Other
English
minecraft
action prediction
Llamipa / model /parse_gold.py
Kqte's picture
Upload 2 files
8bcfbaa verified
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from datasets import load_dataset
from tqdm import tqdm
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
"/path/to/llamipa/adapter",
return_dict=True,
torch_dtype=torch.float16,
device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained("/path/to/meta-llama3-8b/",add_eos_token=True)
tokenizer.pad_token_id = tokenizer.eos_token_id + 1
tokenizer.padding_side = "right"
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, max_new_tokens=100)
test_dataset = load_dataset("json", data_files={'test':'/path/to/parser_test_15_gold.jsonl'})["test"]
def formatting_prompts_func(example):
output_texts = []
for i in range(len(example['sample'])):
text = f"<|begin_of_text|>Identify the discourse structure (DS) for the new turn in the following excerpt :\n {example['sample'][i]}\n ### DS:"
output_texts.append(text)
return output_texts
test_texts = formatting_prompts_func(test_dataset)
print("Test Length:", len(test_texts))
f = open("/path/to/test-output-file.txt","w")
for text in tqdm(test_texts):
print(text)
print(pipe(text)[0]["generated_text"], file=f)
f.close()