loocorez commited on
Commit
40848df
·
verified ·
1 Parent(s): 6d6d35b

Upload modeling_nanogpt.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_nanogpt.py +232 -0
modeling_nanogpt.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ from dataclasses import dataclass
4
+ from pathlib import Path
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ from transformers import PreTrainedModel
10
+
11
+ from .configuration_nanogpt import NanoGPTConfig
12
+
13
+
14
+ def _rms_norm(x: torch.Tensor) -> torch.Tensor:
15
+ return F.rms_norm(x, (x.size(-1),))
16
+
17
+
18
+ def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
19
+ assert x.ndim == 4
20
+ d = x.shape[3] // 2
21
+ x1, x2 = x[..., :d], x[..., d:]
22
+ y1 = x1 * cos + x2 * sin
23
+ y2 = x1 * (-sin) + x2 * cos
24
+ out = torch.cat([y1, y2], 3)
25
+ return out.to(x.dtype)
26
+
27
+
28
+ def _repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
29
+ if n_rep == 1:
30
+ return x
31
+ bs, n_kv_heads, slen, head_dim = x.shape
32
+ return (
33
+ x[:, :, None, :, :]
34
+ .expand(bs, n_kv_heads, n_rep, slen, head_dim)
35
+ .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
36
+ )
37
+
38
+
39
+ class CausalSelfAttention(nn.Module):
40
+ def __init__(self, config: NanoGPTConfig, layer_idx: int):
41
+ super().__init__()
42
+ self.layer_idx = layer_idx
43
+ self.n_head = config.n_head
44
+ self.n_kv_head = config.n_kv_head
45
+ self.n_embd = config.n_embd
46
+ self.head_dim = self.n_embd // self.n_head
47
+ assert self.n_embd % self.n_head == 0
48
+ assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
49
+ self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
50
+ self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
51
+ self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
52
+ self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
53
+
54
+ def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
55
+ B, T, C = x.size()
56
+ q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
57
+ k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
58
+ v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
59
+ cos, sin = cos_sin
60
+ q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin)
61
+ q, k = _rms_norm(q), _rms_norm(k)
62
+ q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
63
+ Tq = q.size(2)
64
+ Tk = k.size(2)
65
+ nrep = self.n_head // self.n_kv_head
66
+ k, v = _repeat_kv(k, nrep), _repeat_kv(v, nrep)
67
+ if Tq == Tk:
68
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
69
+ elif Tq == 1:
70
+ y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
71
+ else:
72
+ attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device)
73
+ prefix_len = Tk - Tq
74
+ if prefix_len > 0:
75
+ attn_mask[:, :prefix_len] = True
76
+ attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
77
+ y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
78
+ y = y.transpose(1, 2).contiguous().view(B, T, -1)
79
+ y = self.c_proj(y)
80
+ return y
81
+
82
+
83
+ class MLP(nn.Module):
84
+ def __init__(self, config: NanoGPTConfig):
85
+ super().__init__()
86
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
87
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
88
+
89
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
90
+ x = self.c_fc(x)
91
+ x = F.relu(x).square()
92
+ x = self.c_proj(x)
93
+ return x
94
+
95
+
96
+ class Block(nn.Module):
97
+ def __init__(self, config: NanoGPTConfig, layer_idx: int):
98
+ super().__init__()
99
+ self.attn = CausalSelfAttention(config, layer_idx)
100
+ self.mlp = MLP(config)
101
+
102
+ def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
103
+ x = x + self.attn(_rms_norm(x), cos_sin, kv_cache)
104
+ x = x + self.mlp(_rms_norm(x))
105
+ return x
106
+
107
+
108
+ class NanoGPTModel(PreTrainedModel):
109
+ config_class = NanoGPTConfig
110
+
111
+ def __init__(self, config: NanoGPTConfig):
112
+ super().__init__(config)
113
+ self.transformer = nn.ModuleDict({
114
+ "wte": nn.Embedding(config.vocab_size, config.n_embd),
115
+ "h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
116
+ })
117
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
118
+ self.rotary_seq_len = config.sequence_len * 10
119
+ head_dim = config.n_embd // config.n_head
120
+ cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
121
+ self.register_buffer("cos", cos, persistent=False)
122
+ self.register_buffer("sin", sin, persistent=False)
123
+ # ensure fp32 activations
124
+ self.transformer.wte.to(dtype=torch.bfloat16)
125
+
126
+ # following HF API expectations
127
+ self.post_init()
128
+
129
+ def _init_weights(self, module: nn.Module):
130
+ if isinstance(module, nn.Linear):
131
+ fan_out = module.weight.size(0)
132
+ fan_in = module.weight.size(1)
133
+ std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
134
+ torch.nn.init.normal_(module.weight, mean=0.0, std=std)
135
+ if module.bias is not None:
136
+ torch.nn.init.zeros_(module.bias)
137
+ elif isinstance(module, nn.Embedding):
138
+ torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)
139
+
140
+ def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None):
141
+ if device is None:
142
+ device = self.transformer.wte.weight.device
143
+ # Handle meta device case - use CPU as fallback
144
+ if device.type == 'meta':
145
+ device = torch.device('cpu')
146
+ channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
147
+ inv_freq = 1.0 / (base ** (channel_range / head_dim))
148
+ t = torch.arange(seq_len, dtype=torch.float32, device=device)
149
+ freqs = torch.outer(t, inv_freq)
150
+ cos, sin = freqs.cos(), freqs.sin()
151
+ cos, sin = cos.bfloat16(), sin.bfloat16()
152
+ cos, sin = cos[None, :, None, :], sin[None, :, None, :]
153
+ return cos, sin
154
+
155
+ def forward(self, input_ids: torch.Tensor, labels=None, **kwargs):
156
+ idx = input_ids
157
+ B, T = idx.size()
158
+ T0 = 0
159
+ cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T]
160
+ x = self.transformer.wte(idx)
161
+ x = x.float()
162
+ x = _rms_norm(x)
163
+ for block in self.transformer.h:
164
+ x = block(x, cos_sin, None)
165
+ x = _rms_norm(x)
166
+
167
+ softcap = 15
168
+ logits = self.lm_head(x)
169
+ logits = softcap * torch.tanh(logits / softcap)
170
+ loss = None
171
+ if labels is not None:
172
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1, reduction='mean')
173
+ return {"loss": loss, "logits": logits}
174
+
175
+ @classmethod
176
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
177
+ config = kwargs.pop("config", None)
178
+ subfolder = kwargs.pop("subfolder", None)
179
+ device_map = kwargs.get("device_map")
180
+ if device_map is not None:
181
+ # Delegate complex dispatch (like accelerate) to the base implementation.
182
+ if subfolder is not None:
183
+ kwargs["subfolder"] = subfolder
184
+ if config is not None:
185
+ kwargs["config"] = config
186
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
187
+
188
+ base_path = Path(pretrained_model_name_or_path)
189
+ if subfolder:
190
+ base_path = base_path / subfolder
191
+
192
+ weight_path = None
193
+ if base_path.is_dir():
194
+ candidate_files = [
195
+ base_path / "pytorch_model.bin",
196
+ base_path / "model.bin",
197
+ ]
198
+ candidate_files.extend(sorted(base_path.glob("model_*.pt"), reverse=True))
199
+ candidate_files.extend(sorted(base_path.glob("*.bin"), reverse=True))
200
+ for cand in candidate_files:
201
+ if cand.is_file():
202
+ weight_path = cand
203
+ break
204
+
205
+ if weight_path is None:
206
+ # Fall back to the default behaviour (e.g. remote repo or standard filenames)
207
+ if subfolder is not None:
208
+ kwargs["subfolder"] = subfolder
209
+ if config is not None:
210
+ kwargs["config"] = config
211
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
212
+
213
+ if config is None:
214
+ config = NanoGPTConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder)
215
+
216
+ torch_dtype = kwargs.pop("torch_dtype", None)
217
+ strict = kwargs.pop("strict", True)
218
+
219
+ state_dict = torch.load(str(weight_path), map_location="cpu")
220
+ if isinstance(state_dict, dict) and "state_dict" in state_dict:
221
+ state_dict = state_dict["state_dict"]
222
+ state_dict = {k.lstrip("_orig_mod."): v for k, v in state_dict.items()}
223
+
224
+ model = cls(config, *model_args)
225
+ model.load_state_dict(state_dict, strict=strict)
226
+ if torch_dtype is not None:
227
+ model = model.to(dtype=torch_dtype)
228
+ model.eval()
229
+ return model
230
+
231
+
232
+