import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from peft import PeftModel, LoraConfig import gradio as gr # Load base model base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base") tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") # Load LoRA adapter (from local folder containing safetensor + json) adapter_path = "/content/" model = PeftModel.from_pretrained(base_model, adapter_path) model.eval() # Gradio interface def generate(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) gr.Interface(fn=generate, inputs="text", outputs="text", title="FLAN-T5 StackOverflow Assistant").launch()