Update model
Browse files- config.json +66 -0
- configuration_greedy.py +39 -0
- modeling_greedy.py +85 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"GreedyModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_greedy.GreedyConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_greedy.GreedyModel"
|
8 |
+
},
|
9 |
+
"eos_token_id": 8,
|
10 |
+
"pad_token_id": 9,
|
11 |
+
"reciprocals": [
|
12 |
+
[
|
13 |
+
4,
|
14 |
+
3
|
15 |
+
],
|
16 |
+
[
|
17 |
+
5,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
[
|
21 |
+
6,
|
22 |
+
1
|
23 |
+
]
|
24 |
+
],
|
25 |
+
"reducables": [
|
26 |
+
[
|
27 |
+
[
|
28 |
+
4
|
29 |
+
],
|
30 |
+
[
|
31 |
+
3
|
32 |
+
]
|
33 |
+
],
|
34 |
+
[
|
35 |
+
[
|
36 |
+
5
|
37 |
+
],
|
38 |
+
[
|
39 |
+
2
|
40 |
+
]
|
41 |
+
],
|
42 |
+
[
|
43 |
+
[
|
44 |
+
6
|
45 |
+
],
|
46 |
+
[
|
47 |
+
1
|
48 |
+
]
|
49 |
+
],
|
50 |
+
[
|
51 |
+
[
|
52 |
+
4,
|
53 |
+
5,
|
54 |
+
6
|
55 |
+
],
|
56 |
+
[
|
57 |
+
1,
|
58 |
+
2,
|
59 |
+
3
|
60 |
+
]
|
61 |
+
]
|
62 |
+
],
|
63 |
+
"torch_dtype": "float32",
|
64 |
+
"transformers_version": "4.21.1",
|
65 |
+
"vocab_size": 10
|
66 |
+
}
|
configuration_greedy.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, PreTrainedTokenizerBase
|
2 |
+
from freegroup import tools
|
3 |
+
|
4 |
+
class GreedyConfig(PretrainedConfig):
|
5 |
+
|
6 |
+
@classmethod
|
7 |
+
def from_tokenizer(cls, freegroup_dimension, tokenizer: PreTrainedTokenizerBase, **kwargs):
|
8 |
+
|
9 |
+
freegroup_generators = list(range(1, freegroup_dimension + 1))
|
10 |
+
|
11 |
+
reciprocals = []
|
12 |
+
for x in freegroup_generators:
|
13 |
+
a, b = tokenizer.convert_tokens_to_ids([str(x), str(-x)])
|
14 |
+
reciprocals.append([a, b])
|
15 |
+
|
16 |
+
reducables = [[] for _ in range(freegroup_dimension + 1)]
|
17 |
+
for reducable, closure_generator in zip(reducables, [[x] for x in freegroup_generators] + [freegroup_generators[::]]):
|
18 |
+
reducable.append(tokenizer.convert_tokens_to_ids(list(map(str, closure_generator))))
|
19 |
+
reducable.append(tokenizer.convert_tokens_to_ids(list(map(str, tools.reciprocal(closure_generator)))))
|
20 |
+
|
21 |
+
return cls(
|
22 |
+
reciprocals = reciprocals,
|
23 |
+
reducables = reducables,
|
24 |
+
vocab_size = len(tokenizer),
|
25 |
+
eos_token_id = tokenizer.eos_token_id,
|
26 |
+
pad_token_id = tokenizer.pad_token_id,
|
27 |
+
**kwargs
|
28 |
+
)
|
29 |
+
|
30 |
+
def __init__(self, **kwargs):
|
31 |
+
# reciporcals: List[List[int]]: i.e. ['x', 'X'], ...
|
32 |
+
self.reciprocals = kwargs.pop('reciprocals', None)
|
33 |
+
|
34 |
+
# reducables: List[List[List[int]]]: generators for normal closures, i.e [[[x], [X]], [[y], [Y]], ...]
|
35 |
+
self.reducables = kwargs.pop('reducables', None)
|
36 |
+
|
37 |
+
super().__init__(**kwargs)
|
38 |
+
|
39 |
+
|
modeling_greedy.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
|
6 |
+
from .configuration_greedy import GreedyConfig
|
7 |
+
from freegroup import tools
|
8 |
+
|
9 |
+
class GreedyModel(PreTrainedModel):
|
10 |
+
config_class = GreedyConfig
|
11 |
+
|
12 |
+
def __init__(self, config: GreedyConfig):
|
13 |
+
super().__init__(config)
|
14 |
+
self.stub = torch.nn.parameter.Parameter(torch.tensor(0.))
|
15 |
+
|
16 |
+
def _reduce_step(self, token, stack, reducables):
|
17 |
+
stack.append(token.item())
|
18 |
+
|
19 |
+
for reducable in self.config.reciprocals + reducables:
|
20 |
+
n = len(reducable)
|
21 |
+
if len(stack) >= len(reducable):
|
22 |
+
if tools.occurs(stack[-n:], reducable * 2):
|
23 |
+
del stack[-n:]
|
24 |
+
|
25 |
+
return stack
|
26 |
+
|
27 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
28 |
+
past = kwargs.pop('past', None)
|
29 |
+
return {'input_ids': input_ids, 'past': past}
|
30 |
+
|
31 |
+
def forward(self, input_ids = None, past = None, **kwargs):
|
32 |
+
|
33 |
+
assert (input_ids is not None), "Can't be None"
|
34 |
+
|
35 |
+
batch_size, sequence_length = input_ids.shape
|
36 |
+
|
37 |
+
if past is None:
|
38 |
+
stacks = [[[] for _ in range(len(self.config.reducables))] for _ in range(batch_size)]
|
39 |
+
hidden_states = None
|
40 |
+
else:
|
41 |
+
stacks, hidden_states = past
|
42 |
+
|
43 |
+
begin_idx = 0 if hidden_states is None else hidden_states.size(0)
|
44 |
+
|
45 |
+
for t in range(begin_idx, sequence_length):
|
46 |
+
last_hidden_states = torch.zeros((batch_size, self.config.vocab_size))
|
47 |
+
|
48 |
+
for batch_idx, word in enumerate(input_ids):
|
49 |
+
for stack, reducables in zip(stacks[batch_idx], self.config.reducables):
|
50 |
+
|
51 |
+
self._reduce_step(word[t], stack, reducables)
|
52 |
+
if not stack: continue
|
53 |
+
|
54 |
+
last = stack[-1]
|
55 |
+
|
56 |
+
for r in reducables:
|
57 |
+
if not last in r:
|
58 |
+
key = r[0]
|
59 |
+
last_hidden_states[batch_idx][r[0]] += 1
|
60 |
+
if last in r:
|
61 |
+
pos = r.index(last)
|
62 |
+
key = r[(pos + 1) % len(r)]
|
63 |
+
last_hidden_states[batch_idx][key] += 1
|
64 |
+
for r in self.config.reciprocals:
|
65 |
+
if last in r:
|
66 |
+
pos = r.index(last)
|
67 |
+
key = r[(pos + 1) % len(r)]
|
68 |
+
last_hidden_states[batch_idx][key] += 1
|
69 |
+
|
70 |
+
for r in self.config.reciprocals:
|
71 |
+
if word[t] in r:
|
72 |
+
pos = r.index(word[t])
|
73 |
+
key = r[(pos + 1) % len(r)]
|
74 |
+
last_hidden_states[batch_idx][key] = -torch.inf
|
75 |
+
|
76 |
+
if all(map(lambda x: len(x) == 0, stacks[batch_idx])):
|
77 |
+
last_hidden_states[batch_idx][self.config.eos_token_id] = torch.inf
|
78 |
+
|
79 |
+
if hidden_states is None: hidden_states = last_hidden_states.clone().unsqueeze(0)
|
80 |
+
else: hidden_states = torch.cat((hidden_states, last_hidden_states.unsqueeze(0)))
|
81 |
+
|
82 |
+
return CausalLMOutputWithPast(
|
83 |
+
logits = hidden_states.permute(1, 0, 2),
|
84 |
+
past_key_values = (stacks, hidden_states)
|
85 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8316f6ca2e3d5db92da31339c2ddee2b14adf2d3cbc0668dc5d8960db7668d67
|
3 |
+
size 747
|