| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						"""PyTorch OPT model.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from typing import List, Optional, Tuple, Union | 
					
					
						
						| 
							 | 
						from functools import partial | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						import torch.utils.checkpoint | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.activations import ACT2FN | 
					
					
						
						| 
							 | 
						from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | 
					
					
						
						| 
							 | 
						from transformers.modeling_outputs import ( | 
					
					
						
						| 
							 | 
						    BaseModelOutputWithPast, | 
					
					
						
						| 
							 | 
						    CausalLMOutputWithPast, | 
					
					
						
						| 
							 | 
						    QuestionAnsweringModelOutput, | 
					
					
						
						| 
							 | 
						    SequenceClassifierOutputWithPast, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from enum import Flag, auto | 
					
					
						
						| 
							 | 
						from transformers.modeling_utils import PreTrainedModel | 
					
					
						
						| 
							 | 
						from transformers.utils import ( | 
					
					
						
						| 
							 | 
						    add_code_sample_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings_to_model_forward, | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    is_flash_attn_2_available, | 
					
					
						
						| 
							 | 
						    is_flash_attn_greater_or_equal_2_10, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_return_docstrings, | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from .configuration_opt import OPTConfig | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class BaseEnumOptions(Flag): | 
					
					
						
						| 
							 | 
						    def __str__(self): | 
					
					
						
						| 
							 | 
						        return self.name | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @classmethod | 
					
					
						
						| 
							 | 
						    def list_names(cls): | 
					
					
						
						| 
							 | 
						        return [m.name for m in cls] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class AttentionGateType(BaseEnumOptions): | 
					
					
						
						| 
							 | 
						    none = 0 | 
					
					
						
						| 
							 | 
						    unconditional_per_head = 1 | 
					
					
						
						| 
							 | 
						    conditional_per_head = 2 | 
					
					
						
						| 
							 | 
						    conditional_per_token = 3 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if is_flash_attn_2_available(): | 
					
					
						
						| 
							 | 
						    from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
					
						
						| 
							 | 
						    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CHECKPOINT_FOR_DOC = "facebook/opt-350m" | 
					
					
						
						| 
							 | 
						_CONFIG_FOR_DOC = "OPTConfig" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc" | 
					
					
						
						| 
							 | 
						_SEQ_CLASS_EXPECTED_LOSS = 1.71 | 
					
					
						
						| 
							 | 
						_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def _get_unpad_data(attention_mask): | 
					
					
						
						| 
							 | 
						    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
					
						
						| 
							 | 
						    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
					
						
						| 
							 | 
						    max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
					
						
						| 
							 | 
						    cu_seqlens = F.pad(torch.cumsum( | 
					
					
						
						| 
							 | 
						        seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
					
						
						| 
							 | 
						    return ( | 
					
					
						
						| 
							 | 
						        indices, | 
					
					
						
						| 
							 | 
						        cu_seqlens, | 
					
					
						
						| 
							 | 
						        max_seqlen_in_batch, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OPTLearnedPositionalEmbedding(nn.Embedding): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This module learns positional embeddings up to a fixed maximum size. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, num_embeddings: int, embedding_dim: int): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.offset = 2 | 
					
					
						
						| 
							 | 
						        super().__init__(num_embeddings + self.offset, embedding_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): | 
					
					
						
						| 
							 | 
						        """`input_ids_shape` is expected to be [bsz x seqlen].""" | 
					
					
						
						| 
							 | 
						        attention_mask = attention_mask.long() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        positions = (torch.cumsum(attention_mask, dim=1).type_as( | 
					
					
						
						| 
							 | 
						            attention_mask) * attention_mask).long() - 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        positions = positions[:, past_key_values_length:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return super().forward(positions + self.offset) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def softmax_n_shifted_zeros(input: torch.Tensor, n: int, dim=-1) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    $\text(softmax)_n(x_i) = exp(x_i) / (n + \sum_j exp(x_j))$ | 
					
					
						
						| 
							 | 
						    Note: softmax_n, with fixed input, is _not_ shift-symmetric when n != 0 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    input_maxes = input.max(dim=dim, keepdim=True).values | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    shifted_inputs = torch.subtract(input, input_maxes) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    numerator = torch.exp(shifted_inputs) | 
					
					
						
						| 
							 | 
						    original_denominator = numerator.sum(dim=dim, keepdim=True) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    shifted_zeros = torch.multiply(input_maxes, -1) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    denominator = torch.add(original_denominator, | 
					
					
						
						| 
							 | 
						                            torch.multiply(torch.exp(shifted_zeros), n)) | 
					
					
						
						| 
							 | 
						    return torch.divide(numerator, denominator) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def softmax_1(input: torch.Tensor, dim=-1, dtype=torch.float32) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    $\text(softmax)_n(x_i) = exp(x_i) / (1 + \sum_j exp(x_j))$ | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    output = softmax_n_shifted_zeros(input, 1, dim=dim) | 
					
					
						
						| 
							 | 
						    return output if dtype is None else output.type(dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def clipped_softmax(data, dim=1, eta=1.1, gamma=-0.1, **kw): | 
					
					
						
						| 
							 | 
						    sm_out = torch.nn.functional.softmax(data, dim=dim, **kw) | 
					
					
						
						| 
							 | 
						    stretched_out = sm_out * (eta - gamma) + gamma | 
					
					
						
						| 
							 | 
						    return torch.clip(stretched_out, 0, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def clipped_softmax1(data, dim=1, eta=1.1, gamma=-0.1, **kw): | 
					
					
						
						| 
							 | 
						    sm_out = softmax_1(data, dim=dim, **kw) | 
					
					
						
						| 
							 | 
						    stretched_out = sm_out * (eta - gamma) + gamma | 
					
					
						
						| 
							 | 
						    return torch.clip(stretched_out, 0, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OPTAttention(nn.Module): | 
					
					
						
						| 
							 | 
						    """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        config: OPTConfig, | 
					
					
						
						| 
							 | 
						        dropout: float = 0.0, | 
					
					
						
						| 
							 | 
						        is_decoder: bool = False, | 
					
					
						
						| 
							 | 
						        bias: bool = True, | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        softmax_fn=softmax_1, | 
					
					
						
						| 
							 | 
						        alpha=None, | 
					
					
						
						| 
							 | 
						        max_seq_length=512, | 
					
					
						
						| 
							 | 
						        ssm_eps=None, | 
					
					
						
						| 
							 | 
						        tau=None, | 
					
					
						
						| 
							 | 
						        skip_attn=False, | 
					
					
						
						| 
							 | 
						        attn_gate_type=AttentionGateType.conditional_per_token, | 
					
					
						
						| 
							 | 
						        attn_gate_init=0.25, | 
					
					
						
						| 
							 | 
						        attn_gate_mlp=False, | 
					
					
						
						| 
							 | 
						        attn_gate_mlp2=False, | 
					
					
						
						| 
							 | 
						        attn_gate_linear_all_features=False, | 
					
					
						
						| 
							 | 
						        fine_tuning=False, | 
					
					
						
						| 
							 | 
						        attn_softmax='softmax1', | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.embed_dim = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.num_heads = config.num_attention_heads | 
					
					
						
						| 
							 | 
						        self.dropout = config.attention_dropout | 
					
					
						
						| 
							 | 
						        self.enable_bias = config.enable_bias | 
					
					
						
						| 
							 | 
						        self.head_dim = self.embed_dim // self.num_heads | 
					
					
						
						| 
							 | 
						        self.is_causal = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (self.head_dim * self.num_heads) != self.embed_dim: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | 
					
					
						
						| 
							 | 
						                f" and `num_heads`: {self.num_heads})." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        self.scaling = self.head_dim**-0.5 | 
					
					
						
						| 
							 | 
						        self.is_decoder = is_decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias) | 
					
					
						
						| 
							 | 
						        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias) | 
					
					
						
						| 
							 | 
						        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias) | 
					
					
						
						| 
							 | 
						        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=bias) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.attn_scores = nn.Identity()   | 
					
					
						
						| 
							 | 
						        self.attn_probs_before_dropout = nn.Identity() | 
					
					
						
						| 
							 | 
						        self.attn_probs_after_dropout = nn.Identity() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.alpha = alpha | 
					
					
						
						| 
							 | 
						        self.max_seq_length = max_seq_length | 
					
					
						
						| 
							 | 
						        self.ssm_eps = ssm_eps | 
					
					
						
						| 
							 | 
						        self.tau = tau | 
					
					
						
						| 
							 | 
						        self.attn_softmax = attn_softmax | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.alpha is not None: | 
					
					
						
						| 
							 | 
						            assert self.max_seq_length is not None | 
					
					
						
						| 
							 | 
						            gamma = -self.alpha / self.max_seq_length | 
					
					
						
						| 
							 | 
						            if self.attn_softmax is "softmax1": | 
					
					
						
						| 
							 | 
						                print("Using clipped Softmax_1!") | 
					
					
						
						| 
							 | 
						                self.softmax_fn = partial( | 
					
					
						
						| 
							 | 
						                    clipped_softmax1, gamma=gamma, eta=1.0) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                self.softmax_fn = partial( | 
					
					
						
						| 
							 | 
						                    clipped_softmax, gamma=gamma, eta=1.0) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.softmax_fn = softmax_fn | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.skip_attn = skip_attn | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.last_gate_avg_prob = None | 
					
					
						
						| 
							 | 
						        self.last_gate_all_probs = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.attn_gate_type = attn_gate_type | 
					
					
						
						| 
							 | 
						        self.attn_gate_init = attn_gate_init | 
					
					
						
						| 
							 | 
						        self.attn_gate_mlp = attn_gate_mlp | 
					
					
						
						| 
							 | 
						        self.attn_gate_mlp2 = attn_gate_mlp2 | 
					
					
						
						| 
							 | 
						        self.attn_gate_linear_all_features = attn_gate_linear_all_features | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.alpha = None | 
					
					
						
						| 
							 | 
						        self.ssm_eps = ssm_eps | 
					
					
						
						| 
							 | 
						        self.gate_fn = torch.sigmoid | 
					
					
						
						| 
							 | 
						        self.pooling_fn = partial(torch.mean, dim=1, keepdims=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.fine_tuning = fine_tuning | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.gate_scaling_factor = 1.0 | 
					
					
						
						| 
							 | 
						        if self.fine_tuning and self.attn_gate_init is not None: | 
					
					
						
						| 
							 | 
						            self.gate_scaling_factor = 1.0 / self.attn_gate_init | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.attn_gate_type == AttentionGateType.unconditional_per_head: | 
					
					
						
						| 
							 | 
						            init_alpha = torch.zeros(size=(self.num_heads,)) | 
					
					
						
						| 
							 | 
						            self.alpha = nn.Parameter(init_alpha, requires_grad=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        elif self.attn_gate_type in ( | 
					
					
						
						| 
							 | 
						            AttentionGateType.conditional_per_head, | 
					
					
						
						| 
							 | 
						            AttentionGateType.conditional_per_token, | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if self.attn_gate_linear_all_features: | 
					
					
						
						| 
							 | 
						                self.alpha = nn.Linear( | 
					
					
						
						| 
							 | 
						                    self.embed_dim, self.num_heads, bias=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            else:   | 
					
					
						
						| 
							 | 
						                module_list = [] | 
					
					
						
						| 
							 | 
						                for _ in range(self.num_heads): | 
					
					
						
						| 
							 | 
						                    if self.attn_gate_mlp: | 
					
					
						
						| 
							 | 
						                        fc = nn.Sequential( | 
					
					
						
						| 
							 | 
						                            nn.Linear(self.head_dim, | 
					
					
						
						| 
							 | 
						                                      self.head_dim // 4, bias=True), | 
					
					
						
						| 
							 | 
						                            nn.ReLU(), | 
					
					
						
						| 
							 | 
						                            nn.Linear(self.head_dim // 4, 1, bias=True), | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						                    elif self.attn_gate_mlp2: | 
					
					
						
						| 
							 | 
						                        fc = nn.Sequential( | 
					
					
						
						| 
							 | 
						                            nn.Linear(self.head_dim, self.head_dim, bias=True), | 
					
					
						
						| 
							 | 
						                            nn.ReLU(), | 
					
					
						
						| 
							 | 
						                            nn.Linear(self.head_dim, 1, bias=True), | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        fc = nn.Linear(self.head_dim, 1, bias=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                        if self.attn_gate_init is not None: | 
					
					
						
						| 
							 | 
						                            init_bias = logit(self.attn_gate_init) | 
					
					
						
						| 
							 | 
						                            torch.nn.init.constant_(fc.bias, init_bias) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                        if self.fine_tuning: | 
					
					
						
						| 
							 | 
						                             | 
					
					
						
						| 
							 | 
						                            torch.nn.init.normal_( | 
					
					
						
						| 
							 | 
						                                fc.weight, mean=0.0, std=0.001) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    module_list.append(fc) | 
					
					
						
						| 
							 | 
						                self.alpha = nn.ModuleList(module_list) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
					
						
						| 
							 | 
						        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        key_value_states: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        layer_head_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        """Input shape: Batch x Time x Channel""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        is_cross_attention = key_value_states is not None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, tgt_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) * self.scaling | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if is_cross_attention and past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = past_key_value[0] | 
					
					
						
						| 
							 | 
						            value_states = past_key_value[1] | 
					
					
						
						| 
							 | 
						        elif is_cross_attention: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | 
					
					
						
						| 
							 | 
						        elif past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
					
						
						| 
							 | 
						            value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.is_decoder: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            past_key_value = (key_states, value_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        proj_shape = (bsz * self.num_heads, -1, self.head_dim) | 
					
					
						
						| 
							 | 
						        query_states = self._shape( | 
					
					
						
						| 
							 | 
						            query_states, tgt_len, bsz).view(*proj_shape) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(*proj_shape) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(*proj_shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        src_len = key_states.size(1) | 
					
					
						
						| 
							 | 
						        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = self.attn_scores(attn_weights) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_weights.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            if attention_mask.size() != (bsz, 1, tgt_len, src_len): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights.view( | 
					
					
						
						| 
							 | 
						                bsz, self.num_heads, tgt_len, src_len) + attention_mask | 
					
					
						
						| 
							 | 
						            attn_weights = torch.max( | 
					
					
						
						| 
							 | 
						                attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights.view( | 
					
					
						
						| 
							 | 
						                bsz * self.num_heads, tgt_len, src_len) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if attn_weights.dtype == torch.float16: | 
					
					
						
						| 
							 | 
						            attn_weights = self.softmax_fn(attn_weights, dim=-1, dtype=torch.float32).to( | 
					
					
						
						| 
							 | 
						                torch.float16 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            attn_weights = self.softmax_fn(attn_weights, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if layer_head_mask is not None: | 
					
					
						
						| 
							 | 
						            if layer_head_mask.size() != (self.num_heads,): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | 
					
					
						
						| 
							 | 
						                    f" {layer_head_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( | 
					
					
						
						| 
							 | 
						                bsz, self.num_heads, tgt_len, src_len | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights.view( | 
					
					
						
						| 
							 | 
						                bsz * self.num_heads, tgt_len, src_len) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attn_weights_reshaped = attn_weights.view( | 
					
					
						
						| 
							 | 
						                bsz, self.num_heads, tgt_len, src_len) | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights_reshaped.view( | 
					
					
						
						| 
							 | 
						                bsz * self.num_heads, tgt_len, src_len) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            attn_weights_reshaped = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = self.attn_probs_before_dropout(attn_weights) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_probs = nn.functional.dropout( | 
					
					
						
						| 
							 | 
						            attn_weights, p=self.dropout, training=self.training) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_probs = self.attn_probs_after_dropout(attn_probs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = torch.bmm(attn_probs, value_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_output.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.view( | 
					
					
						
						| 
							 | 
						            bsz, self.num_heads, tgt_len, self.head_dim) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.attn_gate_type == AttentionGateType.unconditional_per_head: | 
					
					
						
						| 
							 | 
						            gate = self.gate_fn(self.alpha)   | 
					
					
						
						| 
							 | 
						            attn_output *= gate.view(-1, 1, 1)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.last_gate_avg_prob = gate.view(-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        elif self.attn_gate_type in ( | 
					
					
						
						| 
							 | 
						            AttentionGateType.conditional_per_head, | 
					
					
						
						| 
							 | 
						            AttentionGateType.conditional_per_token, | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            x = hidden_states   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.attn_gate_linear_all_features:   | 
					
					
						
						| 
							 | 
						                alpha = self.alpha(x)   | 
					
					
						
						| 
							 | 
						                gate = self.gate_fn(alpha) | 
					
					
						
						| 
							 | 
						                gate = gate.permute(0, 2, 1).contiguous()   | 
					
					
						
						| 
							 | 
						                gate = gate.unsqueeze(3)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                x = self._shape(x, -1, bsz)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                alpha = [] | 
					
					
						
						| 
							 | 
						                for head_idx in range(self.num_heads): | 
					
					
						
						| 
							 | 
						                    x_head = x[:, head_idx, ...]   | 
					
					
						
						| 
							 | 
						                    fc_head = self.alpha[head_idx] | 
					
					
						
						| 
							 | 
						                    alpha_head = fc_head(x_head)   | 
					
					
						
						| 
							 | 
						                    if self.attn_gate_type == AttentionGateType.conditional_per_head: | 
					
					
						
						| 
							 | 
						                        alpha_head = self.pooling_fn(alpha_head)   | 
					
					
						
						| 
							 | 
						                    alpha.append(alpha_head) | 
					
					
						
						| 
							 | 
						                alpha = torch.stack(alpha, dim=1)   | 
					
					
						
						| 
							 | 
						                gate = self.gate_fn(alpha) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_output *= gate * self.gate_scaling_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.last_gate_all_probs = gate   | 
					
					
						
						| 
							 | 
						            avg_gate = gate.mean(dim=0) | 
					
					
						
						| 
							 | 
						            self.last_gate_avg_prob = avg_gate.view( | 
					
					
						
						| 
							 | 
						                self.num_heads, -1).mean(dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.out_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights_reshaped, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OptFlashAttention2(OPTAttention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched. | 
					
					
						
						| 
							 | 
						    The only required change would be on the forward pass where it needs to correctly call the public API of flash | 
					
					
						
						| 
							 | 
						    attention and deal with padding tokens in case the input contains any of them. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def __init__(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        key_value_states: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        layer_head_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        """Input shape: Batch x Time x Channel""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        is_cross_attention = key_value_states is not None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, _, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if is_cross_attention and past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = past_key_value[0] | 
					
					
						
						| 
							 | 
						            value_states = past_key_value[1] | 
					
					
						
						| 
							 | 
						        elif is_cross_attention: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | 
					
					
						
						| 
							 | 
						        elif past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
					
						
						| 
							 | 
						            value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						            value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.is_decoder: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            past_key_value = (key_states, value_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_length = query_states.shape[1] | 
					
					
						
						| 
							 | 
						        tgt_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.view( | 
					
					
						
						| 
							 | 
						            bsz, query_length, self.num_heads, self.head_dim) | 
					
					
						
						| 
							 | 
						        key_states = key_states.transpose(1, 2).view( | 
					
					
						
						| 
							 | 
						            bsz, tgt_len, self.num_heads, self.head_dim) | 
					
					
						
						| 
							 | 
						        value_states = value_states.transpose(1, 2).view( | 
					
					
						
						| 
							 | 
						            bsz, tgt_len, self.num_heads, self.head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_dropout = self.dropout if self.training else 0.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        input_dtype = query_states.dtype | 
					
					
						
						| 
							 | 
						        if input_dtype == torch.float32: | 
					
					
						
						| 
							 | 
						            if torch.is_autocast_enabled(): | 
					
					
						
						| 
							 | 
						                target_dtype = torch.get_autocast_gpu_dtype() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
					
						
						| 
							 | 
						                target_dtype = self.config._pre_quantization_dtype | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                target_dtype = self.q_proj.weight.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
					
						
						| 
							 | 
						                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
					
						
						| 
							 | 
						                f" {target_dtype}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            query_states = query_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            key_states = key_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            value_states = value_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self._flash_attention_forward( | 
					
					
						
						| 
							 | 
						            query_states, key_states, value_states, attention_mask, query_length, dropout=attn_dropout | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_weights_reshaped = attn_output.reshape( | 
					
					
						
						| 
							 | 
						            bsz, query_length, self.num_heads * self.head_dim) | 
					
					
						
						| 
							 | 
						        attn_output = self.out_proj(attn_weights_reshaped) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights_reshaped = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights_reshaped, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def _flash_attention_forward( | 
					
					
						
						| 
							 | 
						        self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
					
						
						| 
							 | 
						        first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            query_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input query states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            key_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input key states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            value_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input value states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
					
						
						| 
							 | 
						                position of padding tokens and 1 for the position of non-padding tokens. | 
					
					
						
						| 
							 | 
						            dropout (`float`): | 
					
					
						
						| 
							 | 
						                Attention dropout | 
					
					
						
						| 
							 | 
						            softmax_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if not self._flash_attn_uses_top_left_mask: | 
					
					
						
						| 
							 | 
						            causal = self.is_causal | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal = self.is_causal and query_length != 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            batch_size = query_states.shape[0] | 
					
					
						
						| 
							 | 
						            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
					
						
						| 
							 | 
						                query_states, key_states, value_states, attention_mask, query_length | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_output_unpad = flash_attn_varlen_func( | 
					
					
						
						| 
							 | 
						                query_states, | 
					
					
						
						| 
							 | 
						                key_states, | 
					
					
						
						| 
							 | 
						                value_states, | 
					
					
						
						| 
							 | 
						                cu_seqlens_q=cu_seqlens_q, | 
					
					
						
						| 
							 | 
						                cu_seqlens_k=cu_seqlens_k, | 
					
					
						
						| 
							 | 
						                max_seqlen_q=max_seqlen_in_batch_q, | 
					
					
						
						| 
							 | 
						                max_seqlen_k=max_seqlen_in_batch_k, | 
					
					
						
						| 
							 | 
						                dropout_p=dropout, | 
					
					
						
						| 
							 | 
						                softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						                causal=causal, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_output = pad_input( | 
					
					
						
						| 
							 | 
						                attn_output_unpad, indices_q, batch_size, query_length) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            attn_output = flash_attn_func( | 
					
					
						
						| 
							 | 
						                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
					
						
						| 
							 | 
						        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data( | 
					
					
						
						| 
							 | 
						            attention_mask) | 
					
					
						
						| 
							 | 
						        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						            key_layer.reshape(batch_size * kv_seq_len, | 
					
					
						
						| 
							 | 
						                              num_key_value_heads, head_dim), indices_k | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        value_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						            value_layer.reshape(batch_size * kv_seq_len, | 
					
					
						
						| 
							 | 
						                                num_key_value_heads, head_dim), indices_k | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if query_length == kv_seq_len: | 
					
					
						
						| 
							 | 
						            query_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						                query_layer.reshape(batch_size * kv_seq_len, | 
					
					
						
						| 
							 | 
						                                    self.num_heads, head_dim), indices_k | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = cu_seqlens_k | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
					
						
						| 
							 | 
						            indices_q = indices_k | 
					
					
						
						| 
							 | 
						        elif query_length == 1: | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = 1 | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = torch.arange( | 
					
					
						
						| 
							 | 
						                batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
					
						
						| 
							 | 
						            )   | 
					
					
						
						| 
							 | 
						            indices_q = cu_seqlens_q[:-1] | 
					
					
						
						| 
							 | 
						            query_layer = query_layer.squeeze(1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask[:, -query_length:] | 
					
					
						
						| 
							 | 
						            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( | 
					
					
						
						| 
							 | 
						                query_layer, attention_mask) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            query_layer, | 
					
					
						
						| 
							 | 
						            key_layer, | 
					
					
						
						| 
							 | 
						            value_layer, | 
					
					
						
						| 
							 | 
						            indices_q, | 
					
					
						
						| 
							 | 
						            (cu_seqlens_q, cu_seqlens_k), | 
					
					
						
						| 
							 | 
						            (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						OPT_ATTENTION_CLASSES = { | 
					
					
						
						| 
							 | 
						    "eager": OPTAttention, | 
					
					
						
						| 
							 | 
						    "flash_attention_2": OptFlashAttention2, | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OPTDecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: OPTConfig): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.embed_dim = config.hidden_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = OPTAttention( | 
					
					
						
						| 
							 | 
						            config=config, is_decoder=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.do_layer_norm_before = config.do_layer_norm_before | 
					
					
						
						| 
							 | 
						        self.dropout = config.dropout | 
					
					
						
						| 
							 | 
						        self.activation_fn = ACT2FN[config.activation_function] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn_layer_norm = nn.LayerNorm( | 
					
					
						
						| 
							 | 
						            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, | 
					
					
						
						| 
							 | 
						                             bias=config.enable_bias) | 
					
					
						
						| 
							 | 
						        self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, | 
					
					
						
						| 
							 | 
						                             bias=config.enable_bias) | 
					
					
						
						| 
							 | 
						        self.final_layer_norm = nn.LayerNorm( | 
					
					
						
						| 
							 | 
						            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        layer_head_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
					
						
						| 
							 | 
						                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
					
						
						| 
							 | 
						            layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size | 
					
					
						
						| 
							 | 
						                `(encoder_attention_heads,)`. | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.do_layer_norm_before: | 
					
					
						
						| 
							 | 
						            hidden_states = self.self_attn_layer_norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            layer_head_mask=layer_head_mask, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = nn.functional.dropout( | 
					
					
						
						| 
							 | 
						            hidden_states, p=self.dropout, training=self.training) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if not self.do_layer_norm_before: | 
					
					
						
						| 
							 | 
						            hidden_states = self.self_attn_layer_norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states_shape = hidden_states.shape | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.reshape(-1, hidden_states.size(-1)) | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.do_layer_norm_before: | 
					
					
						
						| 
							 | 
						            hidden_states = self.final_layer_norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.fc1(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = self.activation_fn(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.fc2(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = nn.functional.dropout( | 
					
					
						
						| 
							 | 
						            hidden_states, p=self.dropout, training=self.training) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = (residual + hidden_states).view(hidden_states_shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if not self.do_layer_norm_before: | 
					
					
						
						| 
							 | 
						            hidden_states = self.final_layer_norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            outputs += (present_key_value,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						OPT_START_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
					
						
						| 
							 | 
						    etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
					
						
						| 
							 | 
						    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
					
						
						| 
							 | 
						    and behavior. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        config ([`OPTConfig`]): | 
					
					
						
						| 
							 | 
						            Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
					
						
						| 
							 | 
						            load the weights associated with the model, only the configuration. Check out the | 
					
					
						
						| 
							 | 
						            [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare OPT Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    OPT_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class OPTPreTrainedModel(PreTrainedModel): | 
					
					
						
						| 
							 | 
						    config_class = OPTConfig | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["OPTDecoderLayer"] | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.init_std | 
					
					
						
						| 
							 | 
						        if isinstance(module, nn.Linear): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						OPT_INPUTS_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
					
						
						| 
							 | 
						            it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
					
						
						| 
							 | 
						            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
					
						
						| 
							 | 
						            information on the default strategy. | 
					
					
						
						| 
							 | 
						        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | 
					
					
						
						| 
							 | 
						            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
					
						
						| 
							 | 
						            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
					
						
						| 
							 | 
						            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | 
					
					
						
						| 
							 | 
						            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
					
						
						| 
							 | 
						            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | 
					
					
						
						| 
							 | 
						            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | 
					
					
						
						| 
							 | 
						            `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
					
						
						| 
							 | 
						            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
					
						
						| 
							 | 
						            model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						        output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
					
						
						| 
							 | 
						            tensors for more detail. | 
					
					
						
						| 
							 | 
						        output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
					
						
						| 
							 | 
						            more detail. | 
					
					
						
						| 
							 | 
						        return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OPTDecoder(OPTPreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: OPTConfig | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: OPTConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.dropout = config.dropout | 
					
					
						
						| 
							 | 
						        self.layerdrop = config.layerdrop | 
					
					
						
						| 
							 | 
						        self.padding_idx = config.pad_token_id | 
					
					
						
						| 
							 | 
						        self.max_target_positions = config.max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.embed_tokens = nn.Embedding( | 
					
					
						
						| 
							 | 
						            config.vocab_size, config.word_embed_proj_dim, self.padding_idx) | 
					
					
						
						| 
							 | 
						        self.embed_positions = OPTLearnedPositionalEmbedding( | 
					
					
						
						| 
							 | 
						            config.max_position_embeddings, config.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if config.word_embed_proj_dim != config.hidden_size: | 
					
					
						
						| 
							 | 
						            self.project_out = nn.Linear( | 
					
					
						
						| 
							 | 
						                config.hidden_size, config.word_embed_proj_dim, bias=False) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.project_out = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if config.word_embed_proj_dim != config.hidden_size: | 
					
					
						
						| 
							 | 
						            self.project_in = nn.Linear( | 
					
					
						
						| 
							 | 
						                config.word_embed_proj_dim, config.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.project_in = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if config.do_layer_norm_before and not config._remove_final_layer_norm: | 
					
					
						
						| 
							 | 
						            self.final_layer_norm = nn.LayerNorm( | 
					
					
						
						| 
							 | 
						                config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.final_layer_norm = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | 
					
					
						
						| 
							 | 
						        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        head_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | 
					
					
						
						| 
							 | 
						                provide it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						                [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						                - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): | 
					
					
						
						| 
							 | 
						                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						                - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
					
						
						| 
							 | 
						                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
					
						
						| 
							 | 
						                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | 
					
					
						
						| 
							 | 
						                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | 
					
					
						
						| 
							 | 
						                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | 
					
					
						
						| 
							 | 
						                all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | 
					
					
						
						| 
							 | 
						                This is useful if you want more control over how to convert `input_ids` indices into associated vectors | 
					
					
						
						| 
							 | 
						                than the model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
					
						
						| 
							 | 
						                for more detail. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if input_ids is not None and inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | 
					
					
						
						| 
							 | 
						        elif input_ids is not None: | 
					
					
						
						| 
							 | 
						            input_shape = input_ids.size() | 
					
					
						
						| 
							 | 
						            input_ids = input_ids.view(-1, input_shape[-1]) | 
					
					
						
						| 
							 | 
						        elif inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            input_shape = inputs_embeds.size()[:-1] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "You have to specify either decoder_input_ids or decoder_inputs_embeds") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.embed_tokens(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch_size, seq_length = input_shape | 
					
					
						
						| 
							 | 
						        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        mask_seq_length = past_key_values_length + seq_length | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self._use_flash_attention_2: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal_attention_mask = attention_mask if ( | 
					
					
						
						| 
							 | 
						                attention_mask is not None and 0 in attention_mask) else None | 
					
					
						
						| 
							 | 
						            attention_mask = ( | 
					
					
						
						| 
							 | 
						                torch.ones(batch_size, mask_seq_length, | 
					
					
						
						| 
							 | 
						                           device=inputs_embeds.device) | 
					
					
						
						| 
							 | 
						                if attention_mask is None | 
					
					
						
						| 
							 | 
						                else attention_mask | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if attention_mask is None: | 
					
					
						
						| 
							 | 
						                attention_mask = torch.ones( | 
					
					
						
						| 
							 | 
						                    batch_size, mask_seq_length, device=inputs_embeds.device) | 
					
					
						
						| 
							 | 
						            elif attention_mask.shape[1] != mask_seq_length: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be " | 
					
					
						
						| 
							 | 
						                    f"{mask_seq_length} (sum of the lengths of current and past inputs)" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            causal_attention_mask = _prepare_4d_causal_attention_mask( | 
					
					
						
						| 
							 | 
						                attention_mask, input_shape, inputs_embeds, past_key_values_length | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pos_embeds = self.embed_positions( | 
					
					
						
						| 
							 | 
						            attention_mask, past_key_values_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.project_in is not None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.project_in(inputs_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = inputs_embeds + pos_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        next_decoder_cache = () if use_cache else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for attn_mask, mask_name in zip([head_mask], ["head_mask"]): | 
					
					
						
						| 
							 | 
						            if attn_mask is not None: | 
					
					
						
						| 
							 | 
						                if attn_mask.size()[0] != (len(self.layers)): | 
					
					
						
						| 
							 | 
						                    raise ValueError( | 
					
					
						
						| 
							 | 
						                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | 
					
					
						
						| 
							 | 
						                        f" {head_mask.size()[0]}." | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for idx, decoder_layer in enumerate(self.layers): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.training: | 
					
					
						
						| 
							 | 
						                dropout_probability = torch.rand([]) | 
					
					
						
						| 
							 | 
						                if dropout_probability < self.layerdrop: | 
					
					
						
						| 
							 | 
						                    continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            past_key_value = past_key_values[idx] if past_key_values is not None else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						                layer_outputs = self._gradient_checkpointing_func( | 
					
					
						
						| 
							 | 
						                    decoder_layer.__call__, | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    causal_attention_mask, | 
					
					
						
						| 
							 | 
						                    head_mask[idx] if head_mask is not None else None, | 
					
					
						
						| 
							 | 
						                    None, | 
					
					
						
						| 
							 | 
						                    output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=causal_attention_mask, | 
					
					
						
						| 
							 | 
						                    layer_head_mask=( | 
					
					
						
						| 
							 | 
						                        head_mask[idx] if head_mask is not None else None), | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                next_decoder_cache += ( | 
					
					
						
						| 
							 | 
						                    layer_outputs[2 if output_attentions else 1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.final_layer_norm is not None: | 
					
					
						
						| 
							 | 
						            hidden_states = self.final_layer_norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.project_out is not None: | 
					
					
						
						| 
							 | 
						            hidden_states = self.project_out(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        next_cache = next_decoder_cache if use_cache else None | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
					
						
						| 
							 | 
						        return BaseModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=next_cache, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare OPT Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    OPT_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class OPTModel(OPTPreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: OPTConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.decoder = OPTDecoder(config) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.decoder.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.decoder.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @add_code_sample_docstrings( | 
					
					
						
						| 
							 | 
						        checkpoint=_CHECKPOINT_FOR_DOC, | 
					
					
						
						| 
							 | 
						        output_type=BaseModelOutputWithPast, | 
					
					
						
						| 
							 | 
						        config_class=_CONFIG_FOR_DOC, | 
					
					
						
						| 
							 | 
						        expected_output=_EXPECTED_OUTPUT_SHAPE, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        head_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        decoder_outputs = self.decoder( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            head_mask=head_mask, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return decoder_outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return BaseModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=decoder_outputs.last_hidden_state, | 
					
					
						
						| 
							 | 
						            past_key_values=decoder_outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=decoder_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=decoder_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OPTForCausalLM(OPTPreTrainedModel): | 
					
					
						
						| 
							 | 
						    _tied_weights_keys = ["lm_head.weight"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = OPTModel(config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.lm_head = nn.Linear( | 
					
					
						
						| 
							 | 
						            config.word_embed_proj_dim, config.vocab_size, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.decoder.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.decoder.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_output_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.lm_head | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_output_embeddings(self, new_embeddings): | 
					
					
						
						| 
							 | 
						        self.lm_head = new_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model.decoder = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model.decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        head_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | 
					
					
						
						| 
							 | 
						                provide it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						                [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						                - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): | 
					
					
						
						| 
							 | 
						                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						                - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
					
						
						| 
							 | 
						                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
					
						
						| 
							 | 
						                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | 
					
					
						
						| 
							 | 
						                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional | 
					
					
						
						| 
							 | 
						                tensors are only required when the model is used as a decoder in a Sequence to Sequence model. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | 
					
					
						
						| 
							 | 
						                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | 
					
					
						
						| 
							 | 
						                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | 
					
					
						
						| 
							 | 
						                all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | 
					
					
						
						| 
							 | 
						                This is useful if you want more control over how to convert `input_ids` indices into associated vectors | 
					
					
						
						| 
							 | 
						                than the model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
					
						
						| 
							 | 
						                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
					
						
						| 
							 | 
						                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | 
					
					
						
						| 
							 | 
						                for more detail. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ```python | 
					
					
						
						| 
							 | 
						        >>> from transformers import AutoTokenizer, OPTForCausalLM | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m") | 
					
					
						
						| 
							 | 
						        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
					
						
						| 
							 | 
						        >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> # Generate | 
					
					
						
						| 
							 | 
						        >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
					
						
						| 
							 | 
						        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
					
						
						| 
							 | 
						        "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo." | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs = self.model.decoder( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            head_mask=head_mask, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        logits = self.lm_head(outputs[0]).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            labels = labels.to(logits.device) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_logits = logits[..., :-1, :].contiguous() | 
					
					
						
						| 
							 | 
						            shift_labels = labels[..., 1:].contiguous() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						            loss = loss_fct( | 
					
					
						
						| 
							 | 
						                shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (logits,) + outputs[1:] | 
					
					
						
						| 
							 | 
						            return (loss,) + output if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return CausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_inputs_for_generation( | 
					
					
						
						| 
							 | 
						        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if past_key_values is not None: | 
					
					
						
						| 
							 | 
						            past_length = past_key_values[0][0].shape[2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if input_ids.shape[1] > past_length: | 
					
					
						
						| 
							 | 
						                remove_prefix_length = past_length | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                remove_prefix_length = input_ids.shape[1] - 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            input_ids = input_ids[:, remove_prefix_length:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if inputs_embeds is not None and past_key_values is None: | 
					
					
						
						| 
							 | 
						            model_inputs = {"inputs_embeds": inputs_embeds} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            model_inputs = {"input_ids": input_ids} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_inputs.update( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "past_key_values": past_key_values, | 
					
					
						
						| 
							 | 
						                "use_cache": kwargs.get("use_cache"), | 
					
					
						
						| 
							 | 
						                "attention_mask": attention_mask, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return model_inputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _reorder_cache(past_key_values, beam_idx): | 
					
					
						
						| 
							 | 
						        reordered_past = () | 
					
					
						
						| 
							 | 
						        for layer_past in past_key_values: | 
					
					
						
						| 
							 | 
						            reordered_past += ( | 
					
					
						
						| 
							 | 
						                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) | 
					
					
						
						| 
							 | 
						                      for past_state in layer_past), | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return reordered_past | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The OPT Model transformer with a sequence classification head on top (linear layer). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    [`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
					
						
						| 
							 | 
						    (e.g. GPT-2) do. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
					
						
						| 
							 | 
						    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
					
						
						| 
							 | 
						    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
					
						
						| 
							 | 
						    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
					
						
						| 
							 | 
						    each row of the batch). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    OPT_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class OPTForSequenceClassification(OPTPreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: OPTConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						        self.model = OPTModel(config) | 
					
					
						
						| 
							 | 
						        self.score = nn.Linear(config.word_embed_proj_dim, | 
					
					
						
						| 
							 | 
						                               self.num_labels, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @add_code_sample_docstrings( | 
					
					
						
						| 
							 | 
						        checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, | 
					
					
						
						| 
							 | 
						        output_type=SequenceClassifierOutputWithPast, | 
					
					
						
						| 
							 | 
						        config_class=_CONFIG_FOR_DOC, | 
					
					
						
						| 
							 | 
						        expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, | 
					
					
						
						| 
							 | 
						        expected_loss=_SEQ_CLASS_EXPECTED_LOSS, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        head_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        transformer_outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            head_mask=head_mask, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = transformer_outputs[0] | 
					
					
						
						| 
							 | 
						        logits = self.score(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size, sequence_length = input_ids.shape[:2] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size, sequence_length = inputs_embeds.shape[:2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None: | 
					
					
						
						| 
							 | 
						            sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if input_ids is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                sequence_lengths = torch.eq( | 
					
					
						
						| 
							 | 
						                    input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
					
						
						| 
							 | 
						                sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
					
						
						| 
							 | 
						                sequence_lengths = sequence_lengths.to(logits.device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						                logger.warning( | 
					
					
						
						| 
							 | 
						                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | 
					
					
						
						| 
							 | 
						                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_logits = logits[torch.arange( | 
					
					
						
						| 
							 | 
						            batch_size, device=logits.device), sequence_lengths] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            if self.config.problem_type is None: | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "regression" | 
					
					
						
						| 
							 | 
						                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "single_label_classification" | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "multi_label_classification" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.config.problem_type == "regression": | 
					
					
						
						| 
							 | 
						                loss_fct = MSELoss() | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "single_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct( | 
					
					
						
						| 
							 | 
						                    pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "multi_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = BCEWithLogitsLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (pooled_logits,) + transformer_outputs[1:] | 
					
					
						
						| 
							 | 
						            return ((loss,) + output) if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return SequenceClassifierOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=pooled_logits, | 
					
					
						
						| 
							 | 
						            past_key_values=transformer_outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=transformer_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=transformer_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.decoder.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.decoder.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD | 
					
					
						
						| 
							 | 
						    (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    OPT_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class OPTForQuestionAnswering(OPTPreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: OPTConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = OPTModel(config) | 
					
					
						
						| 
							 | 
						        self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        head_mask: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        start_positions: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        end_positions: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, QuestionAnsweringModelOutput]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
					
						
						| 
							 | 
						            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
					
						
						| 
							 | 
						            are not taken into account for computing the loss. | 
					
					
						
						| 
							 | 
						        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
					
						
						| 
							 | 
						            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | 
					
					
						
						| 
							 | 
						            are not taken into account for computing the loss. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ```python | 
					
					
						
						| 
							 | 
						        >>> from transformers import AutoTokenizer, OPTForQuestionAnswering | 
					
					
						
						| 
							 | 
						        >>> import torch | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> torch.manual_seed(4)  # doctest: +IGNORE_RESULT | 
					
					
						
						| 
							 | 
						        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> # note: we are loading a OPTForQuestionAnswering from the hub here, | 
					
					
						
						| 
							 | 
						        >>> # so the head will be randomly initialized, hence the predictions will be random | 
					
					
						
						| 
							 | 
						        >>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> inputs = tokenizer(question, text, return_tensors="pt") | 
					
					
						
						| 
							 | 
						        >>> with torch.no_grad(): | 
					
					
						
						| 
							 | 
						        ...     outputs = model(**inputs) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> answer_start_index = outputs.start_logits.argmax() | 
					
					
						
						| 
							 | 
						        >>> answer_end_index = outputs.end_logits.argmax() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> answer_offset = len(tokenizer(question)[0]) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> predict_answer_tokens = inputs.input_ids[ | 
					
					
						
						| 
							 | 
						        ...     0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1 | 
					
					
						
						| 
							 | 
						        ... ] | 
					
					
						
						| 
							 | 
						        >>> predicted = tokenizer.decode(predict_answer_tokens) | 
					
					
						
						| 
							 | 
						        >>> predicted | 
					
					
						
						| 
							 | 
						        ' a nice puppet' | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        transformer_outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            head_mask=head_mask, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = transformer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        logits = self.qa_outputs(hidden_states) | 
					
					
						
						| 
							 | 
						        start_logits, end_logits = logits.split(1, dim=-1) | 
					
					
						
						| 
							 | 
						        start_logits = start_logits.squeeze(-1).contiguous() | 
					
					
						
						| 
							 | 
						        end_logits = end_logits.squeeze(-1).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        total_loss = None | 
					
					
						
						| 
							 | 
						        if start_positions is not None and end_positions is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if len(start_positions.size()) > 1: | 
					
					
						
						| 
							 | 
						                start_positions = start_positions.squeeze(-1) | 
					
					
						
						| 
							 | 
						            if len(end_positions.size()) > 1: | 
					
					
						
						| 
							 | 
						                end_positions = end_positions.squeeze(-1) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            ignored_index = start_logits.size(1) | 
					
					
						
						| 
							 | 
						            start_positions = start_positions.clamp( | 
					
					
						
						| 
							 | 
						                0, ignored_index).to(logits.device) | 
					
					
						
						| 
							 | 
						            end_positions = end_positions.clamp( | 
					
					
						
						| 
							 | 
						                0, ignored_index).to(logits.device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | 
					
					
						
						| 
							 | 
						            start_loss = loss_fct(start_logits, start_positions) | 
					
					
						
						| 
							 | 
						            end_loss = loss_fct(end_logits, end_positions) | 
					
					
						
						| 
							 | 
						            total_loss = (start_loss + end_loss) / 2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (start_logits, end_logits) + transformer_outputs[2:] | 
					
					
						
						| 
							 | 
						            return ((total_loss,) + output) if total_loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return QuestionAnsweringModelOutput( | 
					
					
						
						| 
							 | 
						            loss=total_loss, | 
					
					
						
						| 
							 | 
						            start_logits=start_logits, | 
					
					
						
						| 
							 | 
						            end_logits=end_logits, | 
					
					
						
						| 
							 | 
						            hidden_states=transformer_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=transformer_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.decoder.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.decoder.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 |