File size: 1,387 Bytes
ae4c0db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f012436
ae4c0db
f012436
ae4c0db
 
 
 
 
 
 
 
 
 
 
 
f012436
ae4c0db
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: other
license_name: qwen
license_link: https://huggingface.co/skt/A.X-4.0/blob/main/LICENSE
language:
- en
- ko
pipeline_tag: text-generation
library_name: mlx
model_id: skt/A.X-4.0
developers: SKT AI Model Lab
tags:
- mlx
base_model: skt/A.X-4.0
model-index:
- name: A.X-4.0
  results:
  - task:
      type: generate_until
      name: mmlu
    dataset:
      name: mmlu (chat CoT)
      type: hails/mmlu_no_train
    metrics:
    - type: exact_match
      value: 86.62
      name: exact_match
  - task:
      type: generate_until
      name: kmmlu
    dataset:
      name: kmmlu (chat CoT)
      type: HAERAE-HUB/KMMLU
    metrics:
    - type: exact_match
      value: 78.32
      name: exact_match
---

# litmudoc/A.X-4.0-72B-MLX-Q4

This model [litmudoc/A.X-4.0-72B-MLX-Q4](https://huggingface.co/litmudoc/A.X-4.0-72B-MLX-Q4) was
converted to MLX format from [skt/A.X-4.0](https://huggingface.co/skt/A.X-4.0)
using mlx-lm version **0.25.3**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("litmudoc/A.X-4.0-72B-MLX-Q4")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```