File size: 5,667 Bytes
e2d54b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
library_name: transformers
license: gemma
base_model: google/gemma-3-12b-it
tags:
- generated_from_trainer
datasets:
- le-llm/open-thoughts-114K
model-index:
- name: outputs/lapa-v.0.1-reasoning-only-12b-eos
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.9.2`
```yaml
base_model: google/gemma-3-12b-it
#load_in_4bit: true
auto_resume_from_checkpoints: false
# gemma3 doesn't seem to play nice with ddp
ddp_find_unused_parameters: true
tokenizer_config: le-llm/gemma-3-reasoning-tokenizer
# added_tokens_overrides: {6: "<|begin_of_thought|>", 7: "<|end_of_thought|>", 8: "<|begin_of_solution|>", 9: "<|end_of_solution|>"}
#chat_template: gemma3
eot_tokens:
- <end_of_turn>
shuffle_merged_datasets: true
datasets:
# - path: le-llm/hermes3-uk
# type: chat_template
#
# field_messages: conversations
# message_property_mappings:
# role: from
# content: value
- path: le-llm/open-thoughts-114K
type: chat_template
train_on_eos: all
field_messages: conversations
drop_system_message: true
message_property_mappings:
role: from
content: value
dataset_processes: 64
#dataset_keep_in_memory: true
#dataloader_num_workers: 8
#dataloader_prefetch_factor: 16
dataset_prepared_path: last_run_prepared_reasoning
# val_set_size: 0.01
output_dir: ./outputs/lapa-v.0.1-reasoning-only-12b-eos
#adapter: qlora
#lora_model_dir:
sequence_len: 16384 # 2048 32768 #
sample_packing: true # true
pad_to_sequence_len: true
train_on_inputs: true
# The number of GPUs to shard the model parameters across (FSDP dimension).
dp_shard_size: 8
# The number of times to replicate the sharded model (DDP dimension).
# dp_replicate_size: 1
# Number of GPUs for Tensor Parallelism.
tensor_parallel_size: 1 # (default is 1, no TP)
# Number of GPUs for Context/Sequence Parallelism.
context_parallel_size: 8 # (default is 1, no CP)
# tiled_mlp: true
#context_parallel_size: 8
# dp_shard_size: 4
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
# spectrum
#- axolotl.integrations.spectrum.SpectrumPlugin
#spectrum_top_fraction: 0.5
#spectrum_model_name: google/gemma-3-12b-it
wandb_project: gemma-3-12b-reasoning
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch_fused # muon #adamw_bnb_8bit
lr_scheduler: warmup_stable_decay
learning_rate: 5e-5
lr_scheduler_kwargs: {"num_decay_steps": 150}
bf16: auto
# fp16:
tf32: false # TODO: double check precision impact
# deepspeed: deepspeed_configs/zero2.json # deepspeed_configs/zero3_bf16.json
# TODO: When using FSDP full shard, instead of using `gradient_checkpointing` in TrainingArguments, please use `activation_checkpointing` in `fsdp_config`. The former introduces a redundant AllGather operation in backward pass. Reference: https://github.com/huggingface/transformers/issues/30404
#fsdp:
# - full_shard
# - auto_wrap
#fsdp_config:
# fsdp_offload_params: true
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_transformer_layer_cls_to_wrap: Gemma3DecoderLayer
#fp8: true
#fp8_enable_fsdp_float8_all_gather: true
#torch_compile: true
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_version: 2
fsdp_offload_params: false
fsdp_cpu_ram_efficient_loading: false
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Gemma3DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_reshard_after_forward: true
# fsdp_activation_checkpointing: true
gradient_checkpointing: true # required for activation offloading
activation_offloading: legacy
#gradient_checkpointing: true
#gradient_checkpointing_kwargs:
# use_reentrant: false
#activation_offloading: true
logging_steps: 1
flash_attention: true # not recommended for gemma3 due to soft logit capping, but it should be fixed in the lates flash attention
# xformers_attention: true
#eager_attention:
# torch_compile: True
warmup_steps: 150 #0.4
evals_per_epoch: 1
save_steps: 100
save_total_limit: 6
#saves_per_epoch: 1
weight_decay: 0.0
```
</details><br>
# outputs/lapa-v.0.1-reasoning-only-12b-eos
This model is a fine-tuned version of [google/gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) on the le-llm/open-thoughts-114K dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 48
- total_train_batch_size: 192
- total_eval_batch_size: 192
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: warmup_stable_decay
- lr_scheduler_warmup_steps: 150
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.2
|