import math import os from dataclasses import dataclass from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F from transformers import PreTrainedModel from .configuration_nanogpt import NanoGPTConfig def _rms_norm(x: torch.Tensor) -> torch.Tensor: return F.rms_norm(x, (x.size(-1),)) def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: assert x.ndim == 4 d = x.shape[3] // 2 x1, x2 = x[..., :d], x[..., d:] y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos out = torch.cat([y1, y2], 3) return out.to(x.dtype) def _repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: if n_rep == 1: return x bs, n_kv_heads, slen, head_dim = x.shape return ( x[:, :, None, :, :] .expand(bs, n_kv_heads, n_rep, slen, head_dim) .reshape(bs, n_kv_heads * n_rep, slen, head_dim) ) class CausalSelfAttention(nn.Module): def __init__(self, config: NanoGPTConfig, layer_idx: int): super().__init__() self.layer_idx = layer_idx self.n_head = config.n_head self.n_kv_head = config.n_kv_head self.n_embd = config.n_embd self.head_dim = self.n_embd // self.n_head assert self.n_embd % self.n_head == 0 assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0 self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False) self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False) def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor: B, T, C = x.size() q = self.c_q(x).view(B, T, self.n_head, self.head_dim) k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim) v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim) cos, sin = cos_sin q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin) q, k = _rms_norm(q), _rms_norm(k) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) Tq = q.size(2) Tk = k.size(2) nrep = self.n_head // self.n_kv_head k, v = _repeat_kv(k, nrep), _repeat_kv(v, nrep) if Tq == Tk: y = F.scaled_dot_product_attention(q, k, v, is_causal=True) elif Tq == 1: y = F.scaled_dot_product_attention(q, k, v, is_causal=False) else: attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) prefix_len = Tk - Tq if prefix_len > 0: attn_mask[:, :prefix_len] = True attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device)) y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) y = y.transpose(1, 2).contiguous().view(B, T, -1) y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, config: NanoGPTConfig): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.c_fc(x) x = F.relu(x).square() x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config: NanoGPTConfig, layer_idx: int): super().__init__() self.attn = CausalSelfAttention(config, layer_idx) self.mlp = MLP(config) def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor: x = x + self.attn(_rms_norm(x), cos_sin, kv_cache) x = x + self.mlp(_rms_norm(x)) return x class NanoGPTModel(PreTrainedModel): config_class = NanoGPTConfig def __init__(self, config: NanoGPTConfig): super().__init__(config) self.transformer = nn.ModuleDict({ "wte": nn.Embedding(config.vocab_size, config.n_embd), "h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]), }) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.rotary_seq_len = config.sequence_len * 10 head_dim = config.n_embd // config.n_head cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) # ensure fp32 activations self.transformer.wte.to(dtype=torch.bfloat16) # following HF API expectations self.post_init() def _init_weights(self, module: nn.Module): if isinstance(module, nn.Linear): fan_out = module.weight.size(0) fan_in = module.weight.size(1) std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in)) torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=1.0) def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None): if device is None: device = self.transformer.wte.weight.device # Handle meta device case - use CPU as fallback if device.type == 'meta': device = torch.device('cpu') channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device) inv_freq = 1.0 / (base ** (channel_range / head_dim)) t = torch.arange(seq_len, dtype=torch.float32, device=device) freqs = torch.outer(t, inv_freq) cos, sin = freqs.cos(), freqs.sin() cos, sin = cos.bfloat16(), sin.bfloat16() cos, sin = cos[None, :, None, :], sin[None, :, None, :] return cos, sin def forward(self, input_ids: torch.Tensor, labels=None, **kwargs): idx = input_ids B, T = idx.size() T0 = 0 cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] x = self.transformer.wte(idx) x = x.float() x = _rms_norm(x) for block in self.transformer.h: x = block(x, cos_sin, None) x = _rms_norm(x) softcap = 15 logits = self.lm_head(x) logits = softcap * torch.tanh(logits / softcap) loss = None if labels is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1, reduction='mean') return {"loss": loss, "logits": logits} @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): config = kwargs.pop("config", None) subfolder = kwargs.pop("subfolder", None) device_map = kwargs.get("device_map") if device_map is not None: # Delegate complex dispatch (like accelerate) to the base implementation. if subfolder is not None: kwargs["subfolder"] = subfolder if config is not None: kwargs["config"] = config return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) base_path = Path(pretrained_model_name_or_path) if subfolder: base_path = base_path / subfolder weight_path = None if base_path.is_dir(): candidate_files = [ base_path / "pytorch_model.bin", base_path / "model.bin", ] candidate_files.extend(sorted(base_path.glob("model_*.pt"), reverse=True)) candidate_files.extend(sorted(base_path.glob("*.bin"), reverse=True)) for cand in candidate_files: if cand.is_file(): weight_path = cand break if weight_path is None: # Fall back to the default behaviour (e.g. remote repo or standard filenames) if subfolder is not None: kwargs["subfolder"] = subfolder if config is not None: kwargs["config"] = config return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) if config is None: config = NanoGPTConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder) torch_dtype = kwargs.pop("torch_dtype", None) strict = kwargs.pop("strict", True) state_dict = torch.load(str(weight_path), map_location="cpu") if isinstance(state_dict, dict) and "state_dict" in state_dict: state_dict = state_dict["state_dict"] state_dict = {k.lstrip("_orig_mod."): v for k, v in state_dict.items()} model = cls(config, *model_args) model.load_state_dict(state_dict, strict=strict) if torch_dtype is not None: model = model.to(dtype=torch_dtype) model.eval() return model