Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
library_name: gliner
|
| 6 |
+
pipeline_tag: token-classification
|
| 7 |
+
tags:
|
| 8 |
+
- NER
|
| 9 |
+
- GLiNER
|
| 10 |
+
- information extraction
|
| 11 |
+
- PII
|
| 12 |
+
- PHI
|
| 13 |
+
- PCI
|
| 14 |
+
- entity recognition
|
| 15 |
+
- multilingual
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# GLiNER-PII: Zero-shot PII model
|
| 20 |
+
|
| 21 |
+
A production-grade open-source model for privacy-focused PII, PHI, and PCI detection with zero-shot entity recognition capabilities.
|
| 22 |
+
This model was developed in collaboration between [Wordcab](https://wordcab.com/) and [Knowledgator](https://www.knowledgator.com/). For enterprise-ready, specialized PII/PHI/PCI models, contact us at info@wordcab.com.
|
| 23 |
+
|
| 24 |
+
## π§ What is GLiNER?
|
| 25 |
+
|
| 26 |
+
GLiNER (Generalist and Lightweight Named Entity Recognition) is a bidirectional transformer model that can identify **any entity type** without predefined categories. Unlike traditional NER models that are limited to specific entity classes, GLiNER allows you to specify exactly what entities you want to extract at runtime.
|
| 27 |
+
|
| 28 |
+
### Key Advantages
|
| 29 |
+
|
| 30 |
+
- **Zero-shot recognition**: Extract any entity type without retraining
|
| 31 |
+
- **Privacy-first**: Process sensitive data locally without API calls
|
| 32 |
+
- **Lightweight**: Much faster than large language models for NER tasks
|
| 33 |
+
- **Production-ready**: Quantization-aware training with FP16 and UINT8 ONNX models
|
| 34 |
+
- **Comprehensive**: 60+ predefined PII categories with custom entity support
|
| 35 |
+
|
| 36 |
+
### How GLiNER Works
|
| 37 |
+
|
| 38 |
+
Instead of predicting from a fixed set of entity classes, GLiNER takes both text and a list of desired entity types as input, then identifies spans that match those categories:
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
text = "John Smith called from 415-555-1234 to discuss his account."
|
| 42 |
+
entities = ["name", "phone number", "account number"]
|
| 43 |
+
# GLiNER finds: "John Smith" β name, "415-555-1234" β phone number
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## π Python Implementation
|
| 47 |
+
|
| 48 |
+
The primary GLiNER implementation provides comprehensive PII detection with 60+ entity categories, fine-tuned specifically for privacy and compliance use cases.
|
| 49 |
+
|
| 50 |
+
### Installation
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
pip install gliner
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Quick Start
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
from gliner import GLiNER
|
| 60 |
+
|
| 61 |
+
# Load the model (downloads automatically on first use)
|
| 62 |
+
model = GLiNER.from_pretrained("knowledgator/gliner-pii-base-v1.0")
|
| 63 |
+
|
| 64 |
+
text = "John Smith called from 415-555-1234 to discuss his account number 12345678."
|
| 65 |
+
labels = ["name", "phone number", "account number"]
|
| 66 |
+
|
| 67 |
+
entities = model.predict_entities(text, labels, threshold=0.3)
|
| 68 |
+
|
| 69 |
+
for entity in entities:
|
| 70 |
+
print(f"{entity['text']} => {entity['label']} (confidence: {entity['score']:.2f})")
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
Output:
|
| 74 |
+
```
|
| 75 |
+
John Smith => name (confidence: 0.95)
|
| 76 |
+
415-555-1234 => phone number (confidence: 0.92)
|
| 77 |
+
12345678 => account number (confidence: 0.88)
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Comprehensive PII Detection
|
| 81 |
+
|
| 82 |
+
The model was specifically optimized for 60+ predefined PII categories organized by domain, but it can work in zero-shot as well, meaning you can put any labels you need:
|
| 83 |
+
|
| 84 |
+
#### Personal Identifiers
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
personal_labels = [
|
| 88 |
+
"name", # Full names
|
| 89 |
+
"first name", # First names
|
| 90 |
+
"last name", # Last names
|
| 91 |
+
"name medical professional", # Healthcare provider names
|
| 92 |
+
"dob", # Date of birth
|
| 93 |
+
"age", # Age information
|
| 94 |
+
"gender", # Gender identifiers
|
| 95 |
+
"marital status" # Marital status
|
| 96 |
+
]
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
#### Contact Information
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
contact_labels = [
|
| 103 |
+
"email address", # Email addresses
|
| 104 |
+
"phone number", # Phone numbers
|
| 105 |
+
"ip address", # IP addresses
|
| 106 |
+
"url", # URLs
|
| 107 |
+
"location address", # Street addresses
|
| 108 |
+
"location street", # Street names
|
| 109 |
+
"location city", # City names
|
| 110 |
+
"location state", # State/province names
|
| 111 |
+
"location country", # Country names
|
| 112 |
+
"location zip" # ZIP/postal codes
|
| 113 |
+
]
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
#### Financial Information
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
financial_labels = [
|
| 120 |
+
"account number", # Account numbers
|
| 121 |
+
"bank account", # Bank account numbers
|
| 122 |
+
"routing number", # Routing numbers
|
| 123 |
+
"credit card", # Credit card numbers
|
| 124 |
+
"credit card expiration", # Card expiration dates
|
| 125 |
+
"cvv", # CVV/security codes
|
| 126 |
+
"ssn", # Social Security Numbers
|
| 127 |
+
"money" # Monetary amounts
|
| 128 |
+
]
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
#### Healthcare Information
|
| 132 |
+
|
| 133 |
+
```python
|
| 134 |
+
healthcare_labels = [
|
| 135 |
+
"condition", # Medical conditions
|
| 136 |
+
"medical process", # Medical procedures
|
| 137 |
+
"drug", # Drugs
|
| 138 |
+
"dose", # Dosage information
|
| 139 |
+
"blood type", # Blood types
|
| 140 |
+
"injury", # Injuries
|
| 141 |
+
"organization medical facility",# Healthcare facility names
|
| 142 |
+
"healthcare number", # Healthcare numbers
|
| 143 |
+
"medical code" # Medical codes
|
| 144 |
+
]
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
#### Identification Documents
|
| 148 |
+
|
| 149 |
+
```python
|
| 150 |
+
id_labels = [
|
| 151 |
+
"passport number", # Passport numbers
|
| 152 |
+
"driver license", # Driver's license numbers
|
| 153 |
+
"username", # Usernames
|
| 154 |
+
"password", # Passwords
|
| 155 |
+
"vehicle id" # Vehicle IDs
|
| 156 |
+
]
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
### Advanced Usage Examples
|
| 160 |
+
|
| 161 |
+
#### Multi-Category Detection
|
| 162 |
+
```python
|
| 163 |
+
text = """
|
| 164 |
+
Patient Mary Johnson, DOB 01/15/1980, was discharged on March 10, 2024
|
| 165 |
+
from St. Mary's Hospital. Contact: mary.j@email.com, (555) 123-4567.
|
| 166 |
+
Insurance policy: POL-789456123.
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
labels = [
|
| 170 |
+
"name", "dob", "discharge date", "organization medical facility",
|
| 171 |
+
"email address", "phone number", "policy number"
|
| 172 |
+
]
|
| 173 |
+
|
| 174 |
+
entities = model.predict_entities(text, labels, threshold=0.3)
|
| 175 |
+
|
| 176 |
+
for entity in entities:
|
| 177 |
+
print(f"Found '{entity['text']}' as {entity['label']}")
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
#### Batch Processing for High Throughput
|
| 181 |
+
```python
|
| 182 |
+
documents = [
|
| 183 |
+
"Customer John called about his credit card ending in 4532.",
|
| 184 |
+
"Sarah's SSN 123-45-6789 needs verification.",
|
| 185 |
+
"Email support@company.com for account 987654321 issues."
|
| 186 |
+
]
|
| 187 |
+
|
| 188 |
+
labels = ["name", "credit card", "ssn", "email address", "account number"]
|
| 189 |
+
|
| 190 |
+
# Process multiple documents efficiently
|
| 191 |
+
results = model.run(documents, labels, threshold=0.3, batch_size=8)
|
| 192 |
+
|
| 193 |
+
for doc_idx, entities in enumerate(results):
|
| 194 |
+
print(f"\nDocument {doc_idx + 1}:")
|
| 195 |
+
for entity in entities:
|
| 196 |
+
print(f" {entity['text']} => {entity['label']}")
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
#### Custom Entity Detection
|
| 200 |
+
```python
|
| 201 |
+
# GLiNER isn't limited to PII - you can detect any entities
|
| 202 |
+
text = "The MacBook Pro with M2 chip costs $1,999 at the Apple Store in Manhattan."
|
| 203 |
+
custom_labels = ["product", "processor", "price", "store", "location"]
|
| 204 |
+
|
| 205 |
+
entities = model.predict_entities(text, custom_labels, threshold=0.3)
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
#### Threshold Optimization
|
| 209 |
+
```python
|
| 210 |
+
# Lower threshold: Higher recall, more false positives
|
| 211 |
+
high_recall = model.predict_entities(text, labels, threshold=0.2)
|
| 212 |
+
|
| 213 |
+
# Higher threshold: Higher precision, fewer false positives
|
| 214 |
+
high_precision = model.predict_entities(text, labels, threshold=0.6)
|
| 215 |
+
|
| 216 |
+
# Recommended starting point for production
|
| 217 |
+
balanced = model.predict_entities(text, labels, threshold=0.3)
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
## π‘ Use Cases
|
| 221 |
+
|
| 222 |
+
GLiNER excels in privacy-focused applications where traditional cloud-based NER services pose compliance risks.
|
| 223 |
+
|
| 224 |
+
### π― **Primary Applications**
|
| 225 |
+
|
| 226 |
+
#### Privacy-First Voice & Transcription
|
| 227 |
+
```python
|
| 228 |
+
# Automatically redact PII from voice transcriptions
|
| 229 |
+
transcription = "Hi, my name is Sarah Johnson and my phone number is 415-555-0123"
|
| 230 |
+
pii_labels = ["name", "phone number", "email address", "ssn"]
|
| 231 |
+
|
| 232 |
+
entities = model.predict_entities(transcription, pii_labels)
|
| 233 |
+
# Redact or anonymize detected PII before storage
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
#### Compliance-Ready Document Processing
|
| 237 |
+
```python
|
| 238 |
+
# Healthcare: HIPAA-compliant note processing
|
| 239 |
+
medical_note = "Patient John Doe, MRN 123456, diagnosed with diabetes..."
|
| 240 |
+
phi_labels = ["name", "medical record number", "condition", "dob"]
|
| 241 |
+
|
| 242 |
+
# Finance: PCI-DSS compliant transaction logs
|
| 243 |
+
transaction_log = "Card ****4532 charged $299.99 to John Smith"
|
| 244 |
+
pci_labels = ["credit card", "money", "name"]
|
| 245 |
+
|
| 246 |
+
# Legal: Attorney-client privilege protection
|
| 247 |
+
legal_doc = "Client Jane Doe vs. Corporation ABC, case #2024-CV-001"
|
| 248 |
+
legal_labels = ["name", "organization", "case number"]
|
| 249 |
+
```
|
| 250 |
+
|
| 251 |
+
#### Real-Time Data Anonymization
|
| 252 |
+
```python
|
| 253 |
+
def anonymize_text(text, entity_types):
|
| 254 |
+
"""Anonymize PII in real-time"""
|
| 255 |
+
entities = model.predict_entities(text, entity_types)
|
| 256 |
+
|
| 257 |
+
# Sort by position to replace from end to start
|
| 258 |
+
entities.sort(key=lambda x: x['start'], reverse=True)
|
| 259 |
+
|
| 260 |
+
anonymized = text
|
| 261 |
+
for entity in entities:
|
| 262 |
+
placeholder = f"<{entity['label'].upper()}>"
|
| 263 |
+
anonymized = anonymized[:entity['start']] + placeholder + anonymized[entity['end']:]
|
| 264 |
+
|
| 265 |
+
return anonymized
|
| 266 |
+
|
| 267 |
+
original = "John Smith's SSN is 123-45-6789"
|
| 268 |
+
anonymized = anonymize_text(original, ["name", "ssn"])
|
| 269 |
+
print(anonymized) # "<NAME>'s SSN is <SSN>"
|
| 270 |
+
```
|
| 271 |
+
|
| 272 |
+
### π **Extended Applications**
|
| 273 |
+
|
| 274 |
+
#### Enhanced Search & Content Understanding
|
| 275 |
+
```python
|
| 276 |
+
# Extract key entities from user queries for better search
|
| 277 |
+
query = "Find restaurants near Stanford University in Palo Alto"
|
| 278 |
+
search_entities = ["organization", "location city", "business type"]
|
| 279 |
+
|
| 280 |
+
# Intelligent document tagging
|
| 281 |
+
document = "This quarterly report discusses Microsoft's Azure growth..."
|
| 282 |
+
doc_entities = ["organization", "product", "time period"]
|
| 283 |
+
```
|
| 284 |
+
|
| 285 |
+
#### GDPR-Compliant Chatbot Logs
|
| 286 |
+
```python
|
| 287 |
+
def sanitize_chat_log(message):
|
| 288 |
+
"""Remove PII from chat logs per GDPR requirements"""
|
| 289 |
+
sensitive_types = [
|
| 290 |
+
"name", "email address", "phone number", "location address",
|
| 291 |
+
"credit card", "ssn", "passport number"
|
| 292 |
+
]
|
| 293 |
+
|
| 294 |
+
entities = model.predict_entities(message, sensitive_types)
|
| 295 |
+
if entities:
|
| 296 |
+
# Log anonymized version, alert compliance team
|
| 297 |
+
return anonymize_text(message, sensitive_types)
|
| 298 |
+
return message
|
| 299 |
+
```
|
| 300 |
+
|
| 301 |
+
#### Secure Mobile & Edge Processing
|
| 302 |
+
```python
|
| 303 |
+
# Process sensitive data entirely on-device
|
| 304 |
+
def process_locally(user_input):
|
| 305 |
+
"""Process PII detection without cloud APIs"""
|
| 306 |
+
pii_types = ["name", "phone number", "email address", "ssn", "credit card"]
|
| 307 |
+
|
| 308 |
+
# All processing happens locally - no data leaves device
|
| 309 |
+
detected_pii = model.predict_entities(user_input, pii_types)
|
| 310 |
+
|
| 311 |
+
if detected_pii:
|
| 312 |
+
return "β οΈ Sensitive information detected - proceed with caution"
|
| 313 |
+
return "β
No PII detected - safe to share"
|
| 314 |
+
```
|
| 315 |
+
|
| 316 |
+
## π Performance Benchmarks
|
| 317 |
+
|
| 318 |
+
### Accuracy Evaluation
|
| 319 |
+
|
| 320 |
+
The following benchmarks were run on the **synthetic-multi-pii-ner-v1** dataset.
|
| 321 |
+
We compare multiple GLiNER-based PII models, including our new **Knowledgator GLiNER PII Edge v1.0**.
|
| 322 |
+
|
| 323 |
+
| Model Path | Precision | Recall | F1 Score |
|
| 324 |
+
| ---------------------------------------------------------------------- | --------- | ------ | ---------- |
|
| 325 |
+
| **knowledgator/gliner-pii-edge-v1.0** | 78.96% | 72.34% | **75.50%** |
|
| 326 |
+
| **knowledgator/gliner-pii-small-v1.0** | 78.99% | 74.80% | **76.84%** |
|
| 327 |
+
| **knowledgator/gliner-pii-base-v1.0** | 79.28% | 82.78% | **80.99%** |
|
| 328 |
+
| **knowledgator/gliner-pii-large-v1.0** | 87.42% | 79.4% | **83.25%** |
|
| 329 |
+
| **urchade/gliner\_multi\_pii-v1** | 79.19% | 74.67% | **76.86%** |
|
| 330 |
+
| **E3-JSI/gliner-multi-pii-domains-v1** | 78.35% | 74.46% | **76.36%** |
|
| 331 |
+
| **gravitee-io/gliner-pii-detection** | 81.27% | 56.76% | **66.84%** |
|
| 332 |
+
|
| 333 |
+
### Key Takeaways
|
| 334 |
+
|
| 335 |
+
* **Base Post Model** (`knowledgator/gliner-pii-base-v1.0`) achieves the **highest F1 score (80.99%)**, indicating the strongest overall performance.
|
| 336 |
+
* **Knowledgator Edge Model** (`knowledgator/gliner-pii-edge-v1.0`) is optimized for **edge environments**, trading a slight decrease in recall for lower latency and footprint.
|
| 337 |
+
* **Gravitee-io Model** shows strong precision but lower recall, indicating it is tuned for high confidence but misses more entities.
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
### Comparison with Alternatives
|
| 341 |
+
|
| 342 |
+
| Solution | Speed | Privacy | Accuracy | Flexibility | Cost |
|
| 343 |
+
| --------------------- | ----- | ------- | -------- | ----------- | -------- |
|
| 344 |
+
| **GLiNER** | ββββ | βββββ | βββββ | ββββ | Free |
|
| 345 |
+
| Cloud NER APIs | βββ | βββ | βββββ | βββ | \$\$\$ |
|
| 346 |
+
| Large Language Models | ββ | ββ | ββββ | ββββ | \$\$\$\$ |
|
| 347 |
+
| Traditional NER | βββββ | βββββ | ββββ | β | Free |
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
## π Alternative Implementations
|
| 351 |
+
|
| 352 |
+
While Python provides the most comprehensive PII detection capabilities, GLiNER is available across multiple languages for different deployment scenarios.
|
| 353 |
+
|
| 354 |
+
### π¦ Rust Implementation (gline-rs)
|
| 355 |
+
|
| 356 |
+
**Best for**: High-performance backend services, microservices
|
| 357 |
+
|
| 358 |
+
```toml
|
| 359 |
+
[dependencies]
|
| 360 |
+
"gline-rs" = "1"
|
| 361 |
+
```
|
| 362 |
+
|
| 363 |
+
```rust
|
| 364 |
+
use gline_rs::{GLiNER, TextInput, Parameters, RuntimeParameters};
|
| 365 |
+
|
| 366 |
+
let model = GLiNER::<TokenMode>::new(
|
| 367 |
+
Parameters::default(),
|
| 368 |
+
RuntimeParameters::default(),
|
| 369 |
+
"tokenizer.json",
|
| 370 |
+
"model.onnx",
|
| 371 |
+
)?;
|
| 372 |
+
|
| 373 |
+
let input = TextInput::from_str(
|
| 374 |
+
&["My name is James Bond."],
|
| 375 |
+
&["person"],
|
| 376 |
+
)?;
|
| 377 |
+
|
| 378 |
+
let output = model.inference(input)?;
|
| 379 |
+
```
|
| 380 |
+
|
| 381 |
+
**Performance**: 4x faster than Python on CPU, 37x faster with GPU acceleration.
|
| 382 |
+
|
| 383 |
+
### β‘ C++ Implementation (GLiNER.cpp)
|
| 384 |
+
|
| 385 |
+
**Best for**: Embedded systems, mobile apps, edge devices
|
| 386 |
+
|
| 387 |
+
```cpp
|
| 388 |
+
#include "GLiNER/model.hpp"
|
| 389 |
+
|
| 390 |
+
gliner::Config config{12, 512};
|
| 391 |
+
gliner::Model model("./model.onnx", "./tokenizer.json", config);
|
| 392 |
+
|
| 393 |
+
std::vector<std::string> texts = {"John works at Microsoft"};
|
| 394 |
+
std::vector<std::string> entities = {"person", "organization"};
|
| 395 |
+
|
| 396 |
+
auto output = model.inference(texts, entities);
|
| 397 |
+
```
|
| 398 |
+
|
| 399 |
+
### π JavaScript Implementation (GLiNER.js)
|
| 400 |
+
|
| 401 |
+
**Best for**: Web applications, browser-based processing
|
| 402 |
+
|
| 403 |
+
```bash
|
| 404 |
+
npm install gliner
|
| 405 |
+
```
|
| 406 |
+
|
| 407 |
+
```javascript
|
| 408 |
+
import { Gliner } from 'gliner';
|
| 409 |
+
|
| 410 |
+
const gliner = new Gliner({
|
| 411 |
+
tokenizerPath: "onnx-community/gliner_small-v2",
|
| 412 |
+
onnxSettings: {
|
| 413 |
+
modelPath: "public/model.onnx",
|
| 414 |
+
executionProvider: "webgpu",
|
| 415 |
+
}
|
| 416 |
+
});
|
| 417 |
+
|
| 418 |
+
await gliner.initialize();
|
| 419 |
+
|
| 420 |
+
const results = await gliner.inference({
|
| 421 |
+
texts: ["John Smith works at Microsoft"],
|
| 422 |
+
entities: ["person", "organization"],
|
| 423 |
+
threshold: 0.1,
|
| 424 |
+
});
|
| 425 |
+
```
|
| 426 |
+
|
| 427 |
+
## ποΈ Model Architecture & Training
|
| 428 |
+
|
| 429 |
+
### Quantization-Aware Pretraining
|
| 430 |
+
|
| 431 |
+
GLiNER models use quantization-aware pretraining, which optimizes performance while maintaining accuracy. This allows efficient inference even with quantized models.
|
| 432 |
+
|
| 433 |
+
### Available ONNX Formats
|
| 434 |
+
|
| 435 |
+
| Format | Size | Use Case |
|
| 436 |
+
|--------|------|----------|
|
| 437 |
+
| **FP16** | 330MB | Balanced performance/accuracy |
|
| 438 |
+
| **UINT8** | 197MB | Maximum efficiency |
|
| 439 |
+
|
| 440 |
+
### Model Conversion
|
| 441 |
+
|
| 442 |
+
```bash
|
| 443 |
+
python convert_to_onnx.py \
|
| 444 |
+
--model_path knowledgator/gliner-pii-base-v1.0 \
|
| 445 |
+
--save_path ./model \
|
| 446 |
+
--quantize True # For UINT8 quantization
|
| 447 |
+
```
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
## π References
|
| 451 |
+
|
| 452 |
+
- [GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer](https://arxiv.org/abs/2311.08526)
|
| 453 |
+
- [GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks](https://arxiv.org/abs/2406.12925)
|
| 454 |
+
- [Named Entity Recognition as Structured Span Prediction](https://arxiv.org/abs/2212.13415)
|
| 455 |
+
|
| 456 |
+
## π Acknowledgments
|
| 457 |
+
|
| 458 |
+
Special thanks to the all GLiNER contributors, the Wordcab team and additional thanks to maintainers of the Rust, C++, and JavaScript implementations.
|
| 459 |
+
|
| 460 |
+
## π Support
|
| 461 |
+
|
| 462 |
+
- **Hugging Face**: [Ihor/gliner-pii-small](https://huggingface.co/Ihor/gliner-pii-small)
|
| 463 |
+
- **GitHub Issues**: [Report bugs and request features](https://github.com/info-wordcab/wordcab-pii)
|
| 464 |
+
- **Discord**: [Join community discussions](https://discord.gg/wRF7tuY9)
|
| 465 |
+
|
| 466 |
+
---
|
| 467 |
+
|
| 468 |
+
*GLiNER: Open-source privacy-first entity recognition for production applications.*
|