File size: 2,660 Bytes
47fcd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import csv
import json
import re
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from tqdm import tqdm
from bert_score import score as bert_score
import evaluate
from warnings import filterwarnings
filterwarnings("ignore")

# Model setup
model_id = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")

# Load entire GSM8K dataset
dataset = load_dataset("gsm8k", "main", split="train")

# Evaluators
accuracy_metric = evaluate.load("accuracy")
f1_metric = evaluate.load("f1")

# Output CSV
csv_file = "gsm8k_llama3_results.csv"
with open(csv_file, mode='w', newline='', encoding='utf-8') as file:
    writer = csv.writer(file)
    writer.writerow(["question", "true_answer", "predicted_answer", "full_response", "correct"])

# Prepare for metric calculation
true_answers = []
predicted_answers = []
correct_flags = []

# Inference loop
for example in tqdm(dataset, desc="Evaluating"):
    question = example["question"]
    true_answer = example["answer"].split("####")[-1].strip()

    prompt = f"Q: {question}\nA:"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    with torch.no_grad():
        outputs = model.generate(**inputs, max_new_tokens=100, temperature=0.7,pad_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Extract predicted number
    pred_numbers = re.findall(r"[-+]?\d*\.\d+|\d+", response)
    predicted_answer = pred_numbers[-1] if pred_numbers else "N/A"

    # Determine correctness
    is_correct = predicted_answer == true_answer
    correct_flags.append(is_correct)
    true_answers.append(true_answer)
    predicted_answers.append(predicted_answer)

    # Append to CSV
    with open(csv_file, mode='a', newline='', encoding='utf-8') as file:
        writer = csv.writer(file)
        writer.writerow([question, true_answer, predicted_answer, response, is_correct])

# Metrics
accuracy = sum(correct_flags) / len(correct_flags)
f1 = f1_metric.compute(predictions=predicted_answers, references=true_answers, average="macro")["f1"]
P, R, F1 = bert_score(predicted_answers, true_answers, lang="en")
bert_f1 = F1.mean().item()

# Save metrics to JSON
metrics = {
    "accuracy": accuracy,
    "f1_score": f1,
    "bert_score_f1": bert_f1
}
with open("gsm8k_llama3_metrics.json", "w") as f:
    json.dump(metrics, f, indent=2)

# Print summary
print(json.dumps(metrics, indent=2))