issues
wav2vec2_processor = Wav2Vec2FeatureExtractor.from_pretrained(
w2v_path,
cache_dir=cache_dir,
force_download=force_download,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder="", # Path is resolved
)
# Load model with full kwargs
wav2vec2_model = Wav2Vec2Model.from_pretrained(
w2v_path, subfolder="", **component_loading_kwargs
)
wav2vec2_model.config.output_hidden_states = True
except Exception as e:
raise OSError(f"Failed to load Wav2Vec2 components from {w2v_path}: {e}")
# --- Load BiCodec ---
bicodec_path = _resolve_sub_path(config.bicodec_model_name_or_path)
logger.info(f"Loading BiCodec from resolved path: {bicodec_path}")
if not config.bicodec_config:
raise ValueError("BiCodec configuration (`bicodec_config`) not found in SparkTTSConfig.")
try:
bicodec = BiCodec.load_from_config_and_checkpoint(
model_dir=Path(bicodec_path),
bicodec_config_object=config.bicodec_config
)
if not isinstance(bicodec, torch.nn.Module):
logger.warning("Loaded BiCodec component is not an instance of torch.nn.Module.")
if isinstance(bicodec, torch.nn.Module) and final_torch_dtype:
bicodec = bicodec.to(dtype=final_torch_dtype)
except FileNotFoundError as e:
raise OSError(f"Failed to load BiCodec: Required file not found in {bicodec_path}. Error: {e}")
except Exception as e:
logger.error(f"Raw error loading BiCodec: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise OSError(f"Failed to load BiCodec from {bicodec_path}. Error: {e}")
# --- 4. Instantiate the main model wrapper ---
model = cls(
config,
llm=llm,
wav2vec2_model=wav2vec2_model,
wav2vec2_processor=wav2vec2_processor,
bicodec=bicodec
)
# --- 5. Handle device placement (Simplified) ---
if torch.cuda.is_available():
final_device = torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
final_device = torch.device("mps")
else:
final_device = torch.device("cpu")
logger.info(f"Placing SparkTTSModel and components on device: {final_device}")
try:
model.to(final_device)
except Exception as e:
logger.error(f"Failed to move model to device {final_device}. Error: {e}")
# --- 6. Return the loaded and prepared model ---
return model |