Update README.md
Browse files
README.md
CHANGED
@@ -17,13 +17,15 @@ tags:
|
|
17 |
- transformers
|
18 |
- open-source
|
19 |
- causal-lm
|
20 |
-
-
|
21 |
---
|
22 |
|
23 |
# lambdAI — Lightweight Math & Logic Reasoning Model
|
24 |
|
25 |
**lambdAI** is a compact, fine-tuned language model built on top of `TinyLlama-1.1B-Chat-v1.0`, designed for educational reasoning tasks in both Portuguese and English. It focuses on logic, number theory, and mathematics, delivering fast performance with minimal computational requirements.
|
26 |
|
|
|
|
|
27 |
## Model Architecture
|
28 |
|
29 |
- **Base Model**: TinyLlama-1.1B-Chat
|
@@ -34,14 +36,15 @@ tags:
|
|
34 |
- **Batch Size**: 20 per device
|
35 |
- **Epochs**: 3
|
36 |
|
|
|
|
|
37 |
## Example Usage (Python)
|
38 |
|
39 |
```python
|
40 |
-
|
41 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
42 |
|
43 |
-
model = AutoModelForCausalLM.from_pretrained("
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
45 |
|
46 |
input_text = "Problema: Prove que 17 é um número primo."
|
47 |
inputs = tokenizer(input_text, return_tensors="pt")
|
@@ -49,18 +52,21 @@ inputs = tokenizer(input_text, return_tensors="pt")
|
|
49 |
output = model.generate(**inputs, max_new_tokens=100)
|
50 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
51 |
|
52 |
-
```
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
Stay updated on the project at
|
59 |
|
60 |
|
61 |
---
|
62 |
|
63 |
-
Developed with care by Marius Jabami — Powered by ambition and open source.
|
|
|
64 |
|
65 |
---
|
66 |
|
|
|
|
17 |
- transformers
|
18 |
- open-source
|
19 |
- causal-lm
|
20 |
+
- lxcorp
|
21 |
---
|
22 |
|
23 |
# lambdAI — Lightweight Math & Logic Reasoning Model
|
24 |
|
25 |
**lambdAI** is a compact, fine-tuned language model built on top of `TinyLlama-1.1B-Chat-v1.0`, designed for educational reasoning tasks in both Portuguese and English. It focuses on logic, number theory, and mathematics, delivering fast performance with minimal computational requirements.
|
26 |
|
27 |
+
---
|
28 |
+
|
29 |
## Model Architecture
|
30 |
|
31 |
- **Base Model**: TinyLlama-1.1B-Chat
|
|
|
36 |
- **Batch Size**: 20 per device
|
37 |
- **Epochs**: 3
|
38 |
|
39 |
+
---
|
40 |
+
|
41 |
## Example Usage (Python)
|
42 |
|
43 |
```python
|
|
|
44 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
45 |
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("lxcorp/lambdai")
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("lxcorp/lambdai")
|
48 |
|
49 |
input_text = "Problema: Prove que 17 é um número primo."
|
50 |
inputs = tokenizer(input_text, return_tensors="pt")
|
|
|
52 |
output = model.generate(**inputs, max_new_tokens=100)
|
53 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
54 |
|
|
|
55 |
|
56 |
+
---
|
57 |
+
|
58 |
+
About λχ Corp.
|
59 |
|
60 |
+
λχ Corp. is an indie tech corporation founded by Marius Jabami in Angola, focused on AI-driven educational tools, robotics, and lightweight software solutions. The lambdAI model is the first release in a planned series of educational LLMs optimized for reasoning, logic, and low-resource deployment.
|
61 |
|
62 |
+
Stay updated on the project at lxcorp.ai and huggingface.co/lxcorp.
|
63 |
|
64 |
|
65 |
---
|
66 |
|
67 |
+
Developed with care by Marius Jabami — Powered by ambition, faith, and open source.
|
68 |
+
|
69 |
|
70 |
---
|
71 |
|
72 |
+
---
|