|
import torch
|
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
from peft import PeftModel, LoraConfig
|
|
import gradio as gr
|
|
|
|
|
|
base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
|
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
|
|
|
|
|
adapter_path = "/content/"
|
|
model = PeftModel.from_pretrained(base_model, adapter_path)
|
|
model.eval()
|
|
|
|
|
|
def generate(prompt):
|
|
inputs = tokenizer(prompt, return_tensors="pt")
|
|
outputs = model.generate(**inputs, max_new_tokens=100)
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
gr.Interface(fn=generate, inputs="text", outputs="text", title="FLAN-T5 StackOverflow Assistant").launch() |