Rustamshry commited on
Commit
9caf6ec
·
verified ·
1 Parent(s): 5092160

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -175
README.md CHANGED
@@ -1,202 +1,143 @@
1
  ---
2
  base_model: unsloth/Qwen3-0.6B
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
  - PEFT 0.15.2
 
1
  ---
2
  base_model: unsloth/Qwen3-0.6B
3
  library_name: peft
4
+ license: mit
5
+ datasets:
6
+ - atahanuz/stock_prediction
7
+ language:
8
+ - en
9
+ pipeline_tag: text-generation
10
+ tags:
11
+ - finance
12
+ - sft
13
+ - trl
14
+ - unsloth
15
+ - transformers
16
  ---
17
 
18
+ # Model Card for StockDirection-6K
 
 
 
 
19
 
20
  ## Model Details
21
 
22
+ StockDirection is a fine-tuned language model for binary stock movement prediction.
23
+ The model is trained to predict whether the next day’s stock price of Akbank (AKBNK), traded on Borsa Istanbul (BIST), will move UP or DOWN, based on the daily percentage changes from the last four days and the current day.
 
 
24
 
25
+ - Input: A formatted prompt describing the last 5 days of daily percentage price changes.
26
+ - Output: A simple categorical prediction — "UP" or "DOWN".
27
 
28
+ This model was fine-tuned on a dataset of 6,300 labeled rows of AKBNK stock data.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Uses
31
 
 
 
32
  ### Direct Use
33
 
34
+ - Educational purposes: Demonstrating how LLMs can be fine-tuned for financial classification tasks.
35
+ - Research: Exploring text-based sequence learning for stock direction prediction.
36
+ - Proof of concept: Serving as an example for stock price direction prediction using natural language prompts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ ⚠️ Not for financial advice or live trading decisions.
39
 
 
40
 
41
  ## How to Get Started with the Model
42
 
43
  Use the code below to get started with the model.
44
 
45
+ ```python
46
+ from transformers import AutoTokenizer, AutoModelForCausalLM
47
+ from peft import PeftModel
48
+
49
+
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-0.6B",)
52
+ base_model = AutoModelForCausalLM.from_pretrained(
53
+ "unsloth/Qwen3-0.6B",
54
+ device_map={"": 0}
55
+ )
56
+
57
+ model = PeftModel.from_pretrained(base_model,"khazarai/StockDirection-6K")
58
+
59
+
60
+ question ="""
61
+ You are an assistant that predicts whatever a stock will go up or down in the next day based on the daily percentage price changes of the last:
62
+ 4 days ago: 0.00
63
+ 3 days ago: -3.09
64
+ 2 days ago: 2.13
65
+ 1 day ago: -2.04
66
+ today: 0.01
67
+ Predict whatever the next day's price will go up or down. Simply write your prediction as UP or DOWN
68
+ """
69
+
70
+ messages = [
71
+ {"role" : "user", "content" : question}
72
+ ]
73
+ text = tokenizer.apply_chat_template(
74
+ messages,
75
+ tokenize = False,
76
+ add_generation_prompt = True,
77
+ enable_thinking = False,
78
+ )
79
+
80
+ from transformers import TextStreamer
81
+ _ = model.generate(
82
+ **tokenizer(text, return_tensors = "pt").to("cuda"),
83
+ max_new_tokens = 200,
84
+ temperature = 0.7,
85
+ top_p = 0.8,
86
+ top_k = 20,
87
+ streamer = TextStreamer(tokenizer, skip_prompt = True),
88
+ )
89
+ ```
90
+ **For pipeline:**
91
+
92
+ ```python
93
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
94
+ from peft import PeftModel
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-0.6B")
97
+ base_model = AutoModelForCausalLM.from_pretrained("unsloth/Qwen3-0.6B")
98
+ model = PeftModel.from_pretrained(base_model, "khazarai/StockDirection-6K")
99
+
100
+ question ="""
101
+ You are an assistant that predicts whatever a stock will go up or down in the next day based on the daily percentage price changes of the last:
102
+ 4 days ago: 0.00
103
+ 3 days ago: -3.09
104
+ 2 days ago: 2.13
105
+ 1 day ago: -2.04
106
+ today: 0.01
107
+ Predict whatever the next day's price will go up or down. Simply write your prediction as UP or DOWN
108
+ """
109
+
110
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
111
+ messages = [
112
+ {"role": "user", "content": question}
113
+ ]
114
+ pipe(messages)
115
+
116
+ ```
117
+
118
+ ## Training Data
119
+
120
+ - Dataset: [atahanuz/stock_prediction](https://huggingface.co/datasets/atahanuz/stock_prediction)
121
+ - Size: 6,355 labeled examples.
122
+ - Structure: Each sample contains past 5 daily percentage changes and the target label (UP/DOWN).
123
+
124
+ Example:
125
+
126
+ ```vbnet
127
+ Question: You are an assistant that predicts whether a stock will go up or down in the next day
128
+ based on the daily percentage price changes of the last:
129
+ 4 days ago: nan
130
+ 3 days ago: 0.00
131
+ 2 days ago: 2.22
132
+ 1 day ago: -2.17
133
+ today: -2.22
134
+ Predict whether the next day's price will go up or down.
135
+ Simply write your prediction as UP or DOWN.
136
+
137
+ Answer: DOWN
138
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
 
140
 
 
141
  ### Framework versions
142
 
143
  - PEFT 0.15.2