Upload folder using huggingface_hub
Browse files- README.md +44 -163
- config.json +2 -2
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -6,206 +6,87 @@ tags:
|
|
| 6 |
- financial-text
|
| 7 |
- boilerplate-detection
|
| 8 |
- analyst-reports
|
| 9 |
-
- transformers
|
| 10 |
pipeline_tag: text-classification
|
| 11 |
widget:
|
| 12 |
-
- text: "
|
| 13 |
-
example_title: "Legal Disclaimer"
|
| 14 |
-
- text: "This report contains forward-looking statements that involve risks and uncertainties regarding future events."
|
| 15 |
-
example_title: "Forward-Looking Statement"
|
| 16 |
- text: "Our revenue increased by 15% compared to last quarter due to strong demand in emerging markets."
|
| 17 |
-
|
| 18 |
-
- text: "
|
| 19 |
-
example_title: "Confidentiality Notice"
|
| 20 |
-
- text: "We launched three innovative products this quarter that exceeded our initial sales projections by 40%."
|
| 21 |
-
example_title: "Product Update"
|
| 22 |
---
|
| 23 |
|
| 24 |
-
# Boilerplate Detection
|
| 25 |
|
| 26 |
-
This model
|
| 27 |
|
| 28 |
## Model Description
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
- **Positive examples (boilerplate)**: Top 10% most frequently repeated segments per broker-year, appearing ≥5 times
|
| 44 |
-
- **Negative examples**: Randomly selected non-repeated segments
|
| 45 |
-
- **Dataset**: 547,790 examples (54,779 boilerplate, 493,011 non-boilerplate)
|
| 46 |
-
- **Split**: 80/10/10 for train/validation/test
|
| 47 |
-
|
| 48 |
-
3. **Architecture Design**:
|
| 49 |
-
- **Embedding Layer**: Frozen sentence-transformers/all-mpnet-base-v2
|
| 50 |
-
- **Pooling**: Mean pooling over token embeddings
|
| 51 |
-
- **Classification Head**: Lightweight 3-layer MLP (768 → 16 → 8 → 2)
|
| 52 |
-
- **Strategy**: Frozen embeddings preserve semantic understanding while classification head learns boilerplate patterns
|
| 53 |
-
|
| 54 |
-
4. **Performance Metrics**:
|
| 55 |
-
- **Test AUC**: 0.966
|
| 56 |
-
- **False Positive Rate**: 0.093
|
| 57 |
-
- **False Negative Rate**: 0.073
|
| 58 |
-
- **Decision threshold**: 0.22 (median probability)
|
| 59 |
-
|
| 60 |
-
## Intended Uses
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
- Cleaning regulatory filings for substantive information extraction
|
| 66 |
-
- Preparing financial text for sentiment analysis or topic modeling
|
| 67 |
|
| 68 |
-
|
| 69 |
-
- General web content filtering (trained on financial documents)
|
| 70 |
-
- Non-English text classification
|
| 71 |
-
- Real-time streaming applications (optimized for batch processing)
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
from transformers import pipeline
|
| 79 |
-
|
| 80 |
-
# Load the model (requires trust_remote_code=True for custom architecture)
|
| 81 |
-
classifier = pipeline(
|
| 82 |
-
"text-classification",
|
| 83 |
-
model="maifeng/boilerplate_detection",
|
| 84 |
-
trust_remote_code=True,
|
| 85 |
-
device=0 if torch.cuda.is_available() else -1
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
# Single text classification
|
| 89 |
-
text = "This report contains forward-looking statements that involve risks and uncertainties."
|
| 90 |
-
result = classifier(text)
|
| 91 |
-
print(result)
|
| 92 |
-
# Output: [{'label': 'BOILERPLATE', 'score': 0.9987}]
|
| 93 |
-
|
| 94 |
-
# Batch classification for efficiency
|
| 95 |
texts = [
|
| 96 |
-
"Revenue increased by 15% this quarter driven by strong product demand.",
|
| 97 |
"The securities described herein may not be eligible for sale in all jurisdictions.",
|
| 98 |
-
"
|
| 99 |
-
"
|
|
|
|
| 100 |
]
|
| 101 |
|
| 102 |
-
results =
|
| 103 |
-
for text
|
| 104 |
-
|
| 105 |
-
score = result['score']
|
| 106 |
-
print(f"{'[BOILERPLATE]' if label == 'BOILERPLATE' else '[CONTENT] '} "
|
| 107 |
-
f"(confidence: {score:.1%}) {text[:60]}...")
|
| 108 |
-
```
|
| 109 |
-
|
| 110 |
-
### Direct Model Usage
|
| 111 |
-
|
| 112 |
-
```python
|
| 113 |
-
from transformers import AutoTokenizer, AutoModel
|
| 114 |
-
import torch
|
| 115 |
-
|
| 116 |
-
# Load model and tokenizer with trust_remote_code
|
| 117 |
-
model = AutoModel.from_pretrained(
|
| 118 |
-
"maifeng/boilerplate_detection",
|
| 119 |
-
trust_remote_code=True
|
| 120 |
-
)
|
| 121 |
-
tokenizer = AutoTokenizer.from_pretrained("maifeng/boilerplate_detection")
|
| 122 |
-
|
| 123 |
-
# Prepare input
|
| 124 |
-
texts = ["Your text here", "Another example"]
|
| 125 |
-
inputs = tokenizer(
|
| 126 |
-
texts,
|
| 127 |
-
padding=True,
|
| 128 |
-
truncation=True,
|
| 129 |
-
max_length=512,
|
| 130 |
-
return_tensors="pt"
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
# Get predictions
|
| 134 |
-
model.eval()
|
| 135 |
-
with torch.no_grad():
|
| 136 |
-
outputs = model(**inputs)
|
| 137 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 138 |
-
|
| 139 |
-
# Process results
|
| 140 |
-
for i, text in enumerate(texts):
|
| 141 |
-
probs = probabilities[i].numpy()
|
| 142 |
-
label = "BOILERPLATE" if probs[1] > 0.5 else "NOT_BOILERPLATE"
|
| 143 |
-
confidence = probs[1] if label == "BOILERPLATE" else probs[0]
|
| 144 |
-
print(f"{label}: {confidence:.2%} - {text[:50]}...")
|
| 145 |
-
```
|
| 146 |
-
|
| 147 |
-
### Integration in Document Processing Pipeline
|
| 148 |
-
|
| 149 |
-
```python
|
| 150 |
-
def filter_boilerplate(documents, threshold=0.5):
|
| 151 |
-
"""Filter out boilerplate segments from documents"""
|
| 152 |
-
classifier = pipeline(
|
| 153 |
-
"text-classification",
|
| 154 |
-
model="maifeng/boilerplate_detection",
|
| 155 |
-
trust_remote_code=True
|
| 156 |
-
)
|
| 157 |
|
| 158 |
-
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
if result['label'] == 'NOT_BOILERPLATE' or result['score'] < threshold:
|
| 163 |
-
filtered_docs.append(doc)
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
substantive_content = filter_boilerplate(analyst_reports)
|
| 170 |
-
print(f"Retained {len(substantive_content)}/{len(analyst_reports)} segments")
|
| 171 |
```
|
| 172 |
|
| 173 |
## Model Limitations
|
| 174 |
|
| 175 |
-
|
| 176 |
-
2. **Temporal Bias**: Trained on 2000-2020 data; newer boilerplate patterns may not be recognized
|
| 177 |
-
3. **Language**: English-only model
|
| 178 |
-
4. **Context Window**: Maximum 512 tokens per segment
|
| 179 |
-
5. **Binary Classification**: Does not distinguish between types of boilerplate
|
| 180 |
-
|
| 181 |
-
## Ethical Considerations
|
| 182 |
-
|
| 183 |
-
- **Transparency**: Users should understand that substantive content may occasionally be misclassified as boilerplate
|
| 184 |
-
- **Bias**: Training data from top brokers may not represent all financial communication styles
|
| 185 |
-
- **Use Case**: Should not be used as sole method for regulatory compliance or legal document analysis
|
| 186 |
|
| 187 |
## Citation
|
| 188 |
|
| 189 |
```bibtex
|
| 190 |
-
@article{
|
| 191 |
title={Dissecting Corporate Culture Using Generative AI},
|
| 192 |
-
author={Mai, Feng and
|
| 193 |
-
journal={
|
| 194 |
-
year={
|
| 195 |
}
|
| 196 |
```
|
| 197 |
|
| 198 |
-
## Technical Requirements
|
| 199 |
-
|
| 200 |
-
- Python 3.7+
|
| 201 |
-
- PyTorch 1.9+
|
| 202 |
-
- Transformers 4.20+
|
| 203 |
-
- CUDA (optional, for GPU acceleration)
|
| 204 |
-
|
| 205 |
## License
|
| 206 |
|
| 207 |
-
Apache 2.0
|
| 208 |
-
|
| 209 |
-
## Contact
|
| 210 |
-
|
| 211 |
-
For questions or issues, please open an issue on the [model repository](https://huggingface.co/maifeng/boilerplate_detection).
|
|
|
|
| 6 |
- financial-text
|
| 7 |
- boilerplate-detection
|
| 8 |
- analyst-reports
|
|
|
|
| 9 |
pipeline_tag: text-classification
|
| 10 |
widget:
|
| 11 |
+
- text: "The securities and related financial instruments described herein may not be eligible for sale in all jurisdictions or to certain categories of investors."
|
|
|
|
|
|
|
|
|
|
| 12 |
- text: "Our revenue increased by 15% compared to last quarter due to strong demand in emerging markets."
|
| 13 |
+
- text: "This report contains forward-looking statements that involve risks and uncertainties."
|
| 14 |
+
- text: "We launched three innovative products this quarter that exceeded our sales projections by 40%."
|
|
|
|
|
|
|
|
|
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# Boilerplate Detection for Financial Text
|
| 18 |
|
| 19 |
+
This model identifies boilerplate (formulaic, repetitive) language in financial documents, distinguishing it from substantive business content. It was developed to preprocess analyst reports for research on corporate culture analysis.
|
| 20 |
|
| 21 |
## Model Description
|
| 22 |
|
| 23 |
+
The model uses a frozen sentence transformer (all-mpnet-base-v2) combined with a lightweight classification head to identify boilerplate text segments. Training data consisted of analyst reports from 2000-2020, where boilerplate examples were identified as frequently repeated segments across reports from the same brokerage house.
|
| 24 |
|
| 25 |
+
The architecture combines mean-pooled embeddings from the sentence transformer with a simple 3-layer neural network (768 → 16 → 8 → 2) for classification. This approach preserves semantic understanding while learning patterns specific to financial boilerplate language.
|
| 26 |
|
| 27 |
+
## Usage
|
| 28 |
|
| 29 |
+
Since this model uses a custom architecture, you need to use the direct loading approach rather than the pipeline interface:
|
| 30 |
|
| 31 |
+
```python
|
| 32 |
+
import sys
|
| 33 |
+
import huggingface_hub
|
| 34 |
+
from transformers import AutoTokenizer
|
| 35 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# Load model components
|
| 38 |
+
model_path = huggingface_hub.snapshot_download('maifeng/boilerplate_detection')
|
| 39 |
+
sys.path.insert(0, model_path)
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
from modeling_boilerplate import BoilerplateDetector, BoilerplateConfig
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Initialize model
|
| 44 |
+
config = BoilerplateConfig.from_pretrained('maifeng/boilerplate_detection')
|
| 45 |
+
model = BoilerplateDetector.from_pretrained('maifeng/boilerplate_detection')
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained('maifeng/boilerplate_detection')
|
| 47 |
|
| 48 |
+
model.eval()
|
| 49 |
|
| 50 |
+
# Classify texts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
texts = [
|
|
|
|
| 52 |
"The securities described herein may not be eligible for sale in all jurisdictions.",
|
| 53 |
+
"Revenue increased by 15% this quarter due to strong market demand.",
|
| 54 |
+
"This report contains forward-looking statements involving risks.",
|
| 55 |
+
"Our new product line exceeded initial sales expectations significantly."
|
| 56 |
]
|
| 57 |
|
| 58 |
+
results = []
|
| 59 |
+
for text in texts:
|
| 60 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, max_length=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
outputs = model(**inputs)
|
| 64 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)[0]
|
| 65 |
|
| 66 |
+
label = 'BOILERPLATE' if probs[1] > 0.5 else 'NOT_BOILERPLATE'
|
| 67 |
+
confidence = probs[1].item() if label == 'BOILERPLATE' else probs[0].item()
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
results.append({'text': text, 'label': label, 'confidence': confidence})
|
| 70 |
|
| 71 |
+
for result in results:
|
| 72 |
+
print(f"{result['label']:>15}: {result['confidence']:.1%} - {result['text'][:60]}...")
|
|
|
|
|
|
|
| 73 |
```
|
| 74 |
|
| 75 |
## Model Limitations
|
| 76 |
|
| 77 |
+
This model is specifically trained on financial analyst reports from 2000-2020 and performs best on similar English-language financial documents. It may not generalize well to other domains or document types. The model processes text segments up to 512 tokens and provides binary classification only.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
## Citation
|
| 80 |
|
| 81 |
```bibtex
|
| 82 |
+
@article{li2025dissecting,
|
| 83 |
title={Dissecting Corporate Culture Using Generative AI},
|
| 84 |
+
author={Li, Kai and Mai, Feng and Shen, Rui and Yang, Chelsea and Zhang, Tengfei},
|
| 85 |
+
journal={Review of Financial Studies},
|
| 86 |
+
year={2025}
|
| 87 |
}
|
| 88 |
```
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
## License
|
| 91 |
|
| 92 |
+
Apache 2.0
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
|
@@ -8,6 +8,7 @@
|
|
| 8 |
8
|
| 9 |
],
|
| 10 |
"dropout": 0.05,
|
|
|
|
| 11 |
"hidden_size": 768,
|
| 12 |
"id2label": {
|
| 13 |
"0": "NOT_BOILERPLATE",
|
|
@@ -18,6 +19,5 @@
|
|
| 18 |
"NOT_BOILERPLATE": 0
|
| 19 |
},
|
| 20 |
"model_type": "boilerplate",
|
| 21 |
-
"
|
| 22 |
-
"transformers_version": "4.53.3"
|
| 23 |
}
|
|
|
|
| 8 |
8
|
| 9 |
],
|
| 10 |
"dropout": 0.05,
|
| 11 |
+
"dtype": "float32",
|
| 12 |
"hidden_size": 768,
|
| 13 |
"id2label": {
|
| 14 |
"0": "NOT_BOILERPLATE",
|
|
|
|
| 19 |
"NOT_BOILERPLATE": 0
|
| 20 |
},
|
| 21 |
"model_type": "boilerplate",
|
| 22 |
+
"transformers_version": "4.56.1"
|
|
|
|
| 23 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 438020320
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae32f779630e735df1f705d9b7d4743541c6d7f604d00b61e59e44cad7c25dca
|
| 3 |
size 438020320
|