--- base_model: - Qwen/Qwen3-8B datasets: - luzimu/webgen-agent_train_step-grpo - luzimu/webgen-agent_train_sft license: mit pipeline_tag: image-text-to-text library_name: transformers --- # WebGen-Agent WebGen-Agent is an advanced website generation agent designed to autonomously create websites from natural language instructions. It was introduced in the paper [WebGen-Agent: Enhancing Interactive Website Generation with Multi-Level Feedback and Step-Level Reinforcement Learning](https://arxiv.org/pdf/2509.22644v1). Code: https://github.com/mnluzimu/WebGen-Agent ## Project Overview WebGen-Agent combines state-of-the-art language models with specialized training techniques to create a powerful website generation tool. The agent can understand natural language instructions specifying appearance and functional requirements, iteratively generate website codebases, and refine them using visual and functional feedback. ## Resources Links to the data and model parameters are as follows: | **Data** | **HF Link** | |----------|------| | **webgen-agent_train_sft** | 🤗 [luzimu/webgen-agent_train_sft](https://huggingface.co/datasets/luzimu/webgen-agent_train_sft) | | **webgen-agent_train_step-grpo** | 🤗 [luzimu/webgen-agent_train_step-grpo](https://huggingface.co/datasets/luzimu/webgen-agent_train_step-grpo) | | **Model** | **HF Link** | |----------|------| | **WebGenAgent-LM-7B-SFT** | 🤗 [luzimu/WebGenAgent-LM-7B-SFT](https://huggingface.co/luzimu/WebGenAgent-LM-7B-SFT) | | **WebGenAgent-LM-7B-Step-GRPO** | 🤗 [luzimu/WebGenAgent-LM-7B-Step-GRPO](https://huggingface.co/luzimu/WebGenAgent-LM-7B-Step-GRPO) | | **WebGenAgent-LM-8B-SFT** | 🤗 [luzimu/WebGenAgent-LM-8B-SFT](https://huggingface.co/luzimu/WebGenAgent-LM-8B-SFT) | | **WebGenAgent-LM-8B-Step-GRPO** | 🤗 [luzimu/WebGenAgent-LM-8B-Step-GRPO](https://huggingface.co/luzimu/WebGenAgent-LM-8B-Step-GRPO) | ## How WebGen-Agent Works WebGen-Agent follows an iterative, multi-step paradigm for website generation: 1. **Code Generation**: The agent generates code to create or edit website files based on natural language instructions 2. **Code Execution**: Dependencies are installed and the website service is started 3. **Feedback Gathering**: - A screenshot of the website is captured - A Visual Language Model (VLM) provides appearance feedback and scores - A GUI-agent tests the website functionality and provides functional feedback 4. **Refinement**: Based on the feedback, the agent continues to improve the website until it meets requirements ![WebGen-Agent Workflow](https://github.com/mnluzimu/WebGen-Agent/raw/main/paper/webgen-agent.png) ## Step-GRPO with Screenshot and GUI-agent Feedback The Step-GRPO with Screenshot and GUI-agent Feedback approach uses the screenshot and GUI-agent scores inherently produced in the WebGen-Agent workflow as step-level rewards: - **Screenshot Score**: Quantifies the visual appeal and aesthetics of the website - **GUI-agent Score**: Measures how well the website meets functional requirements These dual rewards provide dense, reliable process supervision that significantly improves the model's ability to generate high-quality websites. ![Step-GRPO with Screenshot and GUI-agent Feedback](https://github.com/mnluzimu/WebGen-Agent/raw/main/paper/step-grpo.png) ## Citation If you find our project useful, please cite: ``` @misc{lu2025webgenagentenhancinginteractivewebsite, title={WebGen-Agent: Enhancing Interactive Website Generation with Multi-Level Feedback and Step-Level Reinforcement Learning}, author={Zimu Lu and Houxing Ren and Yunqiao Yang and Ke Wang and Zhuofan Zong and Junting Pan and Mingjie Zhan and Hongsheng Li}, year={2025}, eprint={2509.22644}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2509.22644}, } @misc{lu2025webgenbenchevaluatingllmsgenerating, title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch}, author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li}, year={2025}, eprint={2505.03733}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.03733}, } ```