File size: 1,590 Bytes
b0e789b
6c81bc9
 
 
 
 
 
 
 
 
b0e789b
 
6c81bc9
 
b0e789b
6c81bc9
b0e789b
6c81bc9
 
 
 
b0e789b
6c81bc9
b0e789b
6c81bc9
b0e789b
6c81bc9
b0e789b
6c81bc9
b0e789b
6c81bc9
b0e789b
6c81bc9
b0e789b
6c81bc9
b0e789b
6c81bc9
b0e789b
6c81bc9
 
 
 
 
 
 
 
 
 
b0e789b
6c81bc9
b0e789b
6c81bc9
 
 
 
 
b0e789b
 
6c81bc9
b0e789b
6c81bc9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: Salesforce/codet5-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: CodeT5ForClone-Detection
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodeT5ForClone-Detection

This model is a fine-tuned version of [Salesforce/codet5-base](https://huggingface.co/Salesforce/codet5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2279
- Accuracy: 0.9325

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 14400.0
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2552        | 1.0   | 10000 | 0.2689          | 0.916    |
| 0.1912        | 2.0   | 20000 | 0.2123          | 0.9253   |
| 0.1311        | 3.0   | 30000 | 0.2279          | 0.9325   |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0