File size: 8,009 Bytes
f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 6db9aa7 f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd f5a9ff4 e60c6bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
library_name: transformers
tags:
- devops
- linux
- system-administration
- technical-support
- question-answering
- mistral
- peft
language:
- en
pipeline_tag: text-generation
license: apache-2.0
---
# mini-DevOpsGPT-7B
mini-DevOpsGPT-7B is your on-demand AI DevOps engineer, offering expert guidance across the full operations lifecycle—from Linux system administration (user & permission management, shell scripting, performance tuning) and Docker/Kubernetes containerization (optimized Dockerfiles, Helm charts, operators) to CI/CD pipeline design and troubleshooting (Jenkins, GitHub Actions, Argo CD), infrastructure-as-code (Terraform, CloudFormation, Pulumi), cloud architecture (AWS, Azure, GCP), configuration management (Ansible, Chef, Puppet), observability (Prometheus, Grafana, ELK), security best practices (secrets management, image scanning, IAM hardening), networking and service mesh (VPC, load balancers, Istio/Linkerd), serverless and event-driven patterns, and end-to-end automation—complete with concise examples and battle-tested recommendations.
## Model Details
### Model Description
This model is specifically trained to assist with DevOps tasks, Linux system administration, and technical troubleshooting. It provides accurate, practical answers for common infrastructure and system management questions.
- **Developed by:** [Prashant Lakhera]
- **Model type:** Causal Language Model (Auto-regressive)
- **Language(s):** English
- **License:** Apache 2.0
- **Training method:** LoRA (Low-Rank Adaptation) with 4-bit quantization
- **Specialization:** DevOps, Linux Administration, System Troubleshooting
### Model Sources
- **Fine-tuning:** Custom DevOps dataset
## Uses
### Direct Use
This model is designed for:
- **DevOps Q&A**: Answering questions about system administration, deployment, and infrastructure
- **Linux Help**: Providing command-line solutions and troubleshooting steps
- **Docker/Container Support**: Assistance with containerization and orchestration
- **System Monitoring**: Guidance on logging, monitoring, and debugging
- **Automation Advice**: Help with scripting and workflow automation
### Example Use Cases
- DevOps automation for IT support
- Developer productivity tools
- System administration training
- Technical documentation assistance
- Infrastructure troubleshooting
### Out-of-Scope Use
- **Not suitable for**: Medical advice, legal guidance, financial decisions
- **Limitations**: May not have knowledge of very recent tools or updates
- **Security**: Should not be used for security-critical decisions without validation
## How to Get Started with the Model
### Installation
```bash
pip install transformers torch accelerate peft bitsandbytes
```
### Basic Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
model_name = "your-username/mini-DevOpsGPT-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Example usage
question = "How to check disk space in Linux?"
inputs = tokenizer(question, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=inputs.input_ids.shape[1] + 100,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Chat Interface Example
```python
def ask_devops_question(question):
inputs = tokenizer(f"Question: {question}\n\nAnswer:", return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=200,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("Answer:")[-1].strip()
# Example questions
print(ask_devops_question("How to restart Docker service?"))
print(ask_devops_question("How to kill a process by PID?"))
print(ask_devops_question("How to view log files in real time?"))
```
## Training Details
### Training Data
The model was fine-tuned on a curated dataset of DevOps question-answer pairs covering:
- Linux system administration commands
- Docker and containerization
- Process management
- File system operations
- Network troubleshooting
- Log analysis and monitoring
- Kubernetes
**Dataset Format:**
```
How to check disk space in Linux?
Use df -h command to check disk space usage.
```
### Training Procedure
#### Training Hyperparameters
- **Training method:** LoRA (Low-Rank Adaptation)
- **Quantization:** 4-bit (int4) using bitsandbytes
- **Training regime:** fp16 mixed precision
**LoRA Configuration:**
- **LoRA Rank (r):** 16
- **LoRA Alpha:** 32
- **LoRA Dropout:** 0.05
- **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
**Training Parameters:**
- **Epochs:** 3
- **Batch Size:** 2 (per device)
- **Gradient Accumulation Steps:** 4
- **Learning Rate:** 3e-5
- **Optimizer:** AdamW
- **Scheduler:** Linear with warmup
- **Warmup Ratio:** 0.1
- **Max Sequence Length:** 1024
- **Max Gradient Norm:** 1.0
#### Speeds, Sizes, Times
- **Training Time:** ~45-60 minutes on Nvidia A10 large GPU
- **Model Size:** ~7B parameters (base) + ~16M trainable LoRA parameters
- **Memory Usage:** ~10GB GPU RAM during training
- **Final Model Size:** ~2GB (with quantization and LoRA)
## Performance
### Example Outputs
**Input:** "How to check running processes in Linux?"
**Output:** "Use ps aux command to list all running processes with detailed information including CPU and memory usage."
**Input:** "How to restart Docker service?"
**Output:** "Run sudo systemctl restart docker to restart the Docker service on systemd-based systems."
**Input:** "How to kill a process by PID?"
**Output:** "Use kill -9 PID to forcefully terminate a process, replacing PID with the actual process ID."
## Technical Specifications
### Model Architecture
- **Parameters:** 7.24B total, ~16M trainable (LoRA)
- **Attention:** Grouped Query Attention
- **Vocabulary Size:** 32,000
- **Context Length:** 8,192 tokens (base), 1,024 used in training
### Compute Infrastructure
#### Hardware
- **Training:** Nvidia A10 large GPU
- **Memory:** ~10GB GPU RAM required
- **Inference:** Compatible with consumer GPUs (8GB+ recommended)
#### Software
- **Framework:** PyTorch + Transformers
- **Libraries:** PEFT, bitsandbytes, accelerate
- **Quantization:** 4-bit using bitsandbytes
## Limitations and Bias
### Known Limitations
- **Domain Scope:** Primarily trained on Linux/Unix-based systems
- **Recency:** Knowledge cutoff from base model training
- **Commands:** May need verification for specific system configurations
- **Security:** Always validate security-related commands before execution
### Recommendations
- **Verify Commands:** Test commands in safe environments first
- **System Specific:** Adapt commands to your specific Linux distribution
- **Security:** Review security implications of suggested commands
- **Updates:** Check for newer versions of tools and commands
## Environmental Impact
Training was conducted on Nvidia A10 large GPU infrastructure:
- **Hardware Type:** Nvidia A10 large GPUNVIDIA T4 GPU
- **Hours used:** ~1 hour
- **Compute Region:** Variable (Colab auto-assignment)
- **Carbon Emitted:** Minimal due to short training time and shared infrastructure
## Citation
If you use this model, please cite:
```bibtex
@misc{mini-devopsgpt-7b,
title={mini-DevOpsGPT-7B: A Model for DevOps Tasks},
author={[lakhera2023]},
year={2025},
howpublished={\\url{https://huggingface.co/lakhera2023/mini-DevOpsGPT-7B}},
}
```
## Model Card Authors
[lakhera2023/mini-DevOpsGPT-7b]
## Model Card Contact
[laprashant@gmail.com] |